Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8250
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor廖文正(Wen-Cheng Liao)
dc.contributor.authorHo-Cheng Huangen
dc.contributor.author黃禾程zh_TW
dc.date.accessioned2021-05-20T00:50:46Z-
dc.date.available2023-08-11
dc.date.available2021-05-20T00:50:46Z-
dc.date.copyright2020-09-22
dc.date.issued2020
dc.date.submitted2020-08-12
dc.identifier.citation[1]AASHTO, 2014, “AASHTO LRFD Bridge Design Specifications. 7th ed,” American Association of State Highway and Transportation Officials (AASHTO), Washington DC
[2]ACI Committee 209, 1978,” Prediction of Creep, Shrinkage and Temperature Effects in Concrete Structures,” ACI, Detroit, pp.98.
[3]ACI Committee 209, 1982, “Prediction of Creep, Shrinkage and Temperature Effects in Concrete Structures,” Designing for Creep and Shrinkage in Concrete Structures, A Tribute to Adrian Pauw, SP-76, American Concrete Institute, Farmington Hills, MI, pp. 193-300.
[4]ACI Committee 209, 1992, “Prediction of Creep, Shrinkage, and Temperature Effects in Concrete Structures (ACI 209R-92),” American Concrete Institute, Farmington Hills, MI, 47 pp.
[5]Bažant, Z.P., and Baweja, S., 1995, “Creep and Shrinkage Prediction Model for Analysis and Design of Concrete Structures: Model B3,” Materials and Structures, V. 28, pp. 357-365, 415-430, 488-495.
[6]Bažant, Z.P., and Chern, J. C., 1985, 'Concrete Creep at Variable Humidity: Constitutive Law and Mechanism', Materials and Structures, Vol. 18, No. 103, pp. 1-20.
[7]Bažant, Z.P., and Joong-Koo Kim, 1991,“Improved prediction model for time dependent deformation of concrete:Part 1-Shrinkage,” Materials and Structures, Vol.24, pp.327-345.
[8]Bažant, Z.P., Hubler, M.H., and Wendner, R., 2015, “Model B4 for Creep, Drying Shrinkage and Autogenous Shrinkage of Normal and High-strength Concretes with Multi-decade Applicability,” RILEM Recommendation TC-242-MDC.
[9]Bažant, Z.P., L.Panula, 1978, “Practical prediction of time-dependent deformations of concrete”, Materials and Structures, Vol.11, Issue 5, pp.317-328
[10]Bentur, A. , Igarashi, S.I., Kovler, K., 2001, “Prevention of autogenous shrinkage in high-strength concrete by internal curing using wet lightweight aggregates”, Cement and Concrete Research 31 , pp.1587-1591
[11]Blakey, F A,1963, Influence of Creep and Shrinkage on Structural Behaviour on structional Review, pp 15–21.
[12]Branson, D. E., and Christiason, M. L., 1971, “Time Depedent Concrete Properties Related to Design—Strength and Elastic Properties, Creep and Shrinkage,” Creep, Shrinkage and Temperature Effects, SP-27, American Concrete Institute, Farmington Hills, MI, pp. 257-277.
[13]Brooks, J. J., Wainwright, P. J., and Boukendakji, M., 1992, “Influence of Salg Type and Replacement Level on Strength, Elasticity, Shrinkage, and Creep of Concrete,” ACI SP-132, pp.1325-1341.
[14]Brooks, J.J, and Hynes, J.D. , 1993,”Creep and Shrinkage of Ultra High-Strength Silica Fume Concrete”, Proc. Of the 5th International RILEM Symposium on Creep and Shrinkage of Concrete (ConCreep 5), Barcelona, Spain, pp.499-504.
[15]CEB, 1991, “Evaluation of the Time Dependent Properties of Concrete,” Bulletin d’Information NO. 199, Comite European du Beton/Federation Internationale de la Precontrainte, Lausanne, Switzerland, 201 pp.
[16]CEB, 1999, “Structural Concrete—Textbook on Behaviour, Design and Performance. Updated Knowledge of the CEB/FIP Model Code 1990,” fib Bulletin 2, V. 2, Federation Internationale du Beton, Lausanne, Switzerland, pp. 37-52.
[17]CEB-FIP Model Code 1990, Final Draft, CEB Bulletin d’Information, No.203, PP.2.27-2.38, PP.2.43-2.49, 1991.
[18]Chern, J. C., and Liu, T.C., 2009, “Life-Cycle Management of Sustainable Public Infrastructure,” Paper presented at the International Symposium on Infrastructure and Environment, sponsored by the Society for Social Management Systems, Kochi, Japan. (2010 SSMS Best Paper Award).
[19]Chern, J.C. and Young, C.H., (1992), 'Pickett Effect and Creep in Flexure of Steel-Fiber Reinforced Concrete,' J. of the Chinese Institute of Engineers, Vol. l5, No. 6, pp. 695-702.
[20]Chern, J.C., Marchertas, A.H., and Bažant, Z.P., 1985, 'Concrete Creep at Transient Temperature: Constitutive Law and Mechanism', Proc. 8th Intern. Conf. on Struc. Mech. in Reactor Technology, Bressels, Belgium.
[21]Chern, J.C., Young, C.H., 1990, “Study on the Factors Influencing the Drying Shrinkage of Steel Fiber Reinforced Concrete,” ACI Materials Journal, Vol. 87, No. 2, 123-129.
[22]Chern, J.C.,and Young, C.H., 1991, “Practical Prediction Model for Shrinkage of Steel Fibre Reinforced Concrete,” Materials and Structures, Vol. 24, pp.191-201.
[23]Collins, F., Sanjayan, J.G., 2000, “Effect of pore size distribution on drying shrinkage of alkali-activated slag concrete”, Cement and Concrete Research 30, pp.1401-1406.
[24]Davis, H.E.,1940, “Autogenous Volume Change of Concrete,” ASTM, PP.1103-1113.
[25]De Larrard., and Roy, L.R, “Creep and Shrinkage of High Performance Concrete,” Proc. of the 5th Int. RILEM Symposium on Creep and Shrinkage of Concrete, Barcelona, Spain, PP.499-504, 1993.
[26]Feldman, R.E., and Sereda, P.J.,1970,” Engineering Journal (Canada)”, vol.53, No.8/9, pp53-59
[27]Gardner, N. J., and Lockman, M. J., 2001, “Design Provisions for Drying Shrinkage and Creep of Normal Strength Concrete,” ACI Materials Journal, V. 98, NO. 2, Mar.-Apr., pp. 159-167.
[28]Gardner, N. J., and Lockman, M. J., 2004, “Is Superposition of Creep Strains Valid for Concretes Subjected to Drying Creep?” ACI Materials Journal, V. 101, NO. 5, Sept.-Oct., pp.409-415.
[29]Hansen, T.C., and K.E.C., Nielsen, 1965, “Influence of aggregate properties on concrete shrinkage,” ACI, pp.783.
[30]Hansen, T.C., and K.E.C., Nielsen, 1965, “Influence of aggregate properties on concrete shrinkage,” ACI, pp.783.
[31]Holt, E., and M. Leivo, 2004, “Cracking Risks Associated with Early Age Shrinkage,” Cement and Concrete Composites, 26.
[32]Hubler, M. H., Wendner, R., and Bažant, Z.P., 2015, “Comprehensive Database for Concrete Creep and Shrinkage: Analysis and Recommendations for Testing and Recording,” ACI Materials Journal, V. 112, NO. 112-M52, July, pp.547-558.
[33]Hyodo, H., Tanimura, M., Sato, R., Kawai, K., 2015, “Evaluation of Effect of Aggregate Properties on Drying Shrinkage of Concrete,” Sustainable Construction Materials and Technologies.
[34]Kawai, M., S. Mizyawa, 2004,“Prediction Model for Autogenous Shrinkage of Concrete,” Research Reports Ashikaga Institute of Technology, PP.29-36.
[35]Krishna, V., and Kumar, R., 2016, “Water to Cement Ratio: A Simple and Effective Approach to Control Plastic and Drying Shrinkage in Concrete”, Fourth International Conference on Sustainable Construction Materials and Technologies, Las Vegas, USA.
[36]Lane, R. O., and Best, J. F., 1982, “Properties and Use of Fly Ash in Portland Cement Concrete,” Concrete International: Design Construction, V. 4, No. 7, July, pp. 81-92.
[37]Loman, W. R., 1940, “The Theory of Concrete Creep”, Proc, ASTM, Vol. 40, pp. 1082-1102.
[38]Mak, S.L., K. Torii, 1995, “Strength Development of High Strength of Ultra High-Strength Concrete Subjected to High Hydration Temperature,” Cement and Concrete Research 25, PP.1791-1802.
[39]Miao, B. et al., 1994, “Drying Shrinkage of Ready Mixed High Performance Concrete”, ACI Material Journal, Vol.91, No.3.
[40]Morgan, D.R., 1974, “Possible Mechanisms of Influence of Admixtures on Drying Shrinkage and Creep in Cement Paste and Concrete”, Materials and Structures Research and Testing, Vol. 7, No.40, pp.283-289
[41]Müller, H. S., and Hilsdorf, H. K., 1990, “General Task Group 9,” CEB Comit’e Euro-International du Beton, Paris, France, pp. 201.
[42]Müller, H. S., and Kvitsel, V., 2000, “Creep and Shrinkage Model for Normal Concrete and HPC: Concept for a Uniform Code-Type Approach,” Special Issue for RFGC, ACI Workshop, Paris.
[43]Naganathan, S., and Linda, T., 2013, “Effect of Fly Ash Fineness on the Performance of Cement Mortar,” Jordan Journal of Civil Engineering, Vol. 7, NO. 3, pp. 326-331.
[44]Neville, A. M., Dilger, W. H., and Brooks, J. J., 1983, “Creep of Plain and Structural Concrete”, Longman Inc., New York.
[45]Neville, A.M., ”Properties of Concrete,” Pitman, London, pp.374, 1981.
[46]Odman, S. T. A., 1968., “Effects of Variations in Volume, Surface Area Exposed to Drying, and Composition of Concrete on Shrinkage”, RILEM/CEMBUREAU Int. Colloquium on the Shrinkage of Hydraulic Concretes, Vol. 1, pp200.
[47]Perenchio, W.F., 1997 , “The Drying Shrinkage Dilemma-Some Observations and Questions about Drying Shrinkage and Its Consequence,” Concrete Construction, Vol.42, No.4, PP.379-383.
[48]Pickett, G. (1956) “Effect of aggregate on shrinkage of concrete and a hypothesis concerning shrinkage,” ACI Journal, Vol. 52, No. 5, pp. 581-590
[49]Roper, H.R. , 1974, ”The Influence of Cement Composition and Fineness on Concrete Shrinkage, Tensile Creep and Cracking Tendency,” First Australian Conference on Engineering Materials, University of New South Wales, Australia.
[50]Ross, A. D., 1983, “The Creep of Blast Furnace Slag Cement Concrete,” ACI Journal, Vol. 8, pp. 43-52.
[51]Sakata, K., 1993, “Prediction of concrete creep and shirinkage,” The fifth international RILEM symposium on creep and shrinkage of concrete, Barcelona 6-9
[52]Sakata, K., and Ayano,T., 2009,” Database of creep and shrinkage based on Japanese researches”,”Creep, Shrinkage and Durability Mechanics of Concrete and Concrete Structure”, pp.1253-1274
[53]Shariq, M., Prasad, J., and Abbas, H., 2016, “Creep and Drying Shrinkage of Concrete Containing GGBFS,” Cement and Concrete Composites, 68, pp. 35-45.
[54]Sicker, A., 1999, ” The Influence of Superplasticizer on the Autogenous Shrinkage of High Performance Concrete”, LACER, No. 4.
[55]Tangtermsirikul,S., Sudsangiam, T., Deesawangnade, T., and Nimityongskul, P. , 1995, “Class C Fly Ash as a Shrinkage Reducer for Cement Paste”, ACI Special Publication, pp.385-402.
[56]Tazawa, E. and Yonekura, A., 1986, “Drying Shrinkage and Creep of Concrete with Condensed Silica Fume.”, Proc. 2nd International on Fly Ash, Silica Fume, Slag, and Natural Pozzolands in Concrete, ACI Special Publication SP 114, Vol.2, pp.903-921.
[57]Tazawa, E., and S. Miyazawa, 1993, “Autogenous Shrinkage of Concrete and Its Importance in Concrete Technology,” Proc. Of the 5th Int. RILEM Symposium on Creep and Shrinkage of Concrete, Barcelona, Spain, PP. 159-168.
[58]Tazawa, E., and S. Miyazawa, 1997, “Influence of Constituents and Composition on Autogenous Shrinkage of Cementitious Materials,” Magazine of Concrete Research, Vol. 49, No.178, PP.15-22.
[59]Tazawa, E., and S. Miyazawa,, 1995, “Influence of Cement and Admixture on Autogenous Shrinkage of Cement Paste,” Cement and Concrete Research, Vol.25, No.2, PP. 281-287.
[60]Tazawa, E., Yonekura, A., and Tanaka, S., 1989, “Drying Shrinkage and Creep of Concrete Containing Granulated Blast Furnace Slag,” ACI Special Publication, Vol. 114, pp. 1325-1344.
[61]Termkhajornkit, P. , Nawa, T., Nakai, M., Saito, T., 2005, “Effect of fly ash on autogenous shrinkage”, Cement and Concrete Research 35, pp.473-482.
[62]Wagner, O., 1958, “Das Kriechen Unbewehrten Betons, Deutscher Ausschuss fur Stahlbeton, No. 131, Berlin, pp.74.
[63]Walraven, J., 2010, fib Model Code 2010,Vol.1, First Draft, fib bulletin 66
[64]Wang, X., 2011, “Drying shrinkage of ternary blends in mortar and concrete.” , Graduate thesis, IOWA State University.
[65]Wendner, R., Hubler, M. H., and Bažant, Z.P., 2015, “Statistical Justification of Model B4 for Multi-Decade Concrete Creep Using Laboratory and Bridge Databases and Comparisons to Other Models,” Materials and Structures, Vol. 48, pp. 815-833.
[66]Yuan, R. L., and Cook, J. E., 1983, “Study of Class C Fly Ash Concrete,” Fly Ash, Silica Fume, Slag and Other Mineral By-Products in Concrete, SP-79, American Concrete Institute, pp. 307-319.
[67]Zhang, W., Zakaria, M., Hama, Y., 2013, “Influence of aggregate materials characteristics on the drying shrinkage properties of mortar and concrete,” Construction and Building Materials.
[68]中華民國交通部,2015,公路橋梁設計規範,交技(104)字第1045004678號。
[69]江盈儀,2010,「高強度混凝土與高含量飛灰混凝土之收縮行為探討」,碩士論文(指導教授:詹穎雯),國立台灣大學土木工程學研究所。
[70]行政院公共工程委員會,1999,「公共工程飛灰混凝土使用手冊」。
[71]行政院公共工程委員會,2001,「公共工程高爐石混凝土使用手冊」。
[72]行政院公共工程委員會,2013,「混凝土基本材料及施工一般要求」。
[73]吳秉駿,2001,「台灣地區使用飛灰/爐石混凝土變形之預測研究」,碩士論文(指導教授:陳振川),國立台灣大學土木工程研究所,PP.72-76。
[74]吳賴雲、張阿本、李振昌,1995,「中山高汐五段高架拓寬工程圓山-台北段試驗混凝土潛變與乾縮性質研究」,研究報告,財團法人台灣營建研究中心。
[75]侯錫璋,1988,「混凝土潛變預測模式之發展與爐石骨材混凝土之長期行為研究」,碩士論文(指導教授:陳振川),國立台灣大學土木工程學研究所,台北。
[76]孫志誠,1975,「養護環境對混凝土潛變之影響」,碩士論文(指導教授:高健章),國立台灣大學土木工程學研究所,台北。
[77]秦維邑,「建置及應用資料庫以發展台灣混凝土收縮預測模式」,碩士論文(指導教授:陳振川),國立台灣大學土木工程學研究所,臺北(2017)。
[78]高健章、林正直,1970,「混凝土受均佈壓力及均變分佈壓力之初期潛變」,材料科學,第二卷,第三期。
[79]高健章、張阿本、孫志誠,1975,「各種養護環境之混凝土潛變及其極限值」,材料科學,第二卷,第三期。
[80]張行健,1987,「混凝土大壩熱粘彈性有限元素分析與潛變試驗」,碩士論文(指導教授:陳振川),國立台灣大學土木工程學研究所,台北。
[81]張燕京、陳振川、陳清泉、張國鎮、詹穎雯,1996,「預力混凝土箱型梁上部結構自動工法個案研究-支撐先進工法(南二高台南環線C372標工程)」,研究報告,財團法人台灣營建研究中心。
[82]陳振川、高健章、陳清泉,1987,「縱貫線下大甲溪橋U型梁載重試驗及相關試驗研究」,研究報告,財團法人台灣營建研究中心。
[83]陳振川、高健章、詹穎雯、湯豐銘,1987,「不同環境溫、濕度對高爐水泥與卜特蘭水泥混凝土強度影響與變形之研究」,研究報告,財團法人台灣營建研究中心。
[84]陳振川、詹穎雯,1986,「添加飛灰與高爐石粉混凝土之體積穩定探討」,高爐石與飛灰資源再混凝土工程上應用研討會,pp. 215-243。
[85]陸景文,2001,「台灣地區混凝土橋梁溫度、彈性應變、潛變及乾縮特性之整合研究」,博士論文(指導教授:陳振川、詹穎雯),國立台灣大學土木工程學研究所,台北。
[86]陸景文、陳振川、張國鎮、詹穎雯,2001,「台灣地區溫度對混凝土橋樑影響之監測與分析」,中國土木水利工程學刊,第13卷,第3期,pp.593-604。
[87]黃兆龍,蘇南,1979,「台灣主要河川粗骨材資源、岩性及巨觀工程性質之探討」,土木水利,第十六卷,第二期,第61-76頁。
[88]黃裔炎,1985,「大壩混凝土之潛變試驗研究」,碩士論文(指導教授:高健章),國立台灣大學土木工程學研究所,台北。
[89]楊錦懷,1989,「纖維加強水泥複合材料之乾縮、黏彈與破裂行為研究」,博士論文(指導教授:陳振川、陳清泉),國立台灣大學土木工程學研究所,台北。
[90]詹穎雯,1987,「環境溫、濕度對含高爐石、飛灰與普通卜特蘭水泥混凝土強度之影響與變形之研究」,碩士論文(指導教授:陳振川),國立台灣大學土木工程學研究所。
[91]詹穎雯、周浩生,1998,「高速公路王田交流道工程混凝土材料潛變與乾縮性質研究」,研究報告,財團法人台灣營建研究中心。
[92]廖文正、林致淳、詹穎雯,2016,「台灣混凝土彈性模數建議公式研究」,結構工程,Vol. 31, NO.3, pp.5-31。
[93]廖昱霖,2018,「建置及應用資料庫以發展台灣自充填混凝土潛變預測公式」,碩士論文(指導教授:陳振川),國立台灣大學土木工程學研究所,台北
[94]臺北市政府工務局新建工程處,「新生高架橋之松江大橋段監測暨管理值定技術服務案期末分析評估報告」(2012)。
[95]臺灣大學土木工程學系歐昱辰教授,2020,預力混凝土學上課講義。
[96]劉家佑,1996,「高性能混凝土自體收縮性質性質之研究」,碩士論文(指導教授:詹穎雯),國立台灣大學土木工程學研究所,台北市。
[97]劉庭愷,「建置及應用資料庫以發展台灣混凝土潛變預測模式」,碩士論文(指導教授:陳振川),國立台灣大學土木工程學研究所,臺北(2017)。
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8250-
dc.description.abstract進行混凝土結構物設計、興建與維護管理時,需考量強度、變形及耐久性以達到長期安全及服務性,然而實務上多未能準確考量收縮和潛變所造成的影響。國內外對於混凝土收縮與潛變已有長期的試驗與研究發展,且也提出多種收縮及潛變預測模型。台灣於2017年建立了「台灣混凝土潛變收縮資料庫」,並選用Model B4為基礎提出了本土化收縮潛變預測模型Model B4TW (2017)。
Model B4TW (2017) 雖然已針對台灣多項混凝土特性進行修正,包含高膠結材含量、低彈性模數與低粒料勁度等,但仍未考慮骨材含量與對預測模型中各項水泥相關參數進行本土化修正。為對前述進行修正並使TW資料庫更加完善,本研究在「台灣混凝土潛變收縮資料庫」中新增了多項欄位,包含細粒料量、粗粒料量、細粒料比重、粗粒料比重、爐石細度與飛灰種類等,期望提出更準確且更符合物理意義的預測模型Model B4TW (2020)。
本研究使用Python 建立分析方法並選用 Microsoft SQL (MSSQL) 做為資料庫管理系統,而非傳統之 Excel 或者 Access,其原因在於透過 SQL 語法之可攜性可輕易進行資料篩選與分析,且較適用於處理大量數據,效率遠勝傳統資料庫分析方法。近年來資料科學發展興盛,本研究透過使用多種機器學習演算法對台灣收縮與潛變數據進行回歸與預測,期望提出更準確的預測模型。為方便工程師以及各國學者在不需進行任何複雜操作以及程式碼處理的情況下使用本研究所提出的各項成果,本研究透過將資料庫雲端化,並使用ASP.net建置線上即時分析網頁S.C.D.T (Shrinkage and Creep Database in Taiwan),使用者僅須在網頁上輸入所需參數便可以迅速得到各模型收縮與潛變預測成果。
造成預力混凝土橋梁長期變形的原因,主要可歸因於混凝土收縮與潛變所引致的預力損失,目前各國學者與規範所提出之收縮與潛變模型在預測台灣混凝土時皆呈現低估的現象。為探討並比較國內外各模型應用於橋梁長期變位分析之差異,本研究選用多種混凝土收縮潛變預測模型,包含ACI 209R-92、AASHTO LRFD 2014、CEM MC90、CEB MC10、GL2000、Model B3以及Model B4TW (2020)等,使用MIDAS Civil建立預力箱型橋梁模型進行分析。比較分析結果後發現,若直接套用國外預測模型,將嚴重低估橋梁長期變位與預力損失,導致使用年限高估。本研究期望發展出一套適合台灣混凝土預力橋梁長期變形的分析模式,使工程界能更準確掌握台灣混凝土橋梁長期變形量以及評估使用年限,利於安全監測及適時進行維護,以避免災害發生並延長混凝土結構物的生命週期。
zh_TW
dc.description.abstractUnder design, construction and maintenance of concrete structures, strength, deformation and durability must be taken into consideration in order to reach long-term safety and serviceability. However, the effect of shrinkage and creep is rarely considered in practice. Experiments and researches on shrinkage and creep of concrete have been developed over decades all around the world. Numerous shrinkage and creep prediction models have been proposed. In 2017, Shrinkage and Creep Database of Concrete in Taiwan (TW Database) was established. A localized prediction formula, Model B4TW (2017) was proposed to predict shrinkage and creep of concrete in Taiwan.
Model B4TW (2017) takes Model B4 as its base model and modifies with local characteristics of concrete in Taiwan, including high cementitious material content, low concrete elastic modulus and low aggregate stiffness. Even though Model B4TW (2017) already has considerable high prediction accuracy, modification on cement related coefficient and the effect of aggregate content were not yet considered. To modify on aforementioned and integrate TW database, this study adds several parameters, including coarse aggregate content, fine aggregate content, specific gravity of aggregate, slag type and fly ash type into TW database; looking forward to proposing the Model B4TW (2020) a prediction model with higher accuracy and satisfied physical principles..
This study uses Microsoft SQL as database management system and Python to establish all processing procedures. The reason why Microsoft SQL was selected rather than traditional software such as Excel and Access is that SQL is highly portable and more suitable when handling large datasets. By combining Microsoft SQL and Python, the efficiency of analysis can be greatly enhanced. In recent years, data science has gained popularity all over the globe. This research selected several machine learning algorithms to predict shrinkage and creep of concrete; expecting to propose a prediction model with even higher accuracy. In order to enable engineers and scholars to make use of the result proposed by this research without the need of complicated calculation and ability of coding, an online analysis webpage S.C.D.T (Shrinkage and Creep Database in Taiwan) was established using ASP.net. By inputting parameters required, users can easily and quickly obtain prediction results of shrinkage and creep calculated by each model.
The cause of long-term deflection of prestressed concrete bridges are mainly attributed by tendon loss induced by shrinkage and creep of concrete. All prediction models available at present underestimate shrinkage and creep strain of concrete in Taiwan. In order to investigate and compare long-term behavior of prestressed concrete bridge, this research applies multiple prediction models, including ACI 209R-92、AASHTO LRFD、CEM MC90、CEB MC10、Model B3 and Model B4TW (2020) to prestressed concrete box girder bridge model established by MIDAS Civil. Analysis results show that if foreign prediction model is directly applied in designing prestressed concrete bridge in Taiwan, maximum deflection of the bridge will be underestimated and service life will be overestimated. This research developed a long-term deformation analysis which enables engineers to accurately calculate long-term deflection, tendon loss and service life of prestressed concrete bridges in Taiwan. The Analysis results also enable engineers to monitor and provide retrofit when needed, extend the service life of structure during the design and maintenance phase to achieve sustainability.
en
dc.description.provenanceMade available in DSpace on 2021-05-20T00:50:46Z (GMT). No. of bitstreams: 1
U0001-1108202022501900.pdf: 27290440 bytes, checksum: 895af13434fab75bb1c261a1282136df (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents摘要 i
Abstract iii
目錄 v
表目錄 xii
圖目錄 xviii
第一章、 緒論 1
1.1 研究動機與目的 1
1.2 研究內容 3
1.3 研究流程圖 7
第二章、 文獻回顧 8
2.1 卜作嵐摻料 8
2.1.1 水淬高爐爐碴粉 9
2.1.2 飛灰 9
2.2 混凝土之收縮變形 10
2.2.1 混凝土收縮變形機制 10
2.2.2 影響混凝土自體收縮之因素 14
2.2.3 影響混凝土乾燥收縮之因素 17
2.3 混凝土之潛變變形 26
2.3.1 混凝土潛變變形機制 26
2.3.2 影響混凝土潛變之因素 29
2.4 預力混凝土介紹 36
2.4.1 預力混凝土之結構原理 36
2.4.2 預力損失簡介 38
2.4.3 預力損失種類介紹 39
2.5 機器學習介紹 42
2.5.1 機器學習種類 42
2.5.2 監督式學習介紹與流程 43
2.5.3 機器學習演算法簡介 45
2.5.4 各演算法常用之可調整參數說明 50
2.5.5 預測成果判定標準 50
第三章、 國內外混凝土收縮與潛變規範與統計指標 53
3.1 國外混凝土自體收縮變形預測模型 53
3.1.1 FIB2000 53
3.1.2 JCI 53
3.1.3 Model B4 54
3.2 國內混凝土自體收縮變形預測模型 55
3.2.1 Chiang 55
3.2.2 Model B4TW (2017) 56
3.3 國外混凝土總收縮變形預測模型 58
3.3.1 ACI 209R-92 58
3.3.2 AASHTO LRFD 2014 59
3.3.3 GL2000 59
3.3.4 CEB MC90 60
3.3.5 CEB MC90-99 61
3.3.6 CEB MC10 62
3.3.7 JSCE 1996 63
3.3.8 JSCE 2002 64
3.3.9 Model B3 65
3.3.10 Model B4 66
3.4 國內混凝土總收縮變形預測模型 69
3.4.1 Model CCL 69
3.4.2 Wu 70
3.4.3 Model B4TW (2017) 71
3.5 國外混凝土潛變變形預測模型 73
3.5.1 ACI 209R-92 73
3.5.2 AASHTO LRFD 2014 75
3.5.3 GL2000 75
3.5.4 CEB MC90 76
3.5.5 CEB MC90-99 78
3.5.6 CEB MC10 79
3.5.7 JSCE 1996 80
3.5.8 JSCE 2002 81
3.5.9 Model B3 81
3.5.10 Model B4 84
3.6 國內混凝土潛變變形預測模型 88
3.6.1 Model CCL 88
3.6.2 Model B4TW (2017) 89
3.7 國內各項統計指標介紹 93
3.7.1 決定係數R2 93
3.7.2 均方誤差MSE 93
3.7.3 BP coefficient of variation method 94
3.7.4 CEB statistical indicators 95
3.7.5 Gardner coefficient of variation 97
第四章、 國內外收縮潛變資料庫與分析方法介紹 99
4.1 台灣混凝土收縮潛變研究沿革 99
4.2 國內混凝土收縮潛變資料庫簡介 100
4.3 國內混凝土收縮潛變資料庫建立與分析方法 108
4.3.1 Microsoft SQL介紹 109
4.3.2 Python介紹 110
4.3.3 資料庫架構與分析方法 112
4.4 TW資料庫中各項參數說明與介面介紹 114
4.4.1 TW資料庫參數說明 114
4.4.2 TW資料庫介面介紹 118
4.5 國內外收縮潛變資料庫之比較 119
4.5.1 國內外資料庫各項重要參數分佈比較 119
4.5.2 台灣混凝土配比特性探討 122
4.6 TW資料用應用於各預測模型之預測結果 125
4.6.1 分析資料之剔除 125
4.6.2 分析結果表示方法 126
4.6.3 摻料混凝土之自體收縮分析結果 127
4.6.4 普通與摻料混凝土總收縮分析成果 128
4.6.5 普通與摻料混凝土基本潛變分析結果 132
4.6.6 普通與摻料混凝土總潛變分析結果 135
4.7 線上即時分析方法S.C.D.T之建立與使用簡介 139
4.7.1 ASP.net簡介 140
4.7.2 網頁架構簡介 141
4.7.3 網頁各項功能介紹 141
4.7.4 台灣混凝土收縮潛變網頁S.C.D.T優點 148
第五章、 Model B4TW (2020)收縮潛變預測模型發展 149
5.1 Model B4TW (2020)無因次項修正係數探討 149
5.2 普通混凝土收縮公式發展 151
5.2.1 普通混凝土收縮公式修正項目探討 151
5.2.2 普通混凝土自體收縮修正 152
5.2.3 普通混凝土總收縮修正 152
5.3 摻料混凝土收縮公式發展 164
5.3.1 摻料混凝土收縮修正項目探討 164
5.3.2 爐石混凝土收縮修正式發展 165
5.3.3 飛灰混凝土收縮修正式發展 170
5.3.4 爐灰混凝土收縮修正式發展 174
5.3.5 爐矽灰混凝土收縮修正式發展 178
5.4 普通混凝土潛變公式發展 181
5.4.1 普通混凝土潛變公式修正項目探討 181
5.4.2 瞬時彈性應變修正 182
5.4.3 普通混凝土基本潛變修正 184
5.4.4 普通混凝土總潛變修正 189
5.5 摻料混凝土潛變公式發展 195
5.5.1 摻料混凝土潛變修正項目探討 195
5.5.2 爐石混凝土潛變修正式發展 196
5.5.3 飛灰混凝土潛變修正式發展 200
5.5.4 爐灰混凝土潛變修正式發展 204
5.6 台灣混凝土收縮與潛變預測建議公式與分析結果 208
5.6.1 Model B4TW (2020) 總收縮建議公式 208
5.6.2 Model B4TW (2020) 自體收縮預測模型分析結果比較 212
5.6.3 Model B4TW (2020) 總收縮預測模型分析結果比較 214
5.6.4 Model B4TW (2020) 潛變建議公式 216
5.6.5 Model B4TW (2020) 基本潛變預測模型分析結果比較 220
5.6.6 Model B4TW (2020) 總潛變預測模型分析結果比較 222
第六章、 以機器學習預測混凝土收縮與潛變變形 225
6.1 機器學習演算法適用性分析 225
6.2 以機器學習預測收縮變形 228
6.2.1 以Decision Tree預測TW資料庫總收縮 229
6.2.2 以Extra Tree預測TW資料庫總收縮 232
6.2.3 以Random Forest預測TW資料庫總收縮 234
6.2.4 以Extra Trees預測TW資料庫總收縮 237
6.2.5 以Gradient Boosting Regressor預測TW資料庫總收縮 240
6.2.6 以XGBoost預測TW資料庫總收縮 242
6.2.7 應用機器學習預測總收縮之結果比較 244
6.3 以機器學習預測潛變變形 245
6.3.1 以Decision Tree預測TW資料庫潛變 247
6.3.2 以Extra Tree預測TW資料庫潛變 249
6.3.3 以Random Forest預測TW資料庫潛變 251
6.3.4 以Extra Trees預測TW資料庫潛變 253
6.3.5 以Gradient Boosting Regressor預測TW資料庫潛變 255
6.3.6 以XGBoost預測TW資料庫潛變 258
6.3.7 應用機器學習預測潛變之結果比較 260
6.4 機器學習之分析結論與應用於實務上之問題討論 261
第七章、 MIDAS Civil預力橋梁模型建立與分析結果 267
7.1 MIDAS Civil 分析研究背景 267
7.2 MIDAS Civil介紹 267
7.3 案例介紹 268
7.4 模型建立與參數設定 273
7.4.1 定義材料與斷面 273
7.4.2 建立結構模型 274
7.4.3 自定義收縮與潛變數值 277
7.4.4 定義邊界條件與載重 279
7.4.5 定義施工階段 280
7.4.6 分析方法之設定 284
7.5 MIDAS Civil分析結果 284
7.5.1 混凝土材料潛變預測差異 284
7.5.2 混凝土材料收縮預測差異 287
7.5.3 分析結果與討論 290
7.5.4 應用不同強度混凝土之分析結果 300
7.5.5 簡化分析之可行性探討 310
第八章、 結論與建議 325
8.1 結論 325
8.2 建議 328
參考文獻 330
附錄 A 340
dc.language.isozh-TW
dc.title以資料庫回歸台灣混凝土收縮與潛變預測模型並應用於預力橋梁長期變位分析zh_TW
dc.titleRegression of Shrinkage and Creep Prediction Model of Concrete in Taiwan Based on Database Analysis and Application to Long-term Deflection Analysis of Prestressed Concrete Bridgeen
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.oralexamcommittee詹穎雯 (Yin-Wen Chan),王勇智(Yung-Chih Wang),歐昱辰(Yu-Chen Ou)
dc.subject.keyword混凝土,卜作嵐材料,收縮,潛變,資料庫,機器學習,預力混凝土橋,長期變形,預力損失,zh_TW
dc.subject.keywordConcrete,Pozzolanic Material,Shrinkage,Creep,Database,Machine Learning,Prestressed Concrete Bridge,Long-term Deflection,Tendon Loss,en
dc.relation.page345
dc.identifier.doi10.6342/NTU202003020
dc.rights.note同意授權(全球公開)
dc.date.accepted2020-08-13
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept土木工程學研究所zh_TW
dc.date.embargo-lift2023-08-11-
顯示於系所單位:土木工程學系

文件中的檔案:
檔案 大小格式 
U0001-1108202022501900.pdf26.65 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved