請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82450完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳志毅(Chih-I Wu) | |
| dc.contributor.author | Shun-Siang Zhan | en |
| dc.contributor.author | 詹舜翔 | zh_TW |
| dc.date.accessioned | 2022-11-25T07:31:15Z | - |
| dc.date.available | 2024-08-31 | |
| dc.date.copyright | 2021-11-11 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-08-24 | |
| dc.identifier.citation | [1] B. Doyle et al., 'High performance fully-depleted tri-gate CMOS transistors,' IEEE Electron Device Letters, vol. 24, no. 4, pp. 263-265, 2003. [2] V. P. Trivedi and J. G. Fossum, 'Scaling fully depleted SOI CMOS,' IEEE Transactions on Electron devices, vol. 50, no. 10, pp. 2095-2103, 2003. [3] S. Salahuddin and S. Datta, 'Use of negative capacitance to provide voltage amplification for low power nanoscale devices,' Nano letters, vol. 8, no. 2, pp. 405-410, 2008. [4] E. Gusev et al., 'Ultrathin high-K gate stacks for advanced CMOS devices,' in International Electron Devices Meeting. Technical Digest (Cat. No. 01CH37224), 2001: IEEE, pp. 20.1. 1-20.1. 4. [5] B. Sheu, K. Wilcox, A. M. Keshavarzi, and D. Antoniadis, 'EP1: Moore's law challenges below 10nm: Technology, design and economic implications,' in 2015 IEEE International Solid-State Circuits Conference-(ISSCC) Digest of Technical Papers, 2015: IEEE, pp. 1-1. [6] I. Ferain, C. A. Colinge, and J.-P. Colinge, 'Multigate transistors as the future of classical metal–oxide–semiconductor field-effect transistors,' Nature, vol. 479, no. 7373, pp. 310-316, 2011. [7] A. Razavieh, P. Zeitzoff, and E. J. Nowak, 'Challenges and limitations of CMOS scaling for FinFET and beyond architectures,' IEEE Transactions on Nanotechnology, vol. 18, pp. 999-1004, 2019. [8] R. Raccichini, A. Varzi, S. Passerini, and B. Scrosati, 'The role of graphene for electrochemical energy storage,' Nature materials, vol. 14, no. 3, pp. 271-279, 2015. [9] F. Schwierz, J. Pezoldt, and R. Granzner, 'Two-dimensional materials and their prospects in transistor electronics,' Nanoscale, vol. 7, no. 18, pp. 8261-8283, 2015. [10] Y. Liu, X. Duan, Y. Huang, and X. Duan, 'Two-dimensional transistors beyond graphene and TMDCs,' Chemical Society Reviews, vol. 47, no. 16, pp. 6388-6409, 2018. [11] M. Chhowalla, H. S. Shin, G. Eda, L.-J. Li, K. P. Loh, and H. Zhang, 'The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets,' Nature chemistry, vol. 5, no. 4, pp. 263-275, 2013. [12] S. Mouri, Y. Miyauchi, and K. Matsuda, 'Tunable photoluminescence of monolayer MoS2 via chemical doping,' Nano letters, vol. 13, no. 12, pp. 5944-5948, 2013. [13] Q. Tang and D.-e. Jiang, 'Stabilization and band-gap tuning of the 1T-MoS2 monolayer by covalent functionalization,' Chemistry of Materials, vol. 27, no. 10, pp. 3743-3748, 2015. [14] A. Splendiani et al., 'Emerging photoluminescence in monolayer MoS2,' Nano letters, vol. 10, no. 4, pp. 1271-1275, 2010. [15] D. Jena, K. Banerjee, and G. H. Xing, 'Intimate contacts,' Nature materials, vol. 13, no. 12, pp. 1076-1078, 2014. [16] C. Kim et al., 'Fermi level pinning at electrical metal contacts of monolayer molybdenum dichalcogenides,' ACS nano, vol. 11, no. 2, pp. 1588-1596, 2017. [17] Y. Liu et al., 'Approaching the Schottky–Mott limit in van der Waals metal–semiconductor junctions,' Nature, vol. 557, no. 7707, pp. 696-700, 2018. [18] X. Cui et al., 'Low-temperature ohmic contact to monolayer MoS2 by van der Waals bonded Co/h-BN electrodes,' Nano letters, vol. 17, no. 8, pp. 4781-4786, 2017. [19] Y. Wang et al., 'Van der Waals contacts between three-dimensional metals and two-dimensional semiconductors,' Nature, vol. 568, no. 7750, pp. 70-74, 2019. [20] G. Fiori et al., 'Electronics based on two-dimensional materials,' Nature nanotechnology, vol. 9, no. 10, pp. 768-779, 2014. [21] A. S. Chou et al., 'High On-Current 2D nFET of 390\mu A/\mu m at V_ {DS= 1V using Monolayer CVD MoS2 without Intentional Doping,' in 2020 IEEE Symposium on VLSI Technology, VLSI Technology 2020, 2020: Institute of Electrical and Electronics Engineers Inc., p. 9265040. [22] K. A. Patel, R. W. Grady, K. K. Smithe, E. Pop, and R. Sordan, 'Ultra-scaled MoS2 transistors and circuits fabricated without nanolithography,' 2D Materials, vol. 7, no. 1, p. 015018, 2019. [23] R. T. Tung, 'The physics and chemistry of the Schottky barrier height,' Applied Physics Reviews, vol. 1, no. 1, p. 011304, 2014. [24] Z. Cao, F. Lin, G. Gong, H. Chen, and J. Martin, 'Low Schottky barrier contacts to 2H-MoS2 by Sn electrodes,' Applied Physics Letters, vol. 116, no. 2, p. 022101, 2020. [25] C.-C. Cheng et al., 'Monolithic heterogeneous integration of BEOL power gating transistors of carbon nanotube networks with FEOL Si ring oscillator circuits,' in 2019 IEEE International Electron Devices Meeting (IEDM), 2019: IEEE, pp. 19.2. 1-19.2. 4. [26] S. Ahmadi et al., 'The role of physical techniques on the preparation of photoanodes for dye sensitized solar cells,' International Journal of Photoenergy, vol. 2014, 2014. [27] B. Inkson, 'Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) for materials characterization,' in Materials characterization using nondestructive evaluation (NDE) methods: Elsevier, 2016, pp. 17-43. [28] C. C. Moura, R. S. Tare, R. O. Oreffo, and S. Mahajan, 'Raman spectroscopy and coherent anti-Stokes Raman scattering imaging: prospective tools for monitoring skeletal cells and skeletal regeneration,' Journal of The Royal Society Interface, vol. 13, no. 118, p. 20160182, 2016. [29] C.-H. M. Chuang, P. R. Brown, V. Bulović, and M. G. Bawendi, 'Improved performance and stability in quantum dot solar cells through band alignment engineering,' Nature materials, vol. 13, no. 8, pp. 796-801, 2014. [30] C. Gong, L. Colombo, R. M. Wallace, and K. Cho, 'The unusual mechanism of partial Fermi level pinning at metal–MoS2 interfaces,' Nano letters, vol. 14, no. 4, pp. 1714-1720, 2014. [31] Y. Liu, P. Stradins, and S.-H. Wei, 'Van der Waals metal-semiconductor junction: Weak Fermi level pinning enables effective tuning of Schottky barrier,' Science advances, vol. 2, no. 4, p. e1600069, 2016. [32] K. Sotthewes et al., 'Universal Fermi-level pinning in transition-metal dichalcogenides,' The Journal of Physical Chemistry C, vol. 123, no. 9, pp. 5411-5420, 2019. [33] D. S. Schulman, A. J. Arnold, and S. Das, 'Contact engineering for 2D materials and devices,' Chemical Society Reviews, vol. 47, no. 9, pp. 3037-3058, 2018. [34] P.-C. Shen et al., 'Ultralow contact resistance between semimetal and monolayer semiconductors,' Nature, vol. 593, no. 7858, pp. 211-217, 2021. [35] A. J. Chiquito, C. A. Amorim, O. M. Berengue, L. S. Araujo, E. P. Bernardo, and E. R. Leite, 'Back-to-back Schottky diodes: the generalization of the diode theory in analysis and extraction of electrical parameters of nanodevices,' Journal of Physics: Condensed Matter, vol. 24, no. 22, p. 225303, 2012. [36] G. Roberts and J. Polanco, 'Thermally assisted tunnelling in dielectric films,' physica status solidi (a), vol. 1, no. 3, pp. 409-420, 1970. [37] L. Dobrescu, M. Petrov, D. Dobrescu, and C. Ravariu, 'Threshold voltage extraction methods for MOS transistors,' in 2000 International Semiconductor Conference. 23rd Edition. CAS 2000 Proceedings (Cat. No. 00TH8486), 2000, vol. 1: IEEE, pp. 371-374. [38] H.-Y. Chang, W. Zhu, and D. Akinwande, 'On the mobility and contact resistance evaluation for transistors based on MoS2 or two-dimensional semiconducting atomic crystals,' Applied Physics Letters, vol. 104, no. 11, p. 113504, 2014. [39] A. Pacheco-Sanchez, M. Claus, S. Mothes, and M. Schroeter, 'Contact resistance extraction methods for short-and long-channel carbon nanotube field-effect transistors,' Solid-State Electronics, vol. 125, pp. 161-166, 2016. [40] T. Abbas and L. Slewa, 'Transmission line method (TLM) measurement of (metal/ZnS) contact resistance,' 2015. [41] S. Das and J. Appenzeller, 'Screening and interlayer coupling in multilayer MoS2,' physica status solidi (RRL)–Rapid Research Letters, vol. 7, no. 4, pp. 268-273, 2013. [42] C. Lee, H. Yan, L. E. Brus, T. F. Heinz, J. Hone, and S. Ryu, 'Anomalous lattice vibrations of single-and few-layer MoS2,' ACS nano, vol. 4, no. 5, pp. 2695-2700, 2010. [43] T.-J. Ha, K. Chen, S. Chuang, K. M. Yu, D. Kiriya, and A. Javey, 'Highly uniform and stable n-type carbon nanotube transistors by using positively charged silicon nitride thin films,' Nano letters, vol. 15, no. 1, pp. 392-397, 2015. [44] K. Chen et al., 'Air stable n-doping of WSe2 by silicon nitride thin films with tunable fixed charge density,' Apl Materials, vol. 2, no. 9, p. 092504, 2014. [45] A. Sanne et al., 'Top-gated chemical vapor deposited MoS2 field-effect transistors on Si3N4 substrates,' Applied Physics Letters, vol. 106, no. 6, p. 062101, 2015. [46] A.-S. Chou et al., 'High On-State Current in Chemical Vapor Deposited Monolayer MoS 2 nFETs With Sn Ohmic Contacts,' IEEE Electron Device Letters, vol. 42, no. 2, pp. 272-275, 2020. [47] R. Kappera et al., 'Phase-engineered low-resistance contacts for ultrathin MoS 2 transistors,' Nature materials, vol. 13, no. 12, pp. 1128-1134, 2014. [48] C. J. McClellan, E. Yalon, K. K. Smithe, S. V. Suryavanshi, and E. Pop, 'Effective n-type doping of monolayer MoS 2 by AlO x,' in 2017 75th Annual Device Research Conference (DRC), 2017: IEEE, pp. 1-2. [49] A. Rai et al., 'Air stable doping and intrinsic mobility enhancement in monolayer molybdenum disulfide by amorphous titanium suboxide encapsulation,' Nano letters, vol. 15, no. 7, pp. 4329-4336, 2015. [50] K. K. Smithe, S. V. Suryavanshi, M. Muñoz Rojo, A. D. Tedjarati, and E. Pop, 'Low variability in synthetic monolayer MoS2 devices,' ACS nano, vol. 11, no. 8, pp. 8456-8463, 2017. [51] D. Lembke and A. Kis, 'Breakdown of high-performance monolayer MoS2 transistors,' ACS nano, vol. 6, no. 11, pp. 10070-10075, 2012. [52] 'International Roadmap for Devices and Systems.' https://www.ieee.org/ (accessed 12-07, 2020). [53] D. Somvanshi et al., 'Nature of carrier injection in metal/2D-semiconductor interface and its implications for the limits of contact resistance,' Physical Review B, vol. 96, no. 20, p. 205423, 2017. [54] C. D. English, G. Shine, V. E. Dorgan, K. C. Saraswat, and E. Pop, 'Improved contacts to MoS2 transistors by ultra-high vacuum metal deposition,' Nano letters, vol. 16, no. 6, pp. 3824-3830, 2016. [55] L. Zhang et al., 'Thermal expansion coefficient of monolayer molybdenum disulfide using micro-Raman spectroscopy,' Nano letters, vol. 19, no. 7, pp. 4745-4751, 2019. [56] S. S. Chee et al., 'Lowering the Schottky barrier height by graphene/Ag electrodes for high‐mobility MoS2 field‐effect transistors,' Advanced Materials, vol. 31, no. 2, p. 1804422, 2019. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82450 | - |
| dc.description.abstract | 過渡金屬二硫族化物的二硫化鉬(MoS2),因其極具微縮潛力的優勢,被視為一種能夠延續半導體摩爾定律的新興材料;然而,過高的接觸電阻,以及較低載子遷移率等問題,使二硫化鉬電晶體難以被廣泛應用。本論文主要探討利用半金屬作為新穎的接觸方法,獲得了接近零蕭特基能障高度,並且降低短通道二硫化鉬電晶體元件之接觸電阻並提升其電特性,但半金屬錫與鉍熔點較低,為了能夠與後端製程兼容,故也對其熱穩定性進行探討。 第一部分首先調變及優化氦離子束微影之參數並穩定其電晶體製程,使元件通道微縮至50奈米進行接觸電阻的討論。另外我們成功地使用了金輔助重熔方法,我們認為在較低溫度下沉積的半金屬可以減少由熱引起的介面缺陷形成,並且覆蓋高熔點金屬還可以幫助底層半金屬接觸層發生重熔現象,這項製程技術有助於在二硫化鉬上形成平滑的半金屬電極覆蓋,進而降低接觸電阻。接著利用半金屬錫(Sn)、鉍(Bi)和銻(Sb)三種半金屬作為電極進行比較,實驗結果為鉍接觸之電性表現最佳,同樣在VDS = 1 V且通道長度為50 奈米的情況下,鉍接觸元件之接觸電組可以降低至0.48 kΩ∙μm,並且汲極電流可達約742 μA/μm;其次為銻接觸,其接觸電組可以降低至0.66 kΩ∙μm,其汲極電流可達約596 μA/μm;而錫接觸之接觸電組為0.84 kΩ∙μm,其汲極電流約443 μA/μm。 第二部分則是元件封裝後之熱穩定性探討,實驗結果顯示相較於錫與鉍,半金屬銻顯著地有較高的熱穩定性,其熔點為630.6℃,而鉍的熔點為271.5℃,錫的熔點為231.9℃。我們進一步對以鉍與銻為電極的二硫化鉬電晶體做後續的加溫測試並比較其電性表現,銻接觸元件能在400℃退火後保持運作而鉍接觸元件最多只能在300℃退火後保持運作,這顯示銻接觸元件較能夠達到後端製程(BEOL)所需的400℃熱預算,因此解決半金屬錫與鉍在熱穩定性問題方面上的缺點。本研究提供了在二維半導體上形成低接觸電阻的半金屬接觸以提高電特性的實用途徑,並展示了銻作為一種新型半金屬接觸選項的明顯優勢,期許能夠將二維材料應用於先進的電子設備之中。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-25T07:31:15Z (GMT). No. of bitstreams: 1 U0001-2208202123592600.pdf: 6342416 bytes, checksum: 55199f9026686556e6caaf0802be216a (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | 致謝 I 摘要 III Abstract V 目錄 VII 圖目錄 IX 表目錄 XII Chapter 1 緒論 1 1.1 二維材料背景簡介 1 1.1.1半導體摩爾定律之極限與瓶頸 1 1.1.2 二維材料之優勢及潛力 3 1.2 二硫化鉬簡介 6 1.2.1 過渡金屬二硫族化物介紹 6 1.2.2 二硫化鉬能帶結構及基本特性 8 1.2.3 二硫化鉬製備方法 9 1.3 研究動機 11 1.3.1 金屬/二維材料介面能障 11 1.3.2 降低接觸電阻之方法 13 1.3.3 半金屬電極之熱穩定性問題 15 Chapter 2 實驗理論與方法 17 2.1 製程設備簡介 17 2.1.1 對位轉印系統 17 2.1.2 氦離子束顯微鏡及氦離子束微影製程 18 2.1.3 熱蒸鍍機 20 2.1.4 旋轉塗佈機 22 2.1.5 氮氣手套箱 22 2.2 量測儀器簡介 23 2.2.1 穿隧式電子顯微鏡 23 2.2.2 光致發光與拉曼光譜分析儀 24 2.2.3 原子力顯微鏡 26 2.2.4 紫外光光電子能譜分析儀 27 2.2.5 電性量測系統 28 2.3 實驗原理及理論 29 2.3.1 金屬、半金屬/二硫化鉬接面 29 2.3.2 蕭特基接觸與歐姆接觸 30 2.3.3 場效電晶體—閾值電壓、次臨限擺幅、電流開關比與場效載子遷移率 35 2.3.4 本質載子遷移率及接觸電阻萃取 38 2.4 實驗方法 43 2.4.1 機械剝離製備薄層二硫化鉬 43 2.4.2 化學氣相沉積法成長單層二硫化鉬 45 2.4.3 二硫化鉬短通道電晶體製程 46 2.4.4 電性量測及熱穩定性測試 48 Chapter 3 短通道二硫化鉬電晶體 50 3.1 短通道二硫化鉬電晶體製備 50 3.1.1 氦離子束微影 50 3.1.2 塊材剝離之多層二硫化鉬 53 3.1.3 化學氣相沉積成長之單層二硫化鉬 58 3.1.4 蒸鍍過程中的重熔現象 59 3.2 半金屬在短通道二硫化鉬電晶體之電性表現 63 3.2.1 不同半金屬之基本電性分析 63 3.2.2 銻接觸元件之接觸阻抗分析 70 3.2.3 紫外光光電子能譜分析 73 Chapter 4 半金屬/二硫化鉬電晶體之熱穩定性 77 4.1 半金屬接觸元件之熱穩定性 77 4.1.1 半金屬接觸元件之封裝 77 4.1.2 導通電流變化分析 77 4.1.3 接觸阻抗變化分析 80 4.1.4 材料拉曼光譜分析 83 4.1.5 銻接觸元件之高解析度影像及成份分佈分析 83 4.2 半金屬導線之熱穩定性 84 4.2.1 半金屬導線 84 4.2.2 鉍導線之熱穩定性 86 4.2.3 銻導線之熱穩定性 86 Chapter 5 總結 89 REFERENCE 90 | |
| dc.language.iso | zh-TW | |
| dc.subject | 二硫化鉬 | zh_TW |
| dc.subject | 半金屬接觸 | zh_TW |
| dc.subject | 氮化矽 | zh_TW |
| dc.subject | 百奈米級通道長度 | zh_TW |
| dc.subject | 接觸電阻 | zh_TW |
| dc.subject | 熱穩定性 | zh_TW |
| dc.subject | Silicon Nitride(Si3N4) | en |
| dc.subject | Thermal stability | en |
| dc.subject | Contact resistance | en |
| dc.subject | Hundred nanoscale channel length | en |
| dc.subject | Semimetal contact | en |
| dc.subject | Molybdenum Disulfide(MoS2) | en |
| dc.title | 半金屬電極於二硫化鉬短通道電晶體之電性及熱穩定性研究 | zh_TW |
| dc.title | Investigation of Electrical Properties and Thermal Stability of short channel MoS2 Transistors with Semimetal Electrodes. | en |
| dc.date.schoolyear | 109-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳美杏(Hsin-Tsai Liu),林致廷(Chih-Yang Tseng),吳肇欣 | |
| dc.subject.keyword | 二硫化鉬,半金屬接觸,百奈米級通道長度,接觸電阻,熱穩定性,氮化矽, | zh_TW |
| dc.subject.keyword | Molybdenum Disulfide(MoS2),Semimetal contact,Hundred nanoscale channel length,Contact resistance,Thermal stability,Silicon Nitride(Si3N4), | en |
| dc.relation.page | 94 | |
| dc.identifier.doi | 10.6342/NTU202102604 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2021-08-25 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| dc.date.embargo-lift | 2024-08-31 | - |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2208202123592600.pdf | 6.19 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
