Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 物理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8238
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor朱士維(Shi-Wei Chu)
dc.contributor.authorYu-Hsuan Tsaien
dc.contributor.author蔡宇軒zh_TW
dc.date.accessioned2021-05-20T00:50:33Z-
dc.date.available2020-08-21
dc.date.available2021-05-20T00:50:33Z-
dc.date.copyright2020-08-21
dc.date.issued2020
dc.date.submitted2020-08-12
dc.identifier.citation1. K. Sidiropoulou, E. K. Pissadaki, and P. Poirazi, 'Inside the brain of a neuron,' EMBO Rep. 7, 886-892 (2006).
2. L. Squire, F. E. Bloom, N. C. Spitzer, L. R. Squire, D. Berg, S. du Lac, and A. Ghosh, Fundamental Neuroscience (Elsevier Science, 2008).
3. D. Schubert, R. Kötter, H. J. Luhmann, and J. F. Staiger, 'Morphology, Electrophysiology and Functional Input Connectivity of Pyramidal Neurons Characterizes a Genuine Layer Va in the Primary Somatosensory Cortex,' Cereb. Cortex 16, 223-236 (2005).
4. H. Wang, Q. Zhu, L. Ding, Y. Shen, C.-Y. Yang, F. Xu, C. Shu, Y. Guo, Z. Xiong, Q. Shan, F. Jia, P. Su, Q.-R. Yang, B. Li, Y. Cheng, X. He, X. Chen, F. Wu, J.-N. Zhou, F. Xu, H. Han, P.-M. Lau, and G.-Q. Bi, 'Scalable volumetric imaging for ultrahigh-speed brain mapping at synaptic resolution,' Natl. Sci. Rev. 6, 982-992 (2019).
5. M. G. Preti, T. A. W. Bolton, and D. Van De Ville, 'The dynamic functional connectome: State-of-the-art and perspectives,' NeuroImage 160, 41-54 (2017).
6. M. Dipalo, H. Amin, L. Lovato, F. Moia, V. Caprettini, G. C. Messina, F. Tantussi, L. Berdondini, and F. De Angelis, 'Intracellular and Extracellular Recording of Spontaneous Action Potentials in Mammalian Neurons and Cardiac Cells with 3D Plasmonic Nanoelectrodes,' Nano Lett. 17, 3932-3939 (2017).
7. F. A. Azevedo, L. R. Carvalho, L. T. Grinberg, J. M. Farfel, R. E. Ferretti, R. E. Leite, W. Jacob Filho, R. Lent, and S. Herculano-Houzel, 'Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain,' J. Comp. Neurol. 513, 532-541 (2009).
8. S. Herculano-Houzel, B. Mota, and R. Lent, 'Cellular scaling rules for rodent brains,' Proc. Natl. Acad. Sci. U.S.A. 103, 12138-12143 (2006).
9. A. P. Alivisatos, M. Chun, George M. Church, Ralph J. Greenspan, Michael L. Roukes, and R. Yuste, 'The Brain Activity Map Project and the Challenge of Functional Connectomics,' Neuron 74, 970-974 (2012).
10. A. S. Chiang, C. Y. Lin, C. C. Chuang, H. M. Chang, C. H. Hsieh, C. W. Yeh, C. T. Shih, J. J. Wu, G. T. Wang, Y. C. Chen, C. C. Wu, G. Y. Chen, Y. T. Ching, P. C. Lee, C. Y. Lin, H. H. Lin, C. C. Wu, H. W. Hsu, Y. A. Huang, J. Y. Chen, H. J. Chiang, C. F. Lu, R. F. Ni, C. Y. Yeh, and J. K. Hwang, 'Three-dimensional reconstruction of brain-wide wiring networks in Drosophila at single-cell resolution,' Curr. Biol. 21, 1-11 (2011).
11. U. B. Pandey and C. D. Nichols, 'Human disease models in Drosophila melanogaster and the role of the fly in therapeutic drug discovery,' Pharmacol. Rev. 63, 411-436 (2011).
12. J. C. Tuthill, 'Lessons from a compartmental model of a Drosophila neuron,' J. Neurosci. 29, 12033-12034 (2009).
13. N. W. Gouwens and R. I. Wilson, 'Signal Propagation in Drosophila Central Neurons,' J. Neurosci. 29, 6239-6249 (2009).
14. H. T. Beier and B. L. Ibey, 'Experimental comparison of the high-speed imaging performance of an EM-CCD and sCMOS camera in a dynamic live-cell imaging test case,' PLoS One 9, e84614 (2014).
15. M. Uecker, S. Zhang, D. Voit, A. Karaus, K. D. Merboldt, and J. Frahm, 'Real-time MRI at a resolution of 20 ms,' NMR Biomed 23, 986-994 (2010).
16. G. H. Glover, 'Overview of functional magnetic resonance imaging,' Neurosurg. Clin. N. Am. 22, 133-139 (2011).
17. K. Ugurbil, J. Xu, E. J. Auerbach, S. Moeller, A. T. Vu, J. M. Duarte-Carvajalino, C. Lenglet, X. Wu, S. Schmitter, P. F. Van de Moortele, J. Strupp, G. Sapiro, F. De Martino, D. Wang, N. Harel, M. Garwood, L. Chen, D. A. Feinberg, S. M. Smith, K. L. Miller, S. N. Sotiropoulos, S. Jbabdi, J. L. Andersson, T. E. Behrens, M. F. Glasser, D. C. Van Essen, E. Yacoub, and W. U.-M. H. Consortium, 'Pushing spatial and temporal resolution for functional and diffusion MRI in the Human Connectome Project,' Neuroimage 80, 80-104 (2013).
18. S. F. Cogan, 'Neural Stimulation and Recording Electrodes,' Annu Rev Biomed Eng 10, 275-309 (2008).
19. H. Bin, Y. Lin, C. Wilke, and Y. Han, 'Electrophysiological Imaging of Brain Activity and Connectivity—Challenges and Opportunities,' IEEE. Trans. Biomed. Eng. 58, 1918-1931 (2011).
20. Z. Fekete, 'Recent advances in silicon-based neural microelectrodes and microsystems: a review,' Sens. Actuators B Chem. 215, 300-315 (2015).
21. B. A. Wilt, L. D. Burns, E. T. Wei Ho, K. K. Ghosh, E. A. Mukamel, and M. J. Schnitzer, 'Advances in light microscopy for neuroscience,' Annu. Rev. Neurosci. 32, 435-506 (2009).
22. D. R. Hochbaum, Y. Zhao, S. L. Farhi, N. Klapoetke, C. A. Werley, V. Kapoor, P. Zou, J. M. Kralj, D. Maclaurin, N. Smedemark-Margulies, J. L. Saulnier, G. L. Boulting, C. Straub, Y. K. Cho, M. Melkonian, G. K. Wong, D. J. Harrison, V. N. Murthy, B. L. Sabatini, E. S. Boyden, R. E. Campbell, and A. E. Cohen, 'All-optical electrophysiology in mammalian neurons using engineered microbial rhodopsins,' Nat. Methods 11, 825-833 (2014).
23. V. Voleti, K. B. Patel, W. Li, C. Perez Campos, S. Bharadwaj, H. Yu, C. Ford, M. J. Casper, R. W. Yan, W. Liang, C. Wen, K. D. Kimura, K. L. Targoff, and E. M. C. Hillman, 'Real-time volumetric microscopy of in vivo dynamics and large-scale samples with SCAPE 2.0,' Nat. Methods 16, 1054-1062 (2019).
24. M. Duocastella, G. Sancataldo, P. Saggau, P. Ramoino, P. Bianchini, and A. Diaspro, 'Fast Inertia-Free Volumetric Light-Sheet Microscope,' ACS Photonics 4, 1797-1804 (2017).
25. W. R. Zipfel, R. M. Williams, and W. W. Webb, 'Nonlinear magic: multiphoton microscopy in the biosciences,' Nat. Biotechnol. 21, 1369-1377 (2003).
26. B. V. R. Tata and B. Raj, 'Confocal laser scanning microscopy: Applications in material science and technology,' Bull. Mater. Sci. 21, 263-278 (1998).
27. F. Helmchen and W. Denk, 'Deep tissue two-photon microscopy,' Nat. Methods 2, 932-940 (2005).
28. H. Li, Q. Cui, Z. Zhang, L. Fu, and Q. Luo, 'Nonlinear optical microscopy for immunoimaging: a custom optimized system of high-speed, large-area, multicolor imaging,' Quant. Imaging. Med. Surg. 5, 30-39 (2014).
29. A. M. D. Lee, H. Wang, Y. Yu, S. Tang, J. Zhao, H. Lui, D. I. McLean, and H. Zeng, 'In vivo video rate multiphoton microscopy imaging of human skin,' Opt. Lett. 36, 2865-2867 (2011).
30. K. F. Tehrani, C. V. Latchoumane, W. M. Southern, E. G. Pendleton, A. Maslesa, L. Karumbaiah, J. A. Call, and L. J. Mortensen, 'Five-dimensional two-photon volumetric microscopy of in-vivo dynamic activities using liquid lens remote focusing,' Biomed. Opt. Express 10, 3591 (2019).
31. W. Göbel, B. M. Kampa, and F. Helmchen, 'Imaging cellular network dynamics in three dimensions using fast 3D laser scanning,' Nat. Methods 4, 73-79 (2006).
32. C. Huang, C. Y. Tai, K. P. Yang, W. K. Chang, K. J. Hsu, C. C. Hsiao, S. C. Wu, Y. Y. Lin, A. S. Chiang, and S. W. Chu, 'All-Optical Volumetric Physiology for Connectomics in Dense Neuronal Structures,' iScience 22, 133-146 (2019).
33. R. Lu, M. Tanimoto, M. Koyama, and N. Ji, '50 Hz volumetric functional imaging with continuously adjustable depth of focus,' Biomed. Opt. Express 9, 1964-1976 (2018).
34. K. M. N. S. Nadella, H. Roš, C. Baragli, V. A. Griffiths, G. Konstantinou, T. Koimtzis, G. J. Evans, P. A. Kirkby, and R. A. Silver, 'Random-access scanning microscopy for 3D imaging in awake behaving animals,' Nat. Methods 13, 1001-1004 (2016).
35. E. J. Botcherby, C. W. Smith, M. M. Kohl, D. Debarre, M. J. Booth, R. Juskaitis, O. Paulsen, and T. Wilson, 'Aberration-free three-dimensional multiphoton imaging of neuronal activity at kHz rates,' Proc. Natl. Acad. Sci. U.S.A. 109, 2919-2924 (2012).
36. J. Bewersdorf, R. Pick, and S. W. Hell, 'Multifocal multiphoton microscopy,' Opt. Lett. 23, 655-657 (1998).
37. R. Yuste, 'Two-photon imaging with diffractive optical elements,' Front. Neural Circuits 3(2009).
38. K. Otomo, T. Hibi, T. Murata, H. Watanabe, R. Kawakami, H. Nakayama, M. Hasebe, and T. Nemoto, 'Multi-point Scanning Two-photon Excitation Microscopy by Utilizing a High-peak-power 1042-nm Laser,' Anal Sci 31, 307-313 (2015).
39. K. Bahlmann, P. T. C. So, M. Kirber, R. Reich, B. Kosicki, W. McGonagle, and K. Bellve, 'Multifocal multiphoton microscopy (MMM) at a frame rate beyond 600 Hz,' Opt. Express 15, 10991-10998 (2007).
40. T. V. Truong, W. Supatto, D. S. Koos, J. M. Choi, and S. E. Fraser, 'Deep and fast live imaging with two-photon scanned light-sheet microscopy,' Nat. Methods 8, 757-760 (2011).
41. S. Quirin, J. Jackson, D. S. Peterka, and R. Yuste, 'Simultaneous imaging of neural activity in three dimensions,' Front. Neural Circuits 8(2014).
42. T. Schrodel, R. Prevedel, K. Aumayr, M. Zimmer, and A. Vaziri, 'Brain-wide 3D imaging of neuronal activity in Caenorhabditis elegans with sculpted light,' Nat. Methods 10, 1013-1020 (2013).
43. J. Wu, Y. Liang, S. Chen, C.-L. Hsu, M. Chavarha, S. W. Evans, D. Shi, M. Z. Lin, K. K. Tsia, and N. Ji, 'Kilohertz two-photon fluorescence microscopy imaging of neural activity in vivo,' Nat. Methods 17, 287-290 (2020).
44. K. H. Kim, C. Buehler, K. Bahlmann, T. Ragan, W.-C. A. Lee, E. Nedivi, E. L. Heffer, S. Fantini, and P. T. C. So, 'Multifocal multiphoton microscopy based on multianode photomultiplier tubes,' Opt. Express 15, 11658-11678 (2007).
45. B. F. Grewe, F. F. Voigt, M. van 't Hoff, and F. Helmchen, 'Fast two-layer two-photon imaging of neuronal cell populations using an electrically tunable lens,' Biomed. Opt. Express 2, 2035-2046 (2011).
46. L. Sacconi, E. Froner, R. Antolini, M. R. Taghizadeh, A. Choudhury, and F. S. Pavone, 'Multiphoton multifocal microscopy exploiting a diffractive optical element,' Opt. Lett. 28, 1918-1920 (2003).
47. T. Nielsen, M. Fricke, D. Hellweg, and P. Andresen, 'High efficiency beam splitter for multifocal multiphoton microscopy,' J. Microsc. 201, 368-376 (2001).
48. B. O. Watson, V. Nikolenko, R. Araya, D. S. Peterka, A. Woodruff, and R. Yuste, 'Two-photon microscopy with diffractive optical elements and spatial light modulators,' Front. Neurosci. 4(2010).
49. Refer to the description of DOE from the HOLOEYE company: https://holoeye.com/diffractive-optics/
50. N. Olivier, A. Mermillod-Blondin, C. B. Arnold, and E. Beaurepaire, 'Two-photon microscopy with simultaneous standard and extended depth of field using a tunable acoustic gradient-index lens,' Opt. Lett. 34, 1684-1686 (2009).
51. K.-J. Hsu, K.-Y. Li, Y.-Y. Lin, A.-S. Chiang, and S.-W. Chu, 'Optimizing depth-of-field extension in optical sectioning microscopy techniques using a fast focus-tunable lens,' Opt. Express 25, 16783-16794 (2017).
52. M. Duocastella, B. Sun, and C. Arnold, 'Simultaneous imaging of multiple focal planes for three-dimensional microscopy using ultra-high-speed adaptive optics,' J Biomed Opt 17, 050505 (2012).
53. Y. Xu, P. Zou, and A. E. Cohen, 'Voltage imaging with genetically encoded indicators,' Curr Opin Chem Biol 39, 1-10 (2017).
54. T. Knopfel and C. Song, 'Optical voltage imaging in neurons: moving from technology development to practical tool,' Nat. Rev. Neurosci. 20, 719-727 (2019).
55. See the specification of the TAG lens online: https://www.tag-optics.com/index.php
56. Kuo-Jen Hsu, “High-speed and Deep-tissue Optical Microscope Techniques for Drosophila Brain Functional Studies,” Doctoral Dissertation, National Taiwan University, 2018.
57. See the specification of the TAG lens online: https://www.tag-optics.com/index.php
58. Ron D. Frostig. In Vivo Optical Imaging of Brain Function (CRC Press/ Taylor Francis, 2009).
59. M. Drobizhev, N. S. Makarov, S. E. Tillo, T. E. Hughes, and A. Rebane, 'Two-photon absorption properties of fluorescent proteins,' Nat. Methods 8, 393-399 (2011).
60. T. Hazelrigg, N. Liu, Y. Hong, and S. Wang, 'GFP Expression inDrosophilaTissues: Time Requirements for Formation of a Fluorescent Product,' Dev. Biol. 199, 245-249 (1998).
61. L.-C. Cheng, N. G. Horton, K. Wang, S.-J. Chen, and C. Xu, 'Measurements of multiphoton action cross sections for multiphoton microscopy,' Biomed. Opt. Express 5, 3427 (2014).
62. See from the specification of Hamamatsu multi-anode PMT catalog.
63. See the specification of the TAG lens online: https://www.tag-optics.com/index.php
64. K. J. Hsu, Y. Y. Lin, Y. Y. Lin, K. Su, K. L. Feng, S. C. Wu, Y. C. Lin, A. S. Chiang, and S. W. Chu, 'Millisecond two-photon optical ribbon imaging for small-animal functional connectome study,' Opt. Lett. 44, 3190-3193 (2019).
65. C.-S. Liao, P. Wang, P. Wang, J. Li, H. J. Lee, G. Eakins, and J.-X. Cheng, 'Spectrometer-free vibrational imaging by retrieving stimulated Raman signal from highly scattered photons,' Sci. Adv. 1, e1500738 (2015).
66. S. S. Howard, A. Straub, N. G. Horton, D. Kobat, and C. Xu, 'Frequency-multiplexed in vivo multiphoton phosphorescence lifetime microscopy,' Nat. Photonics 7, 33-37 (2012).
67. T. Shimozawa, K. Yamagata, T. Kondo, S. Hayashi, A. Shitamukai, D. Konno, F. Matsuzaki, J. Takayama, S. Onami, H. Nakayama, Y. Kosugi, T. M. Watanabe, K. Fujita, and Y. Mimori-Kiyosue, 'Improving spinning disk confocal microscopy by preventing pinhole cross-talk for intravital imaging,' Proc. Natl. Acad. Sci. U.S.A. 110, 3399-3404 (2013).
68. J. W. Cha, V. R. Singh, K. H. Kim, J. Subramanian, Q. Peng, H. Yu, E. Nedivi, and P. T. C. So, 'Reassignment of Scattered Emission Photons in Multifocal Multiphoton Microscopy,' Sci. Rep. 4(2014).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8238-
dc.description.abstract大腦是生物最重要的器官之一,因為不管是情感、思考、記憶和甚至是生命徵象等大多數行為主要都是由大腦所控制。近百年來,儘管科學家已經對單顆神經元進行了詳盡的研究,我們對腦功能的理解仍然有限。主要原因之一在於大腦的功能並不是由單顆神經元所主導的,而是由全腦神經元之間交錯連接而成且結構複雜的神經網路所控制的。在這個研究裡我們以果蠅作為研究對象,因為果蠅不但具有相當完整的神經結構性圖譜,果蠅腦的大小也足夠小來達成全腦觀察,那為了瞭解功能性神經網路是如何在果蠅的大腦中運作,所需的工具應具有亞細胞的空間解析度以區分單顆神經元、毫秒等級的成像速度以捕捉神經元之間高速的訊號傳遞(像是動作電位)以及接近毫米立方體積的成像尺寸以用於全腦研究。
近年來,雙光子顯微鏡逐漸成為研究活體大腦功能性神經網路的重要工具,因為它不僅能夠提供非侵入性的觀察還能夠達到微米尺度的空間解析度以及深組織穿透深度的光學切片能力來涵蓋三維結構的大腦。為了捕獲神經元之間的快速動態行為,現有的雙光子顯微鏡已經能夠達到毫秒尺度的二維成像速度。然而,神經網絡結構本質上是三維分佈的,由於雙光子顯微鏡需要透過掃描來完成三維成像的特性使得目前雙光子顯微鏡的三維成像速度遠低於毫秒尺度。
因此近十年來許多技術致力於提高三維成像速度,例如壓電致動器、液體透鏡、聲光偏轉器、全像術、空間時域聚焦和層光顯微鏡等等。然而前三種方法是基於單點掃描成像式的技術,由於橫向或軸向掃描速度的限制使得三維成像速度無法達到毫秒尺度。此外,這些技術大多使用單通道偵測器來收光,取樣速度會被螢光衰減週期所限制,導致取樣率不會超過500 MHz,限制了影像速度。後三項技術則是基於廣域照明以及收光來提高成像速度,然而該方式很容易受到散射的影響導致穿透深度不深,因此比較適合用在透明樣本上而不適用於密集的神經網路結構(果蠅大腦)。
為了解決上述的問題,在這項研究中我們開發了一套多焦點多光子體積成像顯微技術,利用將單道光分成32道光,搭配上可調式聲波梯度折射率透鏡以及32通道的光電倍增管,我們達成了每秒500個體積以上的三維成像速度,體積大小約略是邊長為200微米的立方體。透過繞射分光元件產生的32道光做平行掃描,相比於單道光來說可大幅度提高橫向掃描速度,而可調式聲波梯度折射率透鏡可提供約100 kHz的超快軸向掃描速度,從而達到毫秒等級的三維成像。為了能夠補捉可調式聲波梯度折射率透鏡的掃描速度,我們採用了32通道光電倍增管,不但有足夠快的資料取樣速度,整體的資料取樣率更可以提高到10 GHz以上(在這個研究中使用了2.56 GHz),比起單通道偵測器來說整整多了一個數量級。為了證明系統的可行性,我們利用流動的螢光球來測試高速成像,的確能夠捕捉螢光球在流動時的動態行為。希望我們所發展的這套高速多焦點多光子體積成像技術能夠對果蠅全腦功能性神經網路研究有所幫助。
zh_TW
dc.description.abstractBrain is one of the most important organs because most behaviors, such as emotion, thinking, memory and vital sign, are mainly governed by our brain. Although the behaviors of basic component of brain, so-called neurons, have already been investigated thoroughly for more than one century, our understanding toward brain function is still limited. One of the main reasons is that brain function is not performed by a single neuron, but dominated by sophisticated connections among neurons inside a whole brain, i.e. connectome. In this study, Drosophila was selected as our target not only due to its nearly-complete structural neural connectome but also small enough brain size, which is available for whole brain observation. In order to study how functional connectome works in living brain of Drosophila, the required tool should exhibit (i) sub-cellular spatial resolution to distinguish individual neurons, (ii) temporal imaging speed as high as kHz to capture rapid dynamics among neurons, such as action potential, and (iii) imaging size approaching hundreds of micrometers cubic in volume for whole brain study.
Recently, two-photon microscopy has emerged as a powerful tool for in vivo functional connectome study in living brains not only because of its noninvasive property but also due to its ~µm spatial resolution and optical sectioning capability to monitor 3D brain functions with remarkable penetration depth. In order to capture rapid dynamics among neurons, imaging speed of two-photon microscopy in lateral dimension can already reach up to kHz frame rate. Nevertheless, neural network is intrinsically three-dimensionally distributed, and current volumetric two-photon imaging speed is far below kHz due to the requirement of time-consuming sequential axial-scanning.
In the past decade, several schemes have been demonstrated to boost volumetric imaging speed, such as piezoelectric actuator, liquid lens, acousto-optic deflector, holography, spatial temporal focusing and light-sheet microscopy. However, the first three methods are single-beam scanning-based techniques, which cannot reach millisecond-scale volumetric imaging due to the limitation of lateral or axial scanning speed. Besides, abovementioned techniques typically use a single-channel detector to collect signal, so that the data acquisition rate is restricted below ~500 MHz under the limitation of fluorescence lifetime. The latter three are based on wide-field illumination and wide-field detection to increase the imaging speed; however, they easily suffer image blurred due to scattering and are limited to transparent samples. Therefore, they are not suitable for dense neuron structures, such as Drosophila brains.
In this study, we developed a multi-focal multi-photon volumetric imaging microscopy, based on the combination of 32-channel multi-focal excitation, a tunable acoustic gradient-index (TAG) lens, and a 32-channel PMT, thus reaching unprecedented volumetric imaging rate above 500 volumes per second, in a cubic volume of ~200 µm on each side. The 32-focus parallel scanning is provided by a diffractive optical element (DOE) to considerably enhance lateral scanning speed. The TAG lens offers ~100 kHz ultrafast axial scanning speed, leading to millisecond-scale volumetric imaging. To catch up with the speed of the TAG lens, the 32-channel PMT was adopted which can further boost up data acquisition rate to more than 10 GHz (2.56 GHz is used in this work), one order larger than that of a single-channel detector system. As a proof of concept, we have demonstrated high speed imaging with flowing fluorescence beads, capturing volumetric dynamics of flow motion. Our high-speed multi-focal multi-photon volumetric imaging technique paves the way toward functional connectome study in Drosophila brain.
en
dc.description.provenanceMade available in DSpace on 2021-05-20T00:50:33Z (GMT). No. of bitstreams: 1
U0001-1208202016594900.pdf: 6007315 bytes, checksum: face4a4cca98ccf8caf3ee9b25d904b5 (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents口試委員會審定書 I
謝辭 II
摘要 IV
Abstract VI
Contents VIII
Figure list X
Table list XII
Chapter 1. Introduction of brain study: Technical problems and possible solutions 1
1.1 Brain study: Features and challenges 1
1.1.1 Brain characteristics 1
1.1.2 Animal models: From human to Drosophila 4
1.1.3 Challenges for Drosophila brain study 5
1.2 Techniques comparison for brain study challenges 6
1.2.1 Common techniques for brain study: Why optical microscopy? 6
1.2.2 Optical microscopy for brain study: Why two-photon? 10
1.2.3 Current limitation of two-photon microscopy: Speed 10
1.2.4 How to improve lateral scanning speed: Multifocal 11
1.2.5 How to improve axial scanning speed: TAG lens 12
1.3 Aim: Millisecond-scale volumetric imaging microscopy for Drosophila brain study 13
Chapter 2. Principle of techniques for millisecond-scale volumetric microscopy 15
2.1 Two-photon laser scanning microscopy 15
2.2 Multifocal multiphoton microscopy 18
2.2.1 Common multifocal techniques 18
2.2.2 Diffractive optical element (DOE) 20
2.3 TAG lens 22
2.4 Two-photon volumetric imaging microscopy 25
Chapter 3. System design of millisecond-scale volumetric imaging microscopy 27
3.1 Optical setup 27
3.2 Contrast agent and excitation wavelength 30
3.3 Selection of each component 32
3.3.1 DOE 32
3.3.2 TAG lens 33
3.3.3 Photomultiplier tube (PMT) 35
3.3.4 Amplifier (AMP) 40
3.3.5 Data acquisition system (DAQ) 41
3.4 Expected performance 47
3.4.1 Spatial resolution 47
3.4.2 Volumetric imaging: Size 48
3.4.3 Volumetric imaging: Speed 52
Chapter 4. Experimental protocols and sample preparations 54
4.1 Experimental protocols 54
4.2 Sample preparations 61
4.2.1 Test sample: Fluorescent microspheres 61
4.2.2 In vitro fixed Drosophila brain slide 62
Chapter 5. Results 63
5.1 System performance 63
5.1.1 Spatial resolution 63
5.1.2 Volumetric imaging: Size 65
5.1.3 Volumetric imaging: Speed 73
5.2 Drosophila brain imaging 75
Chapter 6. Discussion 76
6.1 Strong absorption of TAG lens 76
6.2 Emitted photon number 78
6.3 Equal-interval sampling against stochastic fluorescent pulses 79
6.4 Cross-talk 80
6.5 Shot noise 81
Chapter 7. Conclusion and future work 83
7.1 Conclusion 83
7.2 Future work 84
References 86
dc.language.isoen
dc.title毫秒等級三維影像顯微鏡於果蠅腦之研究zh_TW
dc.titleMillisecond-scale Volumetric Imaging Microscopy for Drosophila Brain Studyen
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.oralexamcommittee江安世(Ann-Shyn Chiang),朱麗安(Li-An Chu),陳摘文(Tsai-Wen Chen)
dc.subject.keyword多焦點顯微鏡,多光子顯微鏡,可調式聲波梯度折射率透鏡,體積成像,毫秒等級時間解析度,zh_TW
dc.subject.keywordMulti-focal microscopy,Multi-photon microscopy,Tunable acoustic gradient-index lens,Volumetric imaging,Millisecond-scale temporal resolution,en
dc.relation.page93
dc.identifier.doi10.6342/NTU202003129
dc.rights.note同意授權(全球公開)
dc.date.accepted2020-08-13
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept物理學研究所zh_TW
顯示於系所單位:物理學系

文件中的檔案:
檔案 大小格式 
U0001-1208202016594900.pdf5.87 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved