Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 公共衛生學院
  3. 食品安全與健康研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82492
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor魏嘉徵(Chia-Cheng Wei)
dc.contributor.authorNien-Chieh Yangen
dc.contributor.author楊念潔zh_TW
dc.date.accessioned2022-11-25T07:45:43Z-
dc.date.available2023-09-03
dc.date.copyright2021-09-29
dc.date.issued2021
dc.date.submitted2021-09-06
dc.identifier.citationAarsland, D., Kvaløy, J., Andersen, K., Larsen, J., Tang, M., Lolk, A., Kragh-Sørensen, P., Marder, K., 2007. The effect of age of onset of PD on risk of dementia. Journal of Neurology 254, 38-45. Abeliovich, A., Gitler, A.D., 2016. Defects in trafficking bridge Parkinson's disease pathology and genetics. Nature 539, 207-216. Adetunji, M.C., Aroyeun, S.O., Osho, M.B., Sulyok, M., Krska, R., Mwanza, M., 2019. Fungal metabolite and mycotoxins profile of cashew nut from selected locations in two African countries. Food Additives Contaminants: Part A 36, 1847-1859. Ahamed, S., Foster, J.S., Bukovsky, A., Wimalasena, J., 2001. Signal transduction through the ras/Erk pathway is essential for the mycoestrogen zearalenone‐induced cell‐cycle progression in MCF‐7 cells. Molecular Carcinogenesis 30, 88-98. Allen, N.K., Mirocha, C., Weaver, G., Aakhus-Allen, S., Bates, F., 1981. Effects of dietary zearalenone on finishing broiler chickens and young turkey poults. Poultry Science 60, 124-131. Allen, N.K., Peguri, A., Mirocha, C., Newman, J., 1983. Effects of Fusarium cultures, T-2 toxin, and zearalenone on reproduction of turkey females. Poultry Science 62, 282-289. Alston, C.L., Rocha, M.C., Lax, N.Z., Turnbull, D.M., Taylor, R.W., 2017. The genetics and pathology of mitochondrial disease. The Journal of Pathology 241, 236-250. Appell, M., Wang, L.C., Bosma, W.B., 2017. Analysis of the photophysical properties of zearalenone using density functional theory. Journal of Luminescence 188, 551-557. Artal-Sanz, M., Tavernarakis, N., 2009. Prohibitin couples diapause signalling to mitochondrial metabolism during ageing in C. elegans. Nature 461, 793-797. Aschner, M., Chen, P., Martinez-Finley, E.J., Bornhorst, J., Chakraborty, S., 2013. Metal-induced neurodegeneration in C. elegans. Frontiers in Aging Neuroscience 5, 18. Banjerdpongchai, R., Kongtawelert, P., Khantamat, O., Srisomsap, C., Chokchaichamnankit, D., Subhasitanont, P., Svasti, J., 2010. Mitochondrial and endoplasmic reticulum stress pathways cooperate in zearalenone-induced apoptosis of human leukemic cells. Journal of Hematology Oncology 3, 1-16. Bargmann, C.I., 2006. Chemosensation in C. elegans. WormBook, 2005-2018. Bennett, G., Shotwell, O., Hesseltine, C., 1980. Destruction of zearalenone in contaminated corn. Journal of the American Oil Chemists' Society 57, 245-247. Betarbet, R., Sherer, T.B., MacKenzie, G., Garcia-Osuna, M., Panov, A.V., Greenamyre, J.T., 2000. Chronic systemic pesticide exposure reproduces features of Parkinson's disease. Nature Neuroscience 3, 1301-1306. Biehl, M.L., Prelusky, D.B., Koritz, G.D., Hartin, K.E., Buck, W.B., Trenholm, H.L., 1993. Biliary excretion and enterohepatic cycling of zearalenone in immature pigs. Toxicology and Applied Pharmacology 121, 152-159. Binder, S.B., Schwartz-Zimmermann, H.E., Varga, E., Bichl, G., Michlmayr, H., Adam, G., Berthiller, F., 2017. Metabolism of zearalenone and its major modified forms in pigs. Toxins 9, 56. Bock, F.J., Tait, S.W., 2020. Mitochondria as multifaceted regulators of cell death. Nature Reviews Molecular Cell Biology 21, 85-100. Bodhicharla, R., Nagarajan, A., Winter, J., Adenle, A., Nazir, A., Brady, D., Vere, K., Richens, J., O'Shea, P., R Bell, D., 2012. Effects of α-synuclein overexpression in transgenic Caenorhabditis elegans strains. CNS Neurological Disorders-Drug Targets 11, 965-975. Bovee, T.F., Helsdingen, R.J., Rietjens, I.M., Keijer, J., Hoogenboom, R.L., 2004. Rapid yeast estrogen bioassays stably expressing human estrogen receptors α and β, and green fluorescent protein: a comparison of different compounds with both receptor types. The Journal of Steroid Biochemistry and Molecular Biology 91, 99-109. Braak, H., Del Tredici, K., 2008. Invited Article: Nervous system pathology in sporadic Parkinson disease. Neurology 70, 1916-1925. Brenner, S., 1974. The genetics of Caenorhabditis elegans. Genetics 77, 71-94. Caglayan, M.O., Şahin, S., Üstündağ, Z., 2020. Detection strategies of zearalenone for food safety: a review. Critical Reviews in Analytical Chemistry 26, 1-20. Cai, G., Sun, K., Wang, T., Zou, H., Gu, J., Yuan, Y., Liu, X., Liu, Z., Bian, J., 2018. Mechanism and effects of Zearalenone on mouse T lymphocytes activation in vitro. Ecotoxicology and Environmental Safety 162, 208-217. Caldwell, R.W., Tuite, J., Stob, M., Baldwin, R., 1970. Zearalenone production by Fusarium species. Applied Microbiology 20, 31-34. Canter, R.G., Penney, J., Tsai, L.-H., 2016. The road to restoring neural circuits for the treatment of Alzheimer's disease. Nature 539, 187-196. Cao, H., Zhi, Y., Xu, H., Fang, H., Jia, X., 2019. Zearalenone causes embryotoxicity and induces oxidative stress and apoptosis in differentiated human embryonic stem cells. Toxicology in Vitro 54, 243-250. Chang, X., Liu, H., Sun, J., Wang, J., Zhao, C., Zhang, W., Zhang, J., Sun, C., 2020. Zearalenone removal from corn oil by an enzymatic strategy. Toxins 12, 117. Chen, F., Wen, X., Lin, P., Chen, H., Wang, A., Jin, Y., 2019. HERP depletion inhibits zearalenone-induced apoptosis through autophagy activation in mouse ovarian granulosa cells. Toxicology Letters 301, 1-10. Chinta, S.J., Mallajosyula, J.K., Rane, A., Andersen, J.K., 2010. Mitochondrial alpha-synuclein accumulation impairs complex I function in dopaminergic neurons and results in increased mitophagy in vivo. Neuroscience Letters 486, 235-239. Ciechanover, A., Kwon, Y.T., 2015. Degradation of misfolded proteins in neurodegenerative diseases: therapeutic targets and strategies. Experimental Molecular Medicine 47, e147-e147. Cieplińska, K., Gajęcka, M., Nowak, A., Dąbrowski, M., Zielonka, Ł., Gajęcki, M.T., 2018. The genotoxicity of caecal water in gilts exposed to low doses of zearalenone. Toxins 10, 350. Comber, S., Rule, K., Conrad, A., Höss, S., Webb, S., Marshall, S., 2008. Bioaccumulation and toxicity of a cationic surfactant (DODMAC) in sediment dwelling freshwater invertebrates. Environmental Pollution 153, 184-191. Čonková, E., Laciaková, A., Pástorová, B., Seidel, H., Kováč, G., 2001. The effect of zearalenone on some enzymatic parameters in rabbits. Toxicology Letters 121, 145-149. Cooper, J.F., Dues, D.J., Spielbauer, K.K., Machiela, E., Senchuk, M.M., Van Raamsdonk, J.M., 2015. Delaying aging is neuroprotective in Parkinson’s disease: a genetic analysis in C. elegans models. NPJ Parkinson's Disease 1, 1-12. Cooper, J.F., Van Raamsdonk, J.M., 2018. Modeling Parkinson’s disease in C. elegans. Journal of Parkinson's Disease 8, 17-32. Corsi, A.K., Wightman, B., Chalfie, M., 2015. A transparent window into biology: a primer on Caenorhabditis elegans. Genetics 200, 387-407. Creppy, E.E., 2002. Update of survey, regulation and toxic effects of mycotoxins in Europe. Toxicology Letters 127, 19-28. Culetto, E., Sattelle, D.B., 2000. A role for Caenorhabditis elegans in understanding the function and interactions of human disease genes. Human Molecular Genetics 9, 869-877. Dailey, R.E., Reese, R.E., Brouwer, E.A., 1980. Metabolism of [14C] zearalenone in laying hens. Journal of Agricultural and Food Chemistry 28, 286-291. Davie, C.A., 2008. A review of Parkinson's disease. British Medical Bulletin 86, 109-127. Devi, L., Raghavendran, V., Prabhu, B.M., Avadhani, N.G., Anandatheerthavarada, H.K., 2008. Mitochondrial import and accumulation of α-synuclein impair complex I in human dopaminergic neuronal cultures and Parkinson disease brain. Journal of Biological Chemistry 283, 9089-9100. Di Monte, D.A., Lavasani, M., Manning-Bog, A.B., 2002. Environmental factors in Parkinson’s disease. Neurotoxicology 23, 487-502. Dias, V., Junn, E., Mouradian, M.M., 2013. The role of oxidative stress in Parkinson's disease. Journal of Parkinson's Disease 3, 461-491. Erekat, N.S., 2018. Apoptosis and its role in Parkinson's disease. Exon Publications, 65-82. European-Commission, 2006. Commission recommendation of 17 August 2006 on the presence of deoxynivalenol, zearalenone, ochratoxin A, T-2 and HT-2 and fumonisins in products intended for animal feeding (2006/576/EC). The Official Journal of the European Union 229, 7-9. European-Commission, 2010. Amending regulation (EC) No 1881/2006 setting maximum levels for certain contaminants in foodstuffs as regards aflatoxins. Official Journal of the European Union. Fink-Gremmels, J., Malekinejad, H., 2007. Clinical effects and biochemical mechanisms associated with exposure to the mycoestrogen zearalenone. Animal Feed Science and Technology 137, 326-341. Fire, A., Xu, S., Montgomery, M.K., Kostas, S.A., Driver, S.E., Mello, C.C., 1998. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806-811. Fiskum, G., Starkov, A., Polster, B. M., Chinopoulos, C., 2003. Mitochondrial mechanisms of neural cell death and neuroprotective interventions in Parkinson's disease. Annals of the New York Academy of Sciences 991, 111-119. Fitzpatrick, D., Arbuckle, L., Hassen, A., 1988. Zearalenone metabolism and excretion in the rat: effect of different doses. Journal of Environmental Science Health Part B 23, 343-354. Fivenson, E.M., Lautrup, S., Sun, N., Scheibye-Knudsen, M., Stevnsner, T., Nilsen, H., Bohr, V.A., Fang, E.F., 2017. Mitophagy in neurodegeneration and aging. Neurochemistry International 109, 202-209. Fleck, S.C., Hildebrand, A.A., Müller, E., Pfeiffer, E., Metzler, M., 2012. Genotoxicity and inactivation of catechol metabolites of the mycotoxin zearalenone. Mycotoxin Research 28, 267-273. Fowler, A.J., Moussa, C.E.-H., 2018. Activating autophagy as a therapeutic strategy for Parkinson’s disease. Central Nervous System Drugs 32, 1-11. Fu, R.-H., Harn, H.-J., Liu, S.-P., Chen, C.-S., Chang, W.-L., Chen, Y.-M., Huang, J.-E., Li, R.-J., Tsai, S.-Y., Hung, H.-S., 2014. n-butylidenephthalide protects against dopaminergic neuron degeneration and α-synuclein accumulation in Caenorhabditis elegans models of Parkinson's disease. PLoS One 9, e85305. Gajęcka, M., Zielonka, U., Dąbrowski, M., Gajęcki, M., 2011. Threats resulting from the presence of zearalenone in water. Medycyna Weterynaryjna 67, 643-646. Gamache, P.-L., Roux-Dubois, N., Provencher, P., Lebouthiller, J., Gan-Or, Z., Dupre, N., 2017. Professional exposure to pesticides and heavy metals hastens Parkinson disease onset (P6. 008). Neurology 88, 6. Gorell, J.M., Johnson, C., Rybicki, B., Peterson, E., Richardson, R., 1998. The risk of Parkinson's disease with exposure to pesticides, farming, well water, and rural living. Neurology 50, 1346-1350. Grünewald, A., Kumar, K.R., Sue, C.M., 2019. New insights into the complex role of mitochondria in Parkinson’s disease. Progress in Neurobiology 177, 73-93. Grassi, D., Howard, S., Zhou, M., Diaz-Perez, N., Urban, N.T., Guerrero-Given, D., Kamasawa, N., Volpicelli-Daley, L.A., LoGrasso, P., Lasmézas, C.I., 2018. Identification of a highly neurotoxic α-synuclein species inducing mitochondrial damage and mitophagy in Parkinson’s disease. Proceedings of the National Academy of Sciences 115, E2634-E2643. Greenwald, I., Kovall, R., 2018. Notch signaling: genetics and structure. WormBook, 2005-2018. Gupta, R.C., 2012. Veterinary toxicology: basic and clinical principles. Academic Press, 1266-1271. Hardy, J., 2000. Pathways to primary neurodegenerative disease. Annals of the New York Academy of Sciences 924, 29-34. Hayden, K.M., Norton, M.C., Darcey, D., Østbye, T., Zandi, P.P., Breitner, J., Welsh-Bohmer, K., 2010. Occupational exposure to pesticides increases the risk of incident AD: the Cache County study. Neurology 74, 1524-1530. Heemels, M.-T., 2016. Neurodegenerative diseases. Nature 539, 179-180. Hengartner, M.O., 2000. The biochemistry of apoptosis. Nature 407, 770-776. Hoogewijs, D., Houthoofd, K., Matthijssens, F., Vandesompele, J., Vanfleteren, J.R., 2008. Selection and validation of a set of reliable reference genes for quantitative sod gene expression analysis in C. elegans. BMC Molecular Biology 9, 1-8. Huang, C.-W., Liao, W.-R., How, C.M., Yen, P.-L., Wei, C.-C., 2021. Chronic exposure of zearalenone inhibits antioxidant defense and results in aging-related defects associated with DAF-16/FOXO in Caenorhabditis elegans. Environmental Pollution 285, 117233. Hueza, I.M., Raspantini, P.C.F., Raspantini, L.E.R., Latorre, A.O., Górniak, S.L., 2014. Zearalenone, an estrogenic mycotoxin, is an immunotoxic compound. Toxins 6, 1080-1095. Hughes, A.J., Daniel, S.E., Kilford, L., Lees, A.J., 1992. Accuracy of clinical diagnosis of idiopathic Parkinson's disease: a clinico-pathological study of 100 cases. Journal of Neurology, Neurosurgery Psychiatry 55, 181-184. IARC, 1993. Some naturally occurring substances: food items and constituents, heterocyclic aromatic amines and mycotoxins. IARC Monographs on the Evaluation of the Carcinogenic Risk of Chemicals to Humans 56, 599. Iha, M.H., Barbosa, C.B., Okada, I.A., Trucksess, M.W., 2013. Aflatoxin M1 in milk and distribution and stability of aflatoxin M1 during production and storage of yoghurt and cheese. Food Control 29, 1-6. Ijomone, O.M., Miah, M.R., Akingbade, G.T., Bucinca, H., Aschner, M., 2020. Nickel-induced developmental neurotoxicity in C. elegans includes cholinergic, dopaminergic and GABAergic degeneration, altered behaviour, and increased SKN-1 activity. Neurotoxicity Research 37, 1-11. Imoto, M., Tachibana, I., Urrutia, R., 1998. Identification and functional characterization of a novel human protein highly related to the yeast dynamin-like GTPase Vps1p. Journal of Cell Science 111, 1341-1349. Ishihara, N., Jofuku, A., Eura, Y., Mihara, K., 2003. Regulation of mitochondrial morphology by membrane potential, and DRP1-dependent division and FZO1-dependent fusion reaction in mammalian cells. Biochemical and Biophysical Research Communications 301, 891-898. Islam, M.R., Kim, J.W., Roh, Y.-S., Kim, J.-H., Han, K.M., Kwon, H.-J., Lim, C.W., Kim, B., 2017. Evaluation of immunomodulatory effects of zearalenone in mice. Journal of Immunotoxicology 14, 125-136. Izco, M., Vettorazzi, A., Forcen, R., Blesa, J., de Toro, M., Alvarez-Herrera, N., Cooper, J.M., Gonzalez-Peñas, E., de Cerain, A.L., Alvarez-Erviti, L., 2021. Oral subchronic exposure to the mycotoxin ochratoxin A induces key pathological features of Parkinson´ s disease in mice six months after the end of the treatment. Food and Chemical Toxicology 152, 112164. Jagasia, R., Grote, P., Westermann, B., Conradt, B., 2005. DRP-1-mediated mitochondrial fragmentation during EGL-1-induced cell death in C. elegans. Nature 433, 754-760. Jankovic, J., 2008. Parkinson’s disease: clinical features and diagnosis. Journal of Neurology, Neurosurgery Psychiatry 79, 368-376. Jayanthi, L.D., Apparsundaram, S., Malone, M.D., Ward, E., Miller, D.M., Eppler, M., Blakely, R.D., 1998. The Caenorhabditis elegans geneT23G5. 5 encodes an antidepressant-and cocaine-sensitive dopamine transporter. Molecular Pharmacology 54, 601-609. Ji, J., Zhu, P., Cui, F., Pi, F., Zhang, Y., Li, Y., Wang, J., Sun, X., 2017. The antagonistic effect of mycotoxins deoxynivalenol and zearalenone on metabolic profiling in serum and liver of mice. Toxins 9, 28. Jiang, S., Yang, Z., Yang, W., Wang, S., Wang, Y., Broomhead, J., Johnston, S., Chi, F., 2012. Effect on hepatonephric organs, serum metabolites and oxidative stress in post‐weaning piglets fed purified zearalenone‐contaminated diets with or without Calibrin‐Z. Journal of Animal Physiology and Animal Nutrition 96, 1147-1156. Jiang, T., Sun, Q., Chen, S., 2016. Oxidative stress: a major pathogenesis and potential therapeutic target of antioxidative agents in Parkinson’s disease and Alzheimer’s disease. Progress in Neurobiology 147, 1-19. Junn, E., Mouradian, M.M., 2002. Human α-synuclein over-expression increases intracellular reactive oxygen species levels and susceptibility to dopamine. Neuroscience Letters 320, 146-150. Kalia, L.V., Lang, A.E., 2015. Parkinson's disease. Lancet 386(9996), 896–912. Kaur, S., Nazir, A., 2015. Potential role of protein stabilizers in amelioration of Parkinson's disease and associated effects in transgenic Caenorhabditis elegans model expressing alpha-synuclein. RSC Advances 5, 77706-77715. Kiessling, K.H., Pettersson, H., 1978. Metabolism of zearalenone in rat liver. Acta Pharmacologica et Toxicologica 43, 285-290. Kim, H., Perentis, R.J., Caldwell, G.A., Caldwell, K.A., 2018. Gene-by-environment interactions that disrupt mitochondrial homeostasis cause neurodegeneration in C. elegans Parkinson’s models. Cell Death Disease 9, 1-15. Kim, I.H., Son, H.Y., Cho, S.W., Ha, C.S., Kang, B.H., 2003. Zearalenone induces male germ cell apoptosis in rats. Toxicology Letters 138, 185-192. Koraichi, F., Videmann, B., Mazallon, M., Benahmed, M., Prouillac, C., Lecoeur, S., 2012. Zearalenone exposure modulates the expression of ABC transporters and nuclear receptors in pregnant rats and fetal liver. Toxicology Letters 211, 246-256. Kovalsky Paris, M.P., Schweiger, W., Hametner, C., Stückler, R., Muehlbauer, G.J., Varga, E., Krska, R., Berthiller, F., Adam, G., 2014. Zearalenone-16-O-glucoside: a new masked mycotoxin. Journal of Agricultural and Food Chemistry 62, 1181-1189. Kowalska, K., Habrowska-Górczyńska, D.E., Domińska, K., Piastowska-Ciesielska, A.W., 2017. The dose-dependent effect of zearalenone on mitochondrial metabolism, plasma membrane permeabilization and cell cycle in human prostate cancer cell lines. Chemosphere 180, 455-466. Kuciel-Lisieska, G., Obremski, K., Stelmachów, J., Gajecka, M., Zielonka, Ł., Jakimiuk, E., Gajecki, M., 2008. Presence of zearalenone in blood plasma in women with neoplastic lesions in the mammary gland. Bulletin of the Veterinary Institute in Pulawy 52, 671-674. Kudumala, S., Sossi, S., Carvelli, L., 2019. Swimming induced paralysis is a valuable behavioral assay to assess dopamine signaling in Caenorhabditis elegans. Journal of Visualized Experiments, 146. Kuiper-Goodman, T., Scott, P., Watanabe, H., 1987. Risk assessment of the mycotoxin zearalenone. Regulatory Toxicology and Pharmacology 7, 253-306. Lan, A., Chen, J., Chai, Z., Hu, Y., 2016. The neurotoxicity of iron, copper and cobalt in Parkinson’s disease through ROS-mediated mechanisms. Biometals 29, 665-678. Lang, T.J., 2004. Estrogen as an immunomodulator. Clinical immunology 113, 224-230. Lant, B., Derry, W.B., 2014. Analysis of apoptosis in Caenorhabditis elegans. Cold Spring Harbor Protocols 2014, 5. Lee, H.J., Ryu, D., 2017. Worldwide occurrence of mycotoxins in cereals and cereal-derived food products: public health perspectives of their co-occurrence. Journal of Agricultural and Food Chemistry 65, 7034-7051. Lemasters, J.J., 2005. Selective mitochondrial autophagy, or mitophagy, as a targeted defense against oxidative stress, mitochondrial dysfunction, and aging. Rejuvenation Research 8, 3-5. Leung, M.C., Williams, P.L., Benedetto, A., Au, C., Helmcke, K.J., Aschner, M., Meyer, J.N., 2008. Caenorhabditis elegans: an emerging model in biomedical and environmental toxicology. Toxicological Sciences 106, 5-28. Levine, B., Klionsky, D.J., 2004. Development by self-digestion: molecular mechanisms and biological functions of autophagy. Developmental Cell 6, 463-477. Li, L., Zhang, T., Ren, X., Li, B., Wang, S., 2021. Male reproductive toxicity of zearalenone—meta-analysis with mechanism review. Ecotoxicology and Environmental Safety 221, 112457. Liang, Z., Ren, Z., Gao, S., Chen, Y., Yang, Y., Yang, D., Deng, J., Zuo, Z., Wang, Y., Shen, L., 2015. Individual and combined effects of deoxynivalenol and zearalenone on mouse kidney. Environmental Toxicology and Pharmacology 40, 686-691. Lu, Y., Rolland, S.G., Conradt, B., 2011. A molecular switch that governs mitochondrial fusion and fission mediated by the BCL2-like protein CED-9 of Caenorhabditis elegans. Proceedings of the National Academy of Sciences 108, E813-E822. MacDonald, S.J., Anderson, S., Brereton, P., Wood, R., Damant, A., 2005. Determination of zearalenone in barley, maize and wheat flour, polenta, and maize-based baby food by immunoaffinity column cleanup with liquid chromatography: interlaboratory study. Journal of AOAC International 88, 1733-1740. Mahato, D.K., Devi, S., Pandhi, S., Sharma, B., Maurya, K.K., Mishra, S., Dhawan, K., Selvakumar, R., Kamle, M., Mishra, A.K., 2021. Occurrence, impact on agriculture, human health, and management strategies of zearalenone in food and feed: a review. Toxins 13, 92. Mally, A., Solfrizzo, M., Degen, G.H., 2016. Biomonitoring of the mycotoxin zearalenone: current state-of-the art and application to human exposure assessment. Archives of Toxicology 90, 1281-1292. Maulik, M., Mitra, S., Bult-Ito, A., Taylor, B.E., Vayndorf, E.M., 2017. Behavioral phenotyping and pathological indicators of Parkinson's disease in C. elegans models. Frontiers in Genetics 8, 77. McBride, H.M., Neuspiel, M., Wasiak, S., 2006. Mitochondria: more than just a powerhouse. Current Biology 16, R551-R560. Minhas, S., 2018. The effect of aluminum on the mechanosensory behavior of C. elegans. South Carolina Junior Academy of Science, 208. Mirocha, C., Pathre, S., Robison, T., 1981. Comparative metabolism of zearalenone and transmission into bovine milk. Food and Cosmetics Toxicology 19, 25-30. Muthulakshmi, S., Maharajan, K., Habibi, H.R., Kadirvelu, K., Venkataramana, M., 2018. Zearalenone induced embryo and neurotoxicity in zebrafish model: role of oxidative stress revealed by a multi biomarker study. Chemosphere 198, 111-121. Nass, R., Hall, D.H., Miller, D.M., Blakely, R.D., 2002. Neurotoxin-induced degeneration of dopamine neurons in Caenorhabditis elegans. Proceedings of the National Academy of Sciences 99, 3264-3269. Olsen, M., Mirocha, C., Abbas, H., Johansson, B., 1986. Metabolism of high concentrations of dietary zearalenone by young male turkey poults. Poultry Science 65, 1905-1910. Olsen, M., Pettersson, H., Kiessling, K.H., 1981. Reduction of zearalenone to zearalenol in female rat liver by 3α‐hydroxysteroid dehydrogenase. Acta Pharmacologica et Toxicologica 48, 157-161. Osweiler, G.D., 2000. Mycotoxins: contemporary issues of food animal health and productivity. Veterinary Clinics of North America: Food Animal Practice 16, 511-530. Ouanes, Z., Abid, S., Ayed, I., Anane, R., Mobio, T., Creppy, E.E., Bacha, H., 2003. Induction of micronuclei by Zearalenone in Vero monkey kidney cells and in bone marrow cells of mice: protective effect of Vitamin E. Mutation Research/Genetic Toxicology and Environmental Mutagenesis 538, 63-70. Palikaras, K., Lionaki, E., Tavernarakis, N., 2015a. Coordination of mitophagy and mitochondrial biogenesis during ageing in C. elegans. Nature 521, 525-528. Palikaras, K., Lionaki, E., Tavernarakis, N., 2015b. Coupling mitogenesis and mitophagy for longevity. Autophagy 11, 1428-1430. Perez‐Lloret, S., Nègre‐Pagès, L., Ojero‐Senard, A., Damier, P., Destée, A., Tison, F., Merello, M., Rascol, O., Group, C.S., 2012. Oro‐buccal symptoms (dysphagia, dysarthria, and sialorrhea) in patients with Parkinson’s disease: preliminary analysis from the French COPARK cohort. European Journal of Neurology 19, 28-37. Pfeiffer, E., Hildebrand, A., Damm, G., Rapp, A., Cramer, B., Humpf, H.U., Metzler, M., 2009. Aromatic hydroxylation is a major metabolic pathway of the mycotoxin zearalenone in vitro. Molecular Nutrition Food Research 53, 1123-1133. Pickles, S., Vigié, P., Youle, R.J., 2018. Mitophagy and quality control mechanisms in mitochondrial maintenance. Current Biology 28, R170-R185. Plotegher, N., Gratton, E., Bubacco, L., 2014. Number and Brightness analysis of alpha-synuclein oligomerization and the associated mitochondrial morphology alterations in live cells. Biochimica et Biophysica Acta (BBA)-General Subjects 1840, 2014-2024. Poewe, W., Seppi, K., Tanner, C.M., Halliday, G.M., Brundin, P., Volkmann, J., Schrag, A.-E., Lang, A.E., 2017. Parkinson disease. Nature Reviews Disease Primers 3, 1-21. Porta-de-la-Riva, M., Fontrodona, L., Villanueva, A., Cerón, J., 2012. Basic Caenorhabditis elegans methods: synchronization and observation. Journal of Visualized Experiments 10, 64. Prelusky, D., Scott, P., Trenholm, H., Lawrence, G., 1990. Minimal transmission of zearalenone to milk of dairy cows. Journal of Environmental Science Health Part B 25, 87-103. Program, N.T., 1982. Carcinogenesis bioassay of zearalenone (CAS No. 17924-92-4) in F344/N rats and B6C3F1 mice (feed study). National Toxicology Program Technical Report Series 235, 1-155. Rai, A., Das, M., Tripathi, A., 2020. Occurrence and toxicity of a fusarium mycotoxin, zearalenone. Critical Reviews in Food Science and Nutrition 60, 2710-2729. Rogowska, A., Pomastowski, P., Sagandykova, G., Buszewski, B., 2019. Zearalenone and its metabolites: Effect on human health, metabolism and neutralisation methods. Toxicon 162, 46-56. Rolland, S., Conradt, B., 2006. The role of mitochondria in apoptosis induction in Caenorhabditis elegans: more than just innocent bystanders? Cell Death and Differentiation 13, 1281-1286. Ropejko, K., Twarużek, M., 2021. Zearalenone and its metabolites—general overview, occurrence, and toxicity. Toxins 13, 35. Rugarli, E.I., Langer, T., 2012. Mitochondrial quality control: a matter of life and death for neurons. The EMBO Journal 31, 1336-1349. Ryan, B.J., Hoek, S., Fon, E.A., Wade-Martins, R., 2015. Mitochondrial dysfunction and mitophagy in Parkinson's: from familial to sporadic disease. Trends in Biochemical Sciences 40, 200-210. Safiulina, D., Kaasik, A., 2013. Energetic and dynamic: how mitochondria meet neuronal energy demands. PLoS Biology 11, e1001755. Salah‐Abbès, J.B., Abbès, S., Houas, Z., Abdel‐Wahhab, M.A., Oueslati, R., 2008. Zearalenone induces immunotoxicity in mice: possible protective effects of radish extract. Journal of Pharmacy and Pharmacology 60, 761-770. Sarasija, S., Norman, K.R., 2018. Analysis of mitochondrial structure in the body wall muscle of Caenorhabditis elegans. Bio-Protocol 8, e2801. Sawin, E.R., Ranganathan, R., Horvitz, H.R., 2000. C. elegans locomotory rate is modulated by the environment through a dopaminergic pathway and by experience through a serotonergic pathway. Neuron 26, 619-631. Schoevers, E.J., Santos, R.R., Colenbrander, B., Fink-Gremmels, J., Roelen, B.A., 2012. Transgenerational toxicity of zearalenone in pigs. Reproductive Toxicology 34, 110-119. Shaye, D.D., Greenwald, I., 2011. OrthoList: a compendium of C. elegans genes with human orthologs. PLoS One 6, e20085. Shi, B., Su, Y., Chang, S., Sun, Y., Meng, X., Shan, A., 2017. Vitamin C protects piglet liver against zearalenone-induced oxidative stress by modulating expression of nuclear receptors PXR and CAR and their target genes. Food and Function 8, 3675-3687. Shin, B.S., Hong, S.H., Bulitta, J.B., Lee, J.B., Hwang, S.W., Kim, H.J., Yang, S.D., Yoon, H.-S., Kim, D.J., Lee, B.M., 2009. Physiologically based pharmacokinetics of zearalenone. Journal of Toxicology and Environmental Health, Part A 72, 1395-1405. Skiepko, N., Przybylska-Gornowicz, B., Gajęcka, M., Gajęcki, M., Lewczuk, B., 2020. Effects of deoxynivalenol and zearalenone on the histology and ultrastructure of pig liver. Toxins 12, 463. Smirnova, E., Shurland, D.-L., Ryazantsev, S.N., van der Bliek, A.M., 1998. A human dynamin-related protein controls the distribution of mitochondria. The Journal of Cell Biology 143, 351-358. Song, Y., Ding, W., Xiao, Y., Lu, K.J., 2015. The progress of mitophagy and related pathogenic mechanisms of the neurodegenerative diseases and tumor. Neuroscience journal 2015, 543758. Songsermsakul, P., Sontag, G., Cichna-Markl, M., Zentek, J., Razzazi-Fazeli, E., 2006. Determination of zearalenone and its metabolites in urine, plasma and faeces of horses by HPLC–APCI–MS. Journal of Chromatography B 843, 252-261. Stockmann-Juvala, H., Mikkola, J., Naarala, J., Loikkanen, J., Elovaara, E., Savolainen, K., 2004. Oxidative stress induced by fumonisin B1 in continuous human and rodent neural cell cultures. Free Radical Research 38, 933-942. Sulston, J., Dew, M., Brenner, S., 1975. Dopaminergic neurons in the nematode Caenorhabditis elegans. Journal of Comparative Neurology 163, 215-226. Sulston, J., Horvitz, H., Kimble, J., 1988. The nematode Caenorhabditis elegans. Cold Spring Harbor Laboratory 1, 1091-1105. Sun, N., Youle, R.J., Finkel, T., 2016. The mitochondrial basis of aging. Molecular Cell 61, 654-666. Taheur, F.B., Fedhila, K., Chaieb, K., Kouidhi, B., Bakhrouf, A., Abrunhosa, L., 2017. Adsorption of aflatoxin B1, zearalenone and ochratoxin A by microorganisms isolated from Kefir grains. International Journal of Food Microbiology 251, 1-7. Tanner, C.M., Kamel, F., Ross, G.W., Hoppin, J.A., Goldman, S.M., Korell, M., Marras, C., Bhudhikanok, G.S., Kasten, M., Chade, A.R., 2011. Rotenone, paraquat, and Parkinson’s disease. Environmental Health Perspectives 119, 866-872. Trenholm, H.L., Charmley, L.L., Prelusky, D.B., Warner, R.M., 1991. Two physical methods for the decontamination of four cereals contaminated with deoxynivalenol and zearalenone. Journal of Agricultural and Food Chemistry 39, 356-360. Ueno, Y., Hsieh, D.P., 1985. The toxicology of mycotoxins. CRC Critical Reviews in Toxicology 14, 99-132. Ueno, Y., Tashiro, F., Kobayashi, T., 1983. Species differences in zearalenone-reductase activity. Food and Chemical Toxicology 21, 167-173. Valko, M., Leibfritz, D., Moncol, J., Cronin, M.T., Mazur, M., Telser, J., 2007. Free radicals and antioxidants in normal physiological functions and human disease. The International Journal of Biochemistry Cell Biology 39, 44-84. Van Der Bliek, A.M., 2009. Fussy mitochondria fuse in response to stress. The EMBO Journal 28, 1533-1534. Van Ham, T.J., Thijssen, K.L., Breitling, R., Hofstra, R.M., Plasterk, R.H., Nollen, E.A., 2008. C. elegans model identifies genetic modifiers of α-synuclein inclusion formation during aging. PLoS Genet 4, e1000027. Venkataramana, M., Nayaka, S.C., Anand, T., Rajesh, R., Aiyaz, M., Divakara, S., Murali, H., Prakash, H., Rao, P.L., 2014. Zearalenone induced toxicity in SHSY-5Y cells: the role of oxidative stress evidenced by N-acetyl cysteine. Food and Chemical Toxicology 65, 335-342. Wang, H., Zhao, X., Ni, C., Dai, Y., Guo, Y., 2018. Zearalenone regulates endometrial stromal cell apoptosis and migration via the promotion of mitochondrial fission by activation of the JNK/Drp1 pathway. Molecular Medicine Reports 17, 7797-7806. Wang, Y., Zheng, W., Bian, X., Yuan, Y., Gu, J., Liu, X., Liu, Z., Bian, J., 2014. Zearalenone induces apoptosis and cytoprotective autophagy in primary Leydig cells. Toxicology Letters 226, 182-191. Westermann, B., 2010. Mitochondrial fusion and fission in cell life and death. Nature Reviews Molecular Cell Biology 11, 872-884. White, J.G., Southgate, E., Thomson, J.N., Brenner, S., 1986. The structure of the nervous system of the nematode Caenorhabditis elegans. Philosophical Transactions of the Royal Society B 314, 1-340. Wilhelm, T., Richly, H., 2018. Autophagy during ageing–from Dr Jekyll to Mr Hyde. The FEBS Journal 285, 2367-2376. Wu, H., Taki, F.A., Zhang, Y., Dobbins, D.L., Pan, X., 2014. Evaluation and identification of reliable reference genes for toxicological study in Caenorhabditis elegans. Molecular Biology Reports 41, 3445-3455. Wu, J., Chen, J.X., He, J.H., 2020a. T-2 toxin-induced DRP-1-dependent mitophagy leads to the apoptosis of mice Leydig cells (TM3). Food and Chemical Toxicology 136, 111082. Wu, L., Duan, Q., Gao, D., Wang, Y., Xue, S., Li, W., Lei, M., 2020b. Zearalenone blocks autophagy flow and induces cell apoptosis during embryo implantation in gilts. Toxicological Sciences 175, 126-139. Wu, Q., Li, Y., Tang, M., Wang, D., 2012. Evaluation of environmental safety concentrations of DMSA coated Fe2O3-NPs using different assay systems in nematode Caenorhabditis elegans. PLoS One 7(8), e43729. Wyss-Coray, T., 2016. Ageing, neurodegeneration and brain rejuvenation. Nature 539, 180-186. Xu, M.L., Hu, J., Guo, B.P., Niu, Y.R., Xiao, C., X………
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82492-
dc.description.abstract"玉米赤黴烯酮 (zearalenone) 為一種由鐮刀菌屬所產生的黴菌毒素,常見於燕麥、小麥、大麥與玉米中,因其結構與雌二醇相似,故過去研究多探討其生殖毒性;然而,對於其與神經退化性疾病的關聯與機制探討等相關研究則較缺乏。且臺灣在2018年由食品藥物管理署公布之《食品中污染物質及毒素衛生標準》中,亦新增zearalenone在食品裡的限量濃度,可見為亟需關注的食品安全議題之一。因此本研究以模式生物秀麗隱桿線蟲 (Caenorhabditis elegans, C. elegans),探討暴露不同濃度zearalenone是否會造成生物體產生神經退化性疾病相關的病徵與其背後調控的機制為何。研究結果顯示,暴露1.25、10及50 μM zearalenone,會誘發C. elegans產生帕金森氏症相關的兩大病徵,一為顯著提高C. elegans體內α-突觸核蛋白 (α-synuclein) 的累積量,二為顯著增加C. elegans多巴胺神經元之退化情形;進一步觀察C. elegans與多巴胺神經元相關之食物敏感行為與游泳誘導麻痺等運動行為發現,在暴露1.25、10及50 μM zearalenone的條件下,會影響食物敏感行為;在10及50 μM zearalenone暴露下會提升游泳誘導麻痺的比例,證明zearalenone的暴露會產生與多巴胺神經元相關之神經毒性。本研究進一步分析細胞凋亡和細胞自噬途徑相關基因之表達量,顯示50 μM zearalenone的暴露下會活化細胞凋亡並抑制細胞自噬機制,同時亦觀察到zearalenone會造成C. elegans體內粒線體含量的累積與粒線體分裂比例提高。推測為細胞凋亡機制中的drp-1活化導致粒線體斷裂並加速細胞凋亡的發生,因此更進一步使用drp-1突變種C. elegans 進行探討,發現50 μM zearalenone暴露並不會對drp-1突變種造成食物敏感行為的改變;此外,應用drp-1 RNAi技術於轉基因C. elegans亦發現50 μM zearalenone暴露不會加重多巴胺神經元的損傷,顯示drp-1與zearalenone造成之神經毒性有直接關係。綜合本研究之結果,zearalenone的暴露會對C. elegans造成神經毒性,且會影響細胞自噬與細胞凋亡途徑基因的表達,並透過drp-1加速多巴胺神經元損傷的神經毒性效應。"zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-25T07:45:43Z (GMT). No. of bitstreams: 1
U0001-3108202110120800.pdf: 2081620 bytes, checksum: 8a246754e9f7ce8ce371d009178ce4db (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents"口試委員審定書 i 誌謝 ii 摘要 iii Abstract iv Graphic Abstract vi Highlights vii 目錄 viii 圖次 x 表次 xi 1. 研究動機與研究問題 1 2. 文獻回顧與研究目的 3 2.1 玉米赤黴烯酮 (Zearalenone) 3 2.2 Zearalenone汙染狀況 3 2.3 Zearalenone相關規範 4 2.4 Zearalenone生物毒理性質 7 2.4.1 吸收、分佈、代謝與排除 7 2.4.2 生殖毒性 8 2.4.3 免疫毒性 8 2.4.4 肝毒性 9 2.4.5 致癌毒性 10 2.4.6 基因毒性 10 2.5 以秀麗隱桿線蟲 (Caenorhabditis elegans) 探討zearalenone之毒性 12 2.5.1 C. elegans 12 2.5.2 利用C. elegans探討神經退化性疾病帕金森氏症 12 2.6 研究目的 14 3. 研究材料與方法 15 3.1 實驗架構流程圖 15 3.2 實驗藥品 16 3.3 C. elegans 培養 16 3.4 C. elegans體內α-synuclein蛋白累積之試驗 16 3.5 C. elegans多巴胺神經元觀察之試驗 17 3.6 C. elegans食物敏感行為 (Basal Slowing) 之試驗 18 3.7 C. elegans游泳誘導麻痺 (Swimming-induced Paralysis) 之試驗 18 3.8 C. elegans體內粒線體含量之試驗 19 3.9 C. elegans體內粒線體型態觀察之試驗 19 3.10 即時定量聚合酶連鎖反應 (qRT-PCR) 20 3.11 核糖核酸干擾之試驗 (RNA Interference, RNAi) 20 3.12 統計分析 21 4. 研究結果與討論 22 4.1 Zearalenone對C. elegans體內α-synuclein蛋白累積量之影響 22 4.2 Zearalenone對C. elegans多巴胺神經元之影響 24 4.3 Zearalenone對C. elegans多巴胺神經元相關行為之影響 28 4.4 Zearalenone對C. elegans細胞中粒線體之影響 33 4.5 Zearalenone對C. elegans細胞凋亡相關基因之影響 38 4.6 Zearalenone對C. elegans細胞自噬相關基因之影響 41 4.7 drp-1對zearalenone 暴露所誘導C. elegans相關損傷之調控 44 5. 結論 48 6. 建議 49 7. 參考文獻 50 8. 附錄 67 "
dc.language.isozh-TW
dc.subject帕金森氏症zh_TW
dc.subject粒線體功能障礙zh_TW
dc.subject玉米赤黴烯酮zh_TW
dc.subject神經退化性疾病zh_TW
dc.subject秀麗隱桿線蟲zh_TW
dc.subjectneurodegeneration diseasesen
dc.subjectmitochondrial dysfunctionen
dc.subjectParkinson’s diseaseen
dc.subjectzearalenoneen
dc.subjectC. elegansen
dc.title玉米赤黴烯酮對秀麗隱桿線蟲誘導帕金森氏症毒性及相關機制之探討zh_TW
dc.titleEvaluation of Zearalenone Toxicity on Parkinson’s Disease and the Underlying Mechanisms in Caenorhabditis elegansen
dc.date.schoolyear109-2
dc.description.degree碩士
dc.contributor.oralexamcommittee何元順(Hsin-Tsai Liu),潘敏雄(Chih-Yang Tseng),洪偉倫
dc.subject.keyword秀麗隱桿線蟲,玉米赤黴烯酮,神經退化性疾病,帕金森氏症,粒線體功能障礙,zh_TW
dc.subject.keywordC. elegans,zearalenone,neurodegeneration diseases,Parkinson’s disease,mitochondrial dysfunction,en
dc.relation.page69
dc.identifier.doi10.6342/NTU202102904
dc.rights.note同意授權(限校園內公開)
dc.date.accepted2021-09-07
dc.contributor.author-college公共衛生學院zh_TW
dc.contributor.author-dept食品安全與健康研究所zh_TW
dc.date.embargo-lift2023-09-03-
顯示於系所單位:食品安全與健康研究所

文件中的檔案:
檔案 大小格式 
U0001-3108202110120800.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
2.03 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved