請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8241完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳永芳(Yang-Fang Chen) | |
| dc.contributor.author | Yen-Guang Lee | en |
| dc.contributor.author | 李言光 | zh_TW |
| dc.date.accessioned | 2021-05-20T00:50:35Z | - |
| dc.date.available | 2020-12-30 | |
| dc.date.available | 2021-05-20T00:50:35Z | - |
| dc.date.copyright | 2020-08-24 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-08-17 | |
| dc.identifier.citation | Chapter 1 [1] Ban, D.; Han, S.; Lu, Z. H.; Oogarah, T.; SpringThorpe, A. J.; Liu, H. C. Near-Infrared to Visible Light Optical Upconversion by Direct Tandem Integration of Organic Light-Emitting Diode and Inorganic Photodetector. Appl. Phys. Lett. 2007, 90, 093108. [2] McCarthy, M. A.; Liu, B.; Donoghue, E. P.; Kravchenko, I.; Kim, D. Y.; So, F.; Rinzler, A. G. Low-Voltage, Low-Power, Organic Light-Emitting Transistors for Active Matrix Displays. Science 2011, 332, 570, [3] Yu, H.; Kim, D.; Lee, J.; Baek, S.; Lee, J.; Singh, R.; So, F. High-Gain Infrared-to-Visible Upconversion Light-Emitting Phototransistors. Nat. Photonics 2016, 10, 129. [4] Mukai, T.; Yamada, M.; Nakamura, S. Characteristics of InGaN-Based UV/Blue/Green/Amber/Red Light-Emitting Diodes Jpn. J. Appl. Phys. 1999, 38, 3976. [5] Hall, R. N.; Fenner, G. E.; Kingsley, J. D.; Soltys, T. J.; Carlson, R. O. Coherent Light Emission From GaAs Junctions Phys. Rev. Lett. 1962, 9, 366– 368. [6] Nakamura, S.; Senoh, M.; Mukai, T. P-GaN/N-InGaN/N-GaN Double-Heterostructure Blue-Light-Emitting Diodes Jpn. J. Appl. Phys. 1993, 32, L8 [7] Xia, Z.; Liu, Q. Progress in Discovery and Structural Design of Color Conversion Phosphors for LEDs. Prog. Mater. Sci. 2016, 84, 59– 117, [8] Xia, Z.; Meijerink, A. Ce3+-Doped Garnet Phosphors: Composition Modification, Luminescence Properties and Applications. Chem. Soc. Rev. 2017, 46, 275– 299, [9] Wang, L.; Xie, R.-J.; Suehiro, T.; Takeda, T.; Hirosaki, N. Down-Conversion Nitride Materials for Solid State Lighting: Recent Advances and Perspectives. Chem. Rev. 2018, 118, 1951– 2009, [10] Reineke, S.; Lindner, F.; Schwartz, G.; Seidler, N.; Walzer, K.; Lüssem, B.; Leo, K. White Organic Light-Emitting Diodes with Fluorescent Tube Efficiency. Nature 2009, 459, 234– 238, [11] Ye, S.; Xiao, F.; Pan, Y. X.; Ma, Y. Y.; Zhang, Q. Y. Phosphors in Phosphor-Converted White Light-Emitting Diodes: Recent Advances in Materials, Techniques and Properties. Mater. Sci. Eng. R 2010, 71, 1– 34, [12] Rauch, T., Böberl, M., Tedde, S. et al. Near-infrared imaging with quantum-dotsensitized organic photodiodes. Nature Photon 3, 332–336 (2009). [13] Jayoung Kim, Itthipon Jeerapan, Somayeh Imani, Thomas N. Cho, Amay Bandodkar, Stefano Cinti, Patrick P. Mercier, and Joseph Wang. Noninvasive Alcohol Monitoring Using a Wearable Tattoo-Based Iontophoretic-Biosensing System. ACS Sensors 2016 1 (8), 1011-1019 [14] Z. Bao, X. Chen. Flexible and Stretchable Devices. Adv. Mater. 2016, 28, 4177. [15] Juejun Hu, Lan Li, Hongtao Lin, Ping Zhang, Weidong Zhou, and Zhenqiang Ma, 'Flexible integrated photonics: where materials, mechanics and optics meet [Invited],' Opt. Mater. Express 3, 1313-1331 (2013) [16] N. Lu, D.-H. Kim. Flexible and Stretchable Electronics Paving the Way for Soft Robotics. Soft Robotics 2014, 1, 53. [17] Bonaccorso, F., Sun, Z., Hasan, T. et al. Graphene photonics and optoelectronics. Nature Photon 4, 611–622 (2010). [18] Zhu, Y., Murali, S., Cai, W., Li, X., Suk, J.W., Potts, J.R. and Ruoff, R.S. (2010), Graphene and Graphene Oxide: Synthesis, Properties, and Applications. Adv. Mater., 22:3906-3924. [19] A. K. GEIM. Graphene: Status and Prospects. SCIENCE 19 JUN 2009 : 1530-1534 [20] Geim, A., Novoselov, K. The rise of graphene. Nature Mater 6, 183–191 (2007). [21] Golam Haider, Muhammad Usman, Tzu-Pei Chen, Packiyaraj Perumal, Kuang-Lieh Lu, and Yang-Fang Chen. Electrically Driven White Light Emission from Intrinsic Metal–Organic Framework. ACS Nano 2016 10 (9), 8366-8375 Chapter 2 [1] Wonbong Choi , Indranil Lahiri , Raghunandan Seelaboyina Yong Soo Kang (2010) Synthesis of Graphene and Its Applications: A Review, Critical Reviews in Solid State and Materials Sciences, 35:1, 52-71 [2] J Hass et al 2008 J. Phys.: Condens. Matter 20 323202 [3] Yu, W., Liu, Y., Zhou, H. et al. Highly efficient gate-tunable photocurrent generation in vertical heterostructures of layered materials. Nature Nanotech 8, 952–958(2013). [4] Usman, M., Mendiratta, S., Lu, K.-L., Adv. Mater. 2017, 29, 1605071. [5] Allendorf, M. D.; Bauer, C. A.; Bhakta, R. K.; Houk, R. J. T. Luminescent Metal-Organic Frameworks. Chem. Soc. Rev. 2009, 38, 1330−1352. [6] M. Poulsen and S. Ducharme, 'Why ferroelectric polyvinylidene fluoride is special,' in IEEE Transactions on Dielectrics and Electrical Insulation, vol. 17, no. 4, pp. 1028-1035, August 2010 [7] Bystrov, Bdikin, I.D., Silibin, M.V. (2017). Ferroelectric Composites Based on PVDF / P ( VDF-Trfe ) Ferroelectric Films and Graphene / Graphene Oxide :Experimental Observation and Molecular Modeling. [8] L.M. Malard, M.A. Pimenta, G. Dresselhaus, M.S. Dresselhaus, Raman spectroscopy in graphene, Physics Reports, Volume 473, Issues 5–6, 2009, Pages 51-87, Chapter 3 [1] 米.,Muhammad.(2015).鍶金屬有機骨架化合物之介電與光學性質研究與應用. http://ir.lib.ncu.edu.tw:88/thesis/view_etd.asp?URN=992202608992202608\ Chapter 4 [1] Di Wu, Jiawen Guo, Juan Du, Congxin Xia, Longhui Zeng, Yongzhi Tian, Zhifeng Shi, Yongtao Tian, Xin Jian Li, Yuen Hong Tsang, and Jiansheng Jie. Highly Polarization-Sensitive, Broadband, Self-Powered Photodetector Based on Graphene/PdSe2/Germanium Heterojunction. ACS Nano 2019 13 (9), 9907-9917 [2] Young Rae Kim, Thanh Luan Phan, Yong Seon Shin, Won Tae Kang, Ui Yeon Won, Ilmin Lee, Ji Eun Kim, Kunnyun Kim, Young Hee Lee, and Woo Jong Yu. Unveiling the Hot Carrier Distribution in Vertical Graphene/h-BN/Au van der Waals Heterostructures for High-Performance Photodetector. ACS Applied Materials Interfaces 2020 12 (9), 10772-10780 [3] X. Wei, F. Yan, Q. Lv, W. Zhu, C. Hu, A. Patanè, K. Wang.Enhanced photoresponse in MoTe2 photodetectors with asymmetric graphene contacts. Adv. Opt. Mater., 7 (2019) 1900190. [4] Hu, P.; Wen, Z.; Wang, L.; Tan, P.; Xiao, K. Synthesis of Few-Layer Gase Nanosheets for High Performance Photodetectors. ACS Nano 2012, 6, 5988– 5994. [5] Krishna Prasad Bera, Golam Haider, Yu-Ting Huang, Pradip Kumar Roy, Christy Roshini Paul Inbaraj, Yu-Ming Liao, Hung-I Lin, Cheng-Hsin Lu, Chun Shen, Wan Y Shih, Wei-Heng Shih, and Yang-Fang Chen. Graphene Sandwich Stable Perovskite Quantum-Dot Light-Emissive Ultrasensitive and Ultrafast Broadband Vertical Phototransistors ACS Nano 2019 13 (11), 12540-12552 [6] Yu, H., Kim, D., Lee, J. et al. High-gain infrared-to-visible upconversion lightemitting phototransistors. Nature Photon 10, 129–134 (2016). [7] PingAn Hu, Zhenzhong Wen, Lifeng Wang, Pingheng Tan, and Kai Xiao. Synthesis of Few-Layer GaSe Nanosheets for High Performance Photodetectors ACS Nano 2012 6 (7), 5988-5994 [8] Li, L., Zhang, F., Wang, J. et al. Achieving EQE of 16,700% in P3HT:PC71BM based photodetectors by trap-assisted photomultiplication. Sci Rep 5, 9181 (2015). [9] Shang YM, Wang GS, Sliney D, Yang CH, Lee LL. White light-emitting diodes (LEDs) at domestic lighting levels and retinal injury in a rat model. Environ Health Perspect. 2014;122(3):269-276. [10] Allendorf, M. D.; Bauer, C. A.; Bhakta, R. K.; Houk, R. J. T. Luminescent Metal- Organic Frameworks. Chem. Soc. Rev. 2009, 38, 1330−1352. [11] J. E. Sansonetti. Wavelengths, Transition Probabilities, and Energy Levels for the Spectra of Strontium Ions (Sr II through Sr XXXVIII). Journal of Physical and Chemical Reference Data 41, 013102 (2012). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8241 | - |
| dc.description.abstract | 隨著科技技術的發展,我們越發需要多功能且高性能的元件,以滿足可穿戴電子設備、顯示器、太空科技和數據通信的需求。藉著結合石墨烯和金屬有機骨架(MOFs)的特性,我們設計了一種輕巧、結構簡單、可撓且具有雙重功能的垂直型光電晶體。這個單一元件,能發出近似太陽光譜的白光也呈現高光電探測性,包括外部量子效率 >3 × 10^8%和 ~10^8 安培/瓦特的光響應度並 ~220 微秒的反應速度。此外,我們的實驗顯示出這個元件有自供電光檢測力且光電流能在不同應變下變化。我們的元件具有可撓性、感測光和放光的雙重功能、且能發白光並具有高性能,相信對於下一代高性能光電元件的開發極有吸引力。 | zh_TW |
| dc.description.abstract | With the development of technology, there is a global demand for multifunctional and high-performance device to meet the need of wearable electronics, display, space technology, and data communication. By the intergration of unique properties of graphene and metal-organic frameworks (MOFs), here we demonstrate a light-weight, simple structural, flexible, and dual-functional vertical phototransistor. With this single device, we observe solar spectrum white light emission and high photodetectivity, including the external quantum efficiency >3 × 10^8%, a photoresponsivity of ~10^8 AW^-1, and a response time of ~220 μs. In addition, the self-powered photodetection and the variation of photocurrent under different strain are also demonstrated. With the characteristics including flexibility, dual-functionality, white light emission, and high performance, our device is extremely attractive for the development of next generation high-performance optoelectronic devices. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-20T00:50:35Z (GMT). No. of bitstreams: 1 U0001-1208202014445400.pdf: 5626408 bytes, checksum: e2732299c8c0579c4f0976896f7673e4 (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 致謝.................................................................................................................................... i 中文摘要........................................................................................................................... ii Abstract ........................................................................................................................... iii Contents .......................................................................................................................... iv List of Figures ................................................................................................................. vi Chpater 1 Introduction ................................................................................................... 1 References ................................................................................................................ 3 Chpater 2 Theoretical Background ............................................................................... 6 2.1 Single Layer Graphene ..................................................................................... 6 2.2 Graphene-Based Vertical Hybrid Photodetector ........................................... 9 2.3 Metal-Organic Framework ............................................................................ 12 2.4 Polyvinylidene Fluoride (PVDF) ................................................................... 14 2.5 Raman Spectroscopy ...................................................................................... 15 2.6 Photoluminescence Spectroscopy .................................................................. 18 2.7 Electroluminescence ....................................................................................... 19 References .............................................................................................................. 21 Chpater 3 Experimental Setup and Materials Preparation ...................................... 23 3.1 Experimental Method of Photodetection ...................................................... 23 3.2 Setup of Optical Measurement ...................................................................... 24 3.3 Chemical Vapor Deposition System .............................................................. 27 3.4 Electrodes Deposition by Thermal Evaporation .......................................... 29 3.5 Synthesis of Metal-Organic-Framework ...................................................... 31 3.6 Device Fabrication .......................................................................................... 33 References .............................................................................................................. 35 Chpater 4 Results and Discussion ............................................................................... 36 4.1 Study of Device Structure .............................................................................. 36 4.2 I-T and I-V Curve ........................................................................................... 38 4.3 Photodetection Performance of Vertical Flexible Phototransistor ............ 41 4.4 Electroluminescence ....................................................................................... 47 4.5 Flexibility ......................................................................................................... 52 References .............................................................................................................. 57 Chpater 5 Conclusion ................................................................................................... 59 | |
| dc.language.iso | en | |
| dc.title | 具太陽光發射光譜和超高性能之可撓式石墨烯/金屬有機骨架/石墨烯/聚偏二氟乙烯異質接面光電晶體 | zh_TW |
| dc.title | Solar-Spectrum White-Light Emission and Ultra-High Performance Flexible Phototransistor Based on Graphene/Metal-Organic Framework/Graphene/PVDF Heterojunction | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 謝雅萍(Ya-Ping Hsieh),許芳琪(Fang-Chi Hsu) | |
| dc.subject.keyword | 垂直型光電晶體,可撓式元件,金屬有機⾻架,石墨烯,發光體, | zh_TW |
| dc.subject.keyword | vertical phototransistor,flexible device,metal-organic framework,graphene,light emitter, | en |
| dc.relation.page | 59 | |
| dc.identifier.doi | 10.6342/NTU202003091 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2020-08-18 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 物理學研究所 | zh_TW |
| 顯示於系所單位: | 物理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1208202014445400.pdf | 5.49 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
