請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82531
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳永芳(Yang-Fang Chen) | |
dc.contributor.author | Zun-Hong Jiang | en |
dc.contributor.author | 蔣尊閎 | zh_TW |
dc.date.accessioned | 2022-11-25T07:46:18Z | - |
dc.date.available | 2023-08-01 | |
dc.date.copyright | 2021-08-18 | |
dc.date.issued | 2021 | |
dc.date.submitted | 2021-08-03 | |
dc.identifier.citation | Matthew M. Ackerman, Xin Tang, and Philippe Guyot-Sionnest. Fast and Sensitive Colloidal Quantum Dot Mid-Wave Infrared Photodetectors. ACS Nano 12 (7), 7264-7271 (2018) Kim, D. Y. et al. PbSe nanocrystal-based infrared-to-visible up-conversion device. Nano. Lett. 11, 2109–2113 (2011). Livache, C., Martinez, B., Goubet, N. et al. A colloidal quantum dot infrared photodetector and its use for intraband detection. Nat Commun 10, 2125 (2019). McDonald, S., Konstantatos, G., Zhang, S. et al. Solution-processed PbS quantum dot infrared photodetectors and photovoltaics. Nature Mater 4, 138–142 (2005). McDonald, S. A., Cyr, P. W., Levina, L. Sargent, E. H. Photoconductivity from PbS-nanocrystal/semiconducting polymer composites for solution-processible, quantum-size tunable infrared photodetectors. Appl. Phys. Lett. 85, 2089–2091 (2004). Sun, Q., Wang, Y., Li, L. et al. Bright, multicoloured light-emitting diodes based on quantum dots. Nature Photon 1, 717–722 (2007). Yu, H., Kim, D., Lee, J. et al. High-gain infrared-to-visible upconversion light-emitting phototransistors. Nature Photon 10, 129–134 (2016). Shen, H., Gao, Q., Zhang, Y. et al. Visible quantum dot light-emitting diodes with simultaneous high brightness and efficiency. Nature Photon 13, 192–197 (2019). Li, X. et al. Bright colloidal quantum dot light-emitting diodes enabled by efficient chlorination. Nat. Photon. 12, 159–164 (2018). Colvin, V. L., Schlamp, M. C. Alivisatos, A. P. Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer. Nature 370, 354–357 (1994). Sze, S. M. Ng, K. K. Physics of Semiconductor Devices (Wiley, 2006). Sanjay Krishna. J. Phys. D: Appl. Phys. 38 2142 (2005) Dabbousi, B. O. et al. (CdSe)ZnS core–shell quantum dots: synthesis and optical and structural characterization of a size series of highly luminescent materials. J. Phys. Chem. B 101, 9463–9475 (1997). James R. Biard and Gary Pittman. Semiconductor Radiant Diode, Aug. (1962) D. A. Neamen. Semiconductor Physics Devices Basic Principles (2012) Rossetti, R., Hull, R., Gibson, J. M. Brus, L. E. J. chem. Phys. 82, 552–559 (1985) Brus, L. J. phys. Chem. 90, 2555–2560 (1986) Dannhauser, T., O'Neil, M., Johannson, K., Whitten, D. McLendon, G. J. phys. Chem. 90, 6074–6076 (1986) Peter Y. Yu Manuel Cardona. Fundamentals of Semiconductors Physics and Materials Properties (1997) The Nobel Prize in Physics 2014. NobelPrize.org. Nobel Media AB Khanna, V. K. Fundamentals of Solid State Lighting: LEDs, OLEDs, and Their Application in Illumination and Displays, CRC Press (2014) Md. A. Haque, T. Kurokawa, G. Kamita, Y. Yue, J. P. Gong, Chem. Mater. 23, 5200 (2011) Q. Zhao, A. Haines, D. Snoswell, C. Keplinger, R. Kaltseis, S. Bauer, I. Graz, R. Denk, P. Spahn, G. Hellmann. Appl. Phys. Lett. 100, 101902 (2012) Pedro L Hernandez Martinez. Optical properties of nanoparticles and nanowires: Exciton-plasmon interaction and photo-thermal effects. (2010) Toshihide Takagahara, Kyozaburo Takeda. Theory of the quantum confinement effect on excitons in quantum dots of indirect-gap materials. Phys. Rev. B.46, 15578 (1992) M. A. Reed, E. S. Hornbeck, M. R. Deshpande, R. G. Wheeler, R. C. Bowen, J. N. Randal and W. R. Frensley, “Quantum Dots,” Scientific American, Vol. 268, No.1 (1993) R. D Schaller and V. I. Klimov, “High Efficiency Carrier Multiplication in PbSe Nanocrystals: Implications for Solar Energy Conversion,” Physical Review Letters, Vol. 92, No. 18 (2004) Ephrem O. Chukwuocha, Michael C. Onyeaju, Taylor S. T. Harry. Theoretical Studies on the Effect of Confinement on Quantum Dots Using the Brus Equation. World Journal of Condensed Matter Physics Vol.2 No.2 (2012) Géza Tóth and Craig S. Lent. Quantum computing with quantum-dot cellular automata. Phys. Rev. A 63, 052315 (2001) R. Mirin, A. Gossard, J. Bowers. Room temperature lasing from InGaAs quantum dots. Electronics Letters Vol 32, 18 (1996) Koh, W. K., Saudari, S. R., Fafarman, A. T., Kagan, C. R. Murray, C. B. Thiocyanate-capped PbS nanocubes: ambipolar transport enables quantum dot based circuits on a flexible substrate. Nano Lett. 11, 4764–4767 (2011) Chang YP, Pinaud F, Antelman J, Weiss S, Tracking bio-molecules in live cells using quantum dots. J Biophotonics Sep 287-98 (2008) Li ZB, Cai W, Chen X. Semiconductor quantum dots in vivo imaging. J Nanosci Nanotechnol. Aug 2567-81 (2007) Shirasaki, Y., Supran, G., Bawendi, M. et al. Emergence of colloidal quantum-dot light-emitting technologies. Nature Photon 7, 13–23 (2013) B. O. Dabbousi and M. G. Bawendi. Electroluminescence from CdSe quantum‐dot/polymer composites. Appl. Phys. Lett. 66, 1316 (1995) Colvin, V., Schlamp, M. Alivisatos, A. Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer. Nature 370, 354–357 (1994) Coe, S., Woo, WK., Bawendi, M. et al. Electroluminescence from single monolayers of nanocrystals in molecular organic devices. Nature 420, 800–803 (2002) Mueller, A. H. et al. Multicolor light-emitting diodes based on semiconductor nanocrystals encapsulated in GaN charge injection layers. Nano Lett. 5, 1039–1044 (2005) Kwak, J. et al. Bright and efficient full-color colloidal quantum dot light-emitting diodes using an inverted device structure. Nano Lett. 12, 2362–2366 (2012) Qian, L., Zheng, Y., Xue, J. Holloway, P. H. Stable and efficient quantum-dot light-emitting diodes based on solution-processed multilayer structures. Nature Photon. 5, 543–548 (2011) Kirmani, A. R.; Sheikh, A. D.; Niazi, M. R.; Haque, M. A. et al. Sargent, A. Overcoming the Ambient Manufacturability-Scalability-Performance Bottleneck in Colloidal Quantum Dot Photovoltaics. Adv. Mater. 30, 1801661 (2018) Chen, B.; Jha, R.; Lazar, H.; Biswas, N. et al. Influence of Oxygen Diffusion Through Capping Layers of Low Work Function Metal Gate Electrodes. IEEE Electron Device Lett. 27, 228 (2006) Glen, T. S.; Scarratt, N. W.; Yi, H. et al. Grain Size Dependence of Degradation of Aluminium/Calcium Cathodes in Organic Solar Cells Following Exposure to Humid Air. Sol. Energy Mater. Sol. Cells 140, 25−32 (2015) Ali, F.; Sharma, A.; Tiwari, J. P.; Chand, S. Extended Interface Layer Concept for Higher Stability and Improvement of Life Time in Bulk Heterojunction Solar Cells. AIP Adv. 5, 027108 (2015) O. Malinkiewicz et al., Perovskite solar cells employing organic charge-transport layers, Nat. Photonics 8, 128–132. (2014) Qianqian Huang, Jiangyong Pan, Yuning Zhang, Jing Chen, Zhi Tao, Chao He, Kaifeng Zhou, Yan Tu, and Wei Lei, 'High-performance quantum dot light-emitting diodes with hybrid hole transport layer via doping engineering.' Opt. Express 24, 25955-25963 (2016) Hadi Tavakoli Dastjerdi, Rouhollah Tavakoli, Pankaj Yadav, Daniel Prochowicz, Michael Saliba, and Mohammad Mahdi Tavakoli. Oxygen Plasma-Induced p-Type Doping Improves Performance and Stability of PbS Quantum Dot Solar Cells. ACS Applied Materials Interfaces 11 (29), 26047-26052 (2019) Dai, X., Zhang, Z., Jin, Y. et al. Solution-processed, high-performance light-emitting diodes based on quantum dots. Nature 515, 96–99 (2014) H-W. Hu, T-L. Shen, T-Y. Lin, Y-F. Chen. Interactive Color-Changing Electronic Skin Based on Flexible and Piezoelectrically Tunable Quantum Dots Light-Emitting Diodes. Adv. Opt. Mat. Vol 8, 7. 1901715 (2020) Sebastian Reineke. White organic light-emitting diodes: Status and perspective. (2013) Tang, Haodong, et al. 'Up-conversion device based on quantum dots with high-conversion efficiency over 6%.' IEEE Access 8 (2020): 71041-71049. Zhang, Nan, et al. 'High-performance all-solution-processed quantum dot near-infrared-to-visible upconversion devices for harvesting photogenerated electrons.' Applied Physics Letters 115.22 (2019): 221103. Ban, D., et al. 'Near-infrared to visible light optical upconversion by direct tandem integration of organic light-emitting diode and inorganic photodetector.' Applied Physics Letters 90.9 (2007): 093108. Yu, By Hyeonggeun, et al. 'Sub-band gap turn-on near-infrared-to-visible up-conversion device enabled by an organic–inorganic hybrid perovskite photovoltaic absorber.' ACS applied materials interfaces 10.18 (2018): 15920-15925. Kim, Do Young, et al. 'Organic infrared upconversion device.' Advanced Materials 22.20 (2010): 2260-2263. Lai, Tzung-Han, et al. 'Multi-spectral imaging with infrared sensitive organic light emitting diode.' Scientific reports 4.1 (2014): 1-5. Y. Wei , Z. Ren , A. Zhang , P. Mao , H. Li , X. Zhong , W. Li , S. Yang and J. Wang. Hybrid Organic/PbS Quantum Dot Bilayer Photodetector with Low Dark Current and High Detectivity. Adv. Funct. Mater., 28 , 1706690 (2018) Z. Zheng, L. Gan, J. Zhang, F. Zhuge, T. Zhai. An enhanced UV-Vis-NIR an d flexible photodetector based on electrospun ZnO nanowire array/PbS quantum dots film heterostructure. Adv. Sci., 4, 1600316 (2017) Peng, M., Wang, Y., Shen, Q. et al. High-performance flexible and broadband photodetectors based on PbS quantum dots/ZnO nanoparticles heterostructure. Sci. China Mater. 62, 225–235 (2019) Xinyu Wang, Kaimin Xu, Xiaoyan Yan, Xiongbin Xiao, Carmela Aruta, Vittorio Foglietti, Zhijun Ning, and Nan Yang. Amorphous ZnO/PbS Quantum Dots Heterojunction for Efficient Responsivity Broadband Photodetectors. ACS Applied Materials Interfaces 12 (7), 8403-8410 (2020) Long Hu, Shujuan Huang, Robert Patterson, Jonathan E. Halpert. Enhanced mobility in PbS quantum dot films via PbSe quantum dot mixing for optoelectronic applications. J. Mater. Chem. C, 7, 4497-4502 (2019) Valerio Adinolfi, Illan J. Kramer, André J. Labelle, Brandon R. Sutherland, S. Hoogland, and Edward H. Sargent. Photojunction Field-Effect Transistor Based on a Colloidal Quantum Dot Absorber Channel Layer. ACS Nano 9 (1), 356-362 (2015) Onur Özdemir, et al. High Sensitivity Hybrid PbS CQD-TMDC Photodetectors up to 2 μm. ACS Photonics 6 (10), 2381-2386 (2019) Ren, Z., Sun, J., Li, H., Mao, P., Wei, Y., Zhong, X., Hu, J., Yang, S., Wang, J. Bilayer PbS Quantum Dots for High-Performance Photodetectors, Adv. Mater. 29, 1702055 (2017) Jing-Yue Zhang, et al. Toward Broadband Imaging: Surface-Engineered PbS Quantum Dot/Perovskite Composite Integrated Ultrasensitive Photodetectors. ACS Applied Materials Interfaces 11 (47), 44430-44437 (2019) Buddhiraju, S., Dutt, A., Minkov, M. et al. Arbitrary linear transformations for photons in the frequency synthetic dimension. Nat Commun 12, 2401 (2021). Liu, Y., Han, F., Li, F. et al. Inkjet-printed unclonable quantum dot fluorescent anti-counterfeiting labels with artificial intelligence authentication. Nat Commun 10, 2409 (2019). | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82531 | - |
dc.description.abstract | 近紅外光與可見光的上轉換裝置因有著於可見光與非可見光波段之間轉換的性質,在生醫、光通訊、防護以及影像處理等領域皆具有值得期待的潛力。 在此研究中,我們製作出一個不需整合複數元件的發光二極體,此單一裝置藉由在電動傳輸層中加入硫化鉛量子點,並藉由適當的材料選擇,利用兩種不同的硒化鎘/硫化鋅量子點組成發光層,能在使元件吸收紅外光、改變輸入電流等條件下發出可調頻率之可見光,並能依照施加紅外光之分布、強度來調控發光比例與形狀。此研究呈現之量子點發光二極體可藉由光電雙重調控發光特性,能為量子點裝置的製程提供更為簡便、低耗及高效率的結構設計以滿足更小、更精細的裝置科技需求。 | zh_TW |
dc.description.provenance | Made available in DSpace on 2022-11-25T07:46:18Z (GMT). No. of bitstreams: 1 U0001-2907202116383800.pdf: 2866526 bytes, checksum: 321cb18c123bb8367478f03141631a0c (MD5) Previous issue date: 2021 | en |
dc.description.tableofcontents | 口試委員會審定書 I 誌謝 II 中文摘要 III ABSTRACT IV Contents V List of Figures and Tables VII Chapter 1 Introduction 1 Reference 3 Chapter 2 Theoretical background 5 2.1 Light-emitting diode 5 2.2 Quantum dots 6 2.3 Quantum dots light-emitting diode 8 Reference 11 Chapter 3 Experimental Details 15 3.1 Instruments 15 3.1.1 The list of equipment 15 3.1.2 High speed centrifuge 15 3.1.3 Oxygen plasma cleaner 17 3.1.4 Thermal evaporation system 18 3.1.5 Scanning Electron Microscope (SEM) 19 3.2 Materials 21 3.2.1 The list of material 21 3.2.2 Synthesis of Zinc oxide (ZnO) nanoparticles 22 3.2.3 Lead sulfide (PbS) quantum dots 23 3.2.4 PEDOT 23 3.2.5 Poly-TPD 24 3.2.6 PVK 25 3.2.7 CdSe/ZnS core-shell type quantum dots 25 3.3 Device fabrication 26 Reference 28 Chapter 4 Result and discussion 30 4.1 Structure of the device 30 4.2 Electrical transport and photoresponse properties 33 4.3 Emission performance of the device 37 Reference 45 Chapter 5 Conclusion 48 | |
dc.language.iso | en | |
dc.title | 紅外光控變色量子點發光二極體 | zh_TW |
dc.title | Infrared-controllable color-changing quantum dot light-emitting diode | en |
dc.date.schoolyear | 109-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 林泰源(Hsin-Tsai Liu),許芳琪(Chih-Yang Tseng) | |
dc.subject.keyword | 紅外光轉換可見光,發光二極體,全溶液製程,硫化鉛量子點,變色, | zh_TW |
dc.subject.keyword | infrared-to-visible,LED,all-solution-processed,PbS quantum dots,color-changing, | en |
dc.relation.page | 49 | |
dc.identifier.doi | 10.6342/NTU202101900 | |
dc.rights.note | 同意授權(限校園內公開) | |
dc.date.accepted | 2021-08-05 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 應用物理研究所 | zh_TW |
dc.date.embargo-lift | 2023-08-01 | - |
顯示於系所單位: | 應用物理研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
U0001-2907202116383800.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 2.8 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。