Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82370
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor廖尉斯(Wei-Ssu Liao)
dc.contributor.authorShin Yien
dc.contributor.author易昕zh_TW
dc.date.accessioned2022-11-25T07:29:52Z-
dc.date.available2024-07-01
dc.date.copyright2021-08-18
dc.date.issued2021
dc.date.submitted2021-07-01
dc.identifier.citation1. Wisniak, J., Thomas Graham. Ii. Contributions to Diffusion of Gases and Liquids, Colloids, Dialysis, and Osmosis. Educ. Quim. 2013, 24, 506-515. 2. Graham, T., X. Liquid Diffusion Applied to Analysis. Philos. Trans. R. Soc. London 1861, (151), 183-224. 3. Fick, A., Ueber Diffusion. Ann. Phys. 1855, 170 (1), 59-86. 4. Paul, A.; Laurila, T.; Vuorinen, V.; Divinski, S. V., Thermodynamics, Diffusion and the Kirkendall Effect in Solids. Springer: 2014. 5. Miller, C. C., The Stokes-Einstein Law for Diffusion in Solution. Proc. R. Soc. London, Ser. A 1924, 106 (740), 724-749. 6. Young, M.; Carroad, P.; Bell, R., Estimation of Diffusion Coefficients of Proteins. Biotechnol. Bioeng. 1980, 22 (5), 947-955. 7. Liu, J.; Cao, D.; Zhang, L., Molecular Dynamics Study on Nanoparticle Diffusion in Polymer Melts: A Test of the Stokes− Einstein Law. J. Phys. Chem. C 2008, 112 (17), 6653-6661. 8. Wang, Z.; Kim, M.-C.; Marquez, M.; Thorsen, T., High-Density Microfluidic Arrays for Cell Cytotoxicity Analysis. Lab Chip 2007, 7 (6), 740-745. 9. Zhou, J.; Ellis, A. V.; Voelcker, N. H., Recent Developments in Pdms Surface Modification for Microfluidic Devices. Electrophoresis 2010, 31 (1), 2-16. 10. Rumens, C. V.; Ziai, M. A.; Belsey, K. E.; Batchelor, J. C.; Holder, S. J., Swelling of Pdms Networks in Solvent Vapours; Applications for Passive Rfid Wireless Sensors. J. Mater. Chem. C 2015, 3 (39), 10091-10098. 11. Wawrzyniak, P.; Rogacki, G.; Pruba, J.; Bartczak, Z., Diffusion of Ethanol–Carbon Dioxide in Silica Gel. J. Non-Cryst. Solids 1998, 225, 86-90. 12. Persson, L. B.; Morrison, G. M.; Friemann, J.-U.; Kingston, J.; Mills, G.; Greenwood, R., Diffusional Behaviour of Metals in a Passive Sampling System for Monitoring Aquatic Pollution. J. Environ. Monit. 2001, 3 (6), 639-645. 13. Si, G.; Yang, W.; Bi, S.; Luo, C.; Ouyang, Q., A Parallel Diffusion-Based Microfluidic Device for Bacterial Chemotaxis Analysis. Lab Chip 2012, 12 (7), 1389-1394. 14. Regehr, K. J.; Domenech, M.; Koepsel, J. T.; Carver, K. C.; Ellison-Zelski, S. J.; Murphy, W. L.; Schuler, L. A.; Alarid, E. T.; Beebe, D. J., Biological Implications of Polydimethylsiloxane-Based Microfluidic Cell Culture. Lab Chip 2009, 9 (15), 2132-2139. 15. Toepke, M. W.; Beebe, D. J., Pdms Absorption of Small Molecules and Consequences in Microfluidic Applications. Lab Chip 2006, 6 (12), 1484-1486. 16. Lee, J. N.; Park, C.; Whitesides, G. M., Solvent Compatibility of Poly (Dimethylsiloxane)-Based Microfluidic Devices. Anal. Chem. 2003, 75 (23), 6544-6554. 17. Tan, S. H.; Nguyen, N.-T.; Chua, Y. C.; Kang, T. G., Oxygen Plasma Treatment for Reducing Hydrophobicity of a Sealed Polydimethylsiloxane Microchannel. Biomicrofluidics 2010, 4 (3), 32204-32204. 18. Hu, S.; Ren, X.; Bachman, M.; Sims, C. E.; Li, G. P.; Allbritton, N. L., Surface-Directed, Graft Polymerization within Microfluidic Channels. Anal. Chem. 2004, 76 (7), 1865-1870. 19. Kim, B.-Y.; Hong, L.-Y.; Chung, Y.-M.; Kim, D.-P.; Lee, C.-S., Solvent-Resistant Pdms Microfluidic Devices with Hybrid Inorganic/Organic Polymer Coatings. Adv. Funct. Mater. 2009, 19 (23), 3796-3803. 20. Lee, D.; Yang, S., Surface Modification of Pdms by Atmospheric-Pressure Plasma-Enhanced Chemical Vapor Deposition and Analysis of Long-Lasting Surface Hydrophilicity. Sens. Actuators, B 2012, 162 (1), 425-434. 21. Bax, D. V.; Kondyurin, A.; Waterhouse, A.; McKenzie, D. R.; Weiss, A. S.; Bilek, M. M. M., Surface Plasma Modification and Tropoelastin Coating of a Polyurethane Co-Polymer for Enhanced Cell Attachment and Reduced Thrombogenicity. Biomaterials 2014, 35 (25), 6797-6809. 22. Gevers, L. E. M.; Vankelecom, I. F. J.; Jacobs, P. A., Solvent-Resistant Nanofiltration with Filled Polydimethylsiloxane (Pdms) Membranes. J. Membr. Sci. 2006, 278 (1-2), 199-204. 23. Rusina, T. P.; Smedes, F.; Klanova, J., Diffusion Coefficients of Polychlorinated Biphenyls and Polycyclic Aromatic Hydrocarbons in Polydimethylsiloxane and Low‐Density Polyethylene Polymers. J. Appl. Polym. Sci. 2010, 116 (3), 1803-1810. 24. Karlsson, O.; Stubbs, J.; Karlsson, L.; Sundberg, D., Estimating Diffusion Coefficients for Small Molecules in Polymers and Polymer Solutions. Polymer 2001, 42 (11), 4915-4923. 25. Seethapathy, S.; Gorecki, T., Applications of Polydimethylsiloxane in Analytical Chemistry: A Review. Anal. Chim. Acta 2012, 750, 48-62. 26. Choi, S.-J.; Kwon, T.-H.; Im, H.; Moon, D.-I.; Baek, D. J.; Seol, M.-L.; Duarte, J. P.; Choi, Y.-K., A Polydimethylsiloxane (Pdms) Sponge for the Selective Absorption of Oil from Water. ACS Appl. Mater. Interfaces 2011, 3 (12), 4552-4556. 27. Adiraj Iyer, M.; Eddington, D. T., Storing and Releasing Rhodamine as a Model Hydrophobic Compound in Polydimethylsiloxane Microfluidic Devices. Lab Chip 2019, 19 (4), 574-579. 28. Kim, J.; Conway, A.; Chauhan, A., Extended Delivery of Ophthalmic Drugs by Silicone Hydrogel Contact Lenses. Biomaterials 2008, 29 (14), 2259-2269. 29. Gential, G. P.; Ho, N. I.; Chiodo, F.; Meeuwenoord, N.; Ossendorp, F.; Overkleeft, H. S.; van der Marel, G. A.; Filippov, D. V., Synthesis and Evaluation of Fluorescent Pam3cys Peptide Conjugates. Bioorg Med Chem Lett 2016, 26 (15), 3641-3645. 30. Ren, X.; El-Sagheer, A. H.; Brown, T., Azide and Trans-Cyclooctene Dutps: Incorporation into DNA Probes and Fluorescent Click-Labelling. Analyst 2015, 140 (8), 2671-2678. 31. Dadfar, S. M. M.; Sekula-Neuner, S.; Bog, U.; Trouillet, V.; Hirtz, M., Site-Specific Surface Functionalization Via Microchannel Cantilever Spotting (Microcs): Comparison between Azide-Alkyne and Thiol-Alkyne Click Chemistry Reactions. Small 2018, 14 (21), e1800131. 32. Philibert, J., One and a Half Century of Diffusion: Fick, Einstein, before and Beyond. Diffusion Fundamentals 2005, 2, 1.1-1.10. 33. Qian, H., Thermodynamics of the General Diffusion Process: Equilibrium Supercurrent and Nonequilibrium Driven Circulation with Dissipation. The European Physical Journal Special Topics 2015, 224 (5), 781-799. 34. Reichardt, C.; Welton, T., Solvents and Solvent Effects in Organic Chemistry. John Wiley Sons: 2011. 35. Hayat, T.; Ullah, I.; Waqas, M.; Alsaedi, A., Attributes of Activation Energy and Exponential Based Heat Source in Flow of Carreau Fluid with Cross-Diffusion Effects. J. Non-Equilib. Thermodyn. 2019, 44 (2), 203-213. 36. Atkins, P.; De Paula, J., Physical Chemistry for the Life Sciences. Oxford University Press, USA: 2011. 37. Ruhemann, S., Ccxii.—Triketohydrindene Hydrate. J. Chem. Soc. 1910, 97 (0), 2025-2031. 38. Ojuroye, O.; Torah, R.; Beeby, S., Modified Pdms Packaging of Sensory E-Textile Circuit Microsystems for Improved Robustness with Washing. Microsyst. Technol. 2019. 39. Gouda, M. A.; Berghot, M. A.; Elattar, K. M.; Abd El Galil, M. K., Chemistry of Dibenzobarallene. Turk. J. Chem. 2011, 35 (5), 663-697. 40. Mayer, P.; Vaes, W. H. J.; Hermens, J. L. M., Absorption of Hydrophobic Compounds into the Poly(Dimethylsiloxane) Coating of Solid-Phase Microextraction Fibers:  High Partition Coefficients and Fluorescence Microscopy Images. Anal. Chem. 2000, 72 (3), 459-464. 41. Sharma, S.; Debenedetti, P. G., Evaporation Rate of Water in Hydrophobic Confinement. Proc. Natl. Acad. Sci. USA 2012, 109 (12), 4365-4370. 42. Bankura, K. P.; Maity, D.; Mollick, M. M. R.; Mondal, D.; Bhowmick, B.; Bain, M. K.; Chakraborty, A.; Sarkar, J.; Acharya, K.; Chattopadhyay, D., Synthesis, Characterization and Antimicrobial Activity of Dextran Stabilized Silver Nanoparticles in Aqueous Medium. Carbohydr. Polym. 2012, 89 (4), 1159-1165. 43. Pan, C. F.; Dong, L.; Zhu, G.; Niu, S. M.; Yu, R. M.; Yang, Q.; Liu, Y.; Wang, Z. L., High-Resolution Electroluminescent Imaging of Pressure Distribution Using a Piezoelectric Nanowire Led Array. Nat. Photonics 2013, 7 (9), 752-758. 44. Persano, L.; Dagdeviren, C.; Su, Y. W.; Zhang, Y. H.; Girardo, S.; Pisignano, D.; Huang, Y. G.; Rogers, J. A., High Performance Piezoelectric Devices Based on Aligned Arrays of Nanofibers of Poly(Vinylidenefluoride-Co-Trifluoroethylene). Nat. Commun. 2013, 4. 45. Chun, J.; Lee, K. Y.; Kang, C. Y.; Kim, M. W.; Kim, S. W.; Baik, J. M., Embossed Hollow Hemisphere-Based Piezoelectric Nanogenerator and Highly Responsive Pressure Sensor. Adv. Funct. Mater. 2014, 24 (14), 2038-2043. 46. Lee, J. H.; Yoon, H. J.; Kim, T. Y.; Gupta, M. K.; Lee, J. H.; Seung, W.; Ryu, H.; Kim, S. W., Micropatterned P(Vdf-Trfe) Film-Based Piezoelectric Nanogenerators for Highly Sensitive Self-Powered Pressure Sensors. Adv. Funct. Mater. 2015, 25 (21), 3203-3209. 47. Dong, W. T.; Xiao, L.; Hu, W.; Zhu, C.; Huang, Y. A.; Yin, Z. P., Wearable Human-Machine Interface Based on Pvdf Piezoelectric Sensor. T I Meas Control. 2017, 39 (4), 398-403. 48. Pan, C.; Dong, L.; Zhu, G.; Niu, S.; Yu, R.; Yang, Q.; Liu, Y.; Wang, Z. L., High-Resolution Electroluminescent Imaging of Pressure Distribution Using a Piezoelectric Nanowire Led Array. Nature Photonics 2013, 7 (9), 752-758. 49. Mannsfeld, S. C. B.; Tee, B. C. K.; Stoltenberg, R. M.; Chen, C. V. H. H.; Barman, S.; Muir, B. V. O.; Sokolov, A. N.; Reese, C.; Bao, Z. N., Highly Sensitive Flexible Pressure Sensors with Microstructured Rubber Dielectric Layers. Nat. Mater. 2010, 9 (10), 859-864. 50. Lee, J.; Kwon, H.; Seo, J.; Shin, S.; Koo, J. H.; Pang, C.; Son, S.; Kim, J. H.; Jang, Y. H.; Kim, D. E.; Lee, T., Conductive Fiber-Based Ultrasensitive Textile Pressure Sensor for Wearable Electronics. Adv. Mater. 2015, 27 (15), 2433-2439. 51. Davidovikj, D.; Scheepers, P. H.; van der Zant, H. S. J.; Steeneken, P. G., Static Capacitive Pressure Sensing Using a Single Graphene Drum. ACS Appl. Mater. Interfaces 2017, 9 (49), 43205-43210. 52. Lei, Z. Y.; Wang, Q. K.; Sun, S. T.; Zhu, W. C.; Wu, P. Y., A Bioinspired Mineral Hydrogel as a Self-Healable, Mechanically Adaptable Ionic Skin for Highly Sensitive Pressure Sensing. Adv. Mater. 2017, 29 (22). 53. Shuai, X. T.; Zhu, P. L.; Zeng, W. J.; Hu, Y. G.; Liang, X. W.; Zhang, Y.; Sun, R.; Wong, C. P., Highly Sensitive Flexible Pressure Sensor Based on Silver Nanowires-Embedded Polydimethylsiloxane Electrode with Microarray Structure. ACS Appl. Mater. Interfaces 2017, 9 (31), 26314-26324. 54. He, Z. F.; Chen, W. J.; Liang, B. H.; Liu, C. Y.; Yang, L. L.; Lu, D. W.; Mo, Z. C.; Zhu, H.; Tang, Z. K.; Gui, X. C., Capacitive Pressure Sensor with High Sensitivity and Fast Response to Dynamic Interaction Based on Graphene and Porous Nylon Networks. ACS Appl. Mater. Interfaces 2018, 10 (15), 12816-12823. 55. Rinaldi, A.; Tamburrano, A.; Fortunato, M.; Sarto, M. S., A Flexible and Highly Sensitive Pressure Sensor Based on a Pdms Foam Coated with Graphene Nanoplatelets. Sensors 2016, 16 (12). 56. Zhan, Z. Y.; Lin, R. Z.; Tran, V. T.; An, J. N.; Wei, Y. F.; Du, H. J.; Tran, T.; Lu, W., Paper/Carbon Nanotube-Based Wearable Pressure Sensor for Physiological Signal Acquisition and Soft Robotic Skin. ACS Appl. Mater. Interfaces 2017, 9 (43), 37921-37928. 57. Huang, J. X.; Wang, J. Q.; Yang, Z. G.; Yang, S. R., High-Performance Graphene Sponges Reinforced with Polyimide for Room-Temperature Piezoresistive Sensing. ACS Appl. Mater. Interfaces 2018, 10 (9), 8180-8189. 58. Yu, L. T.; Yeo, J. C.; Soon, R. H.; Yeo, T.; Lee, H. H.; Lim, C. T., Highly Stretchable, Weavable, and Washable Piezoresistive Microfiber Sensors. ACS Appl. Mater. Interfaces 2018, 10 (15), 12773-12780. 59. Zhang, H.; Liu, N. S.; Shi, Y. L.; Liu, W. J.; Yue, Y.; Wang, S. L.; Ma, Y. N.; Wen, L.; Li, L. Y.; Long, F.; Zou, Z. G.; Gao, Y. H., Piezoresistive Sensor with High Elasticity Based on 3d Hybrid Network of Sponge@Cnts@Ag Nps. ACS Appl. Mater. Interfaces 2016, 8 (34), 22374-22381. 60. Zheng, M.; Xie, Z.; Qu, D.; Li, D.; Du, P.; Jing, X.; Sun, Z., On-Off-on Fluorescent Carbon Dot Nanosensor for Recognition of Chromium(Vi) and Ascorbic Acid Based on the Inner Filter Effect. ACS Appl. Mater. Interfaces 2013, 5 (24), 13242-13247. 61. Park, S. Y.; Lee, H. U.; Park, E. S.; Lee, S. C.; Lee, J. W.; Jeong, S. W.; Kim, C. H.; Lee, Y. C.; Huh, Y. S.; Lee, J., Photoluminescent Green Carbon Nanodots from Food-Waste-Derived Sources: Large-Scale Synthesis, Properties, and Biomedical Applications. ACS Appl. Mater. Interfaces 2014, 6 (5), 3365-3370. 62. Cao, L.; Wang, X.; Meziani, M. J.; Lu, F.; Wang, H.; Luo, P. G.; Lin, Y.; Harruff, B. A.; Veca, L. M.; Murray, D.; Xie, S. Y.; Sun, Y. P., Carbon Dots for Multiphoton Bioimaging. J. Am. Chem. Soc. 2007, 129 (37), 11318-11319. 63. Xu, X.; Zhang, K.; Zhao, L.; Li, C.; Bu, W.; Shen, Y.; Gu, Z.; Chang, B.; Zheng, C.; Lin, C.; Sun, H.; Yang, B., Aspirin-Based Carbon Dots, a Good Biocompatibility of Material Applied for Bioimaging and Anti-Inflammation. ACS Appl. Mater. Interfaces 2016, 8 (48), 32706-32716. 64. Wang, Q. L.; Huang, X. X.; Long, Y. J.; Wang, X. L.; Zhang, H. J.; Zhu, R.; Liang, L. P.; Teng, P.; Zheng, H. Z., Hollow Luminescent Carbon Dots for Drug Delivery. Carbon 2013, 59, 192-199. 65. Wang, F.; Chen, Y. H.; Liu, C. Y.; Ma, D. G., White Light-Emitting Devices Based on Carbon Dots' Electroluminescence. Chem. Commun. (Camb.) 2011, 47 (12), 3502-3504. 66. Zhu, C.; Zhai, J.; Dong, S., Bifunctional Fluorescent Carbon Nanodots: Green Synthesis Via Soy Milk and Application as Metal-Free Electrocatalysts for Oxygen Reduction. Chem. Commun. (Camb.) 2012, 48 (75), 9367-9369. 67. Li, H.; Liu, R.; Lian, S.; Liu, Y.; Huang, H.; Kang, Z., Near-Infrared Light Controlled Photocatalytic Activity of Carbon Quantum Dots for Highly Selective Oxidation Reaction. Nanoscale 2013, 5 (8), 3289-3297. 68. Madsen, F.; Daugaard, A. E.; Fleury, C.; Hvilsted, S.; Skov, A. L., Visualisation and Characterisation of Heterogeneous Bimodal Pdms Networks. RSC Advances 2014, 4 (14), 6939-6945.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82370-
dc.description.abstract一般來說,為了達成操作方便、快速反應及均勻混合的目標,化學反應多數在液相或氣相環境中進行。然而,在液相或氣相環境中進行的化學反應通常都需 要經過進一步的純化或過濾來區分產物及未反應之前驅物,而繁瑣的步驟將造 成產物的消耗並降低產率。這篇研究提出在類固態基材中進行化學反應,由於類 固態基材具有相較液相或氣相更侷限的空間,反應物更容易累積在特定位置,這 些條件都使類固態基材中局部濃度提升,近一步增加有效碰撞的機率,並因此使 反應速率提升。而由於類固態基材中分子移動的自由度不如液相或氣相環境,而 因此在類固態基材中分子的擴散速率相對化學反應速率慢,因此未反應的前驅 物能和反應完成之產物分離,避免一般液相或氣相反應所需的繁瑣純化步驟。由 於類固態基材具有增加反應速率的優勢且避免了液相或氣相反應的分離純化步 驟,使在類固態基材中進行化學反應成為一個具有競爭性的選項。zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-25T07:29:52Z (GMT). No. of bitstreams: 1
U0001-2106202120583900.pdf: 7263611 bytes, checksum: 2781880bb3235eb34c022306b52ed9e7 (MD5)
Previous issue date: 2021
en
dc.description.tableofcontentsChapter 1. Introduction 1 1.1 Motivation 1 1.2 Significance of the Study 1 1.3 Background Research 2 Chapter 2. Experiment Section 12 2.1 Materials and Reagents. 12 2.2 Instruments and Equipment. 12 2.3 Preparation of PDMS Cubes. 13 2.4 Molecular Diffusion Behavior Monitoring in PDMS. 13 2.5 Non-Reactive Multi-Component Mixing Effects. 14 2.6 Efficient Chemical Reactions in PDMS. 14 2.7 Reaction Rates Comparison between Pseudo-Solid and Liquid Phase Operations. 15 2.8 Reaction Rate Facilitation Mechanism Understanding. 16 2.9 Chemical Reactions with Simultaneous Product Separation. 16 Chapter 3. Discussion 18 3.1 Methodology 18 3.2 Examination of Different Factors to the Molecular Diffusion Behavior in the Pseudo Solid Phase 22 3.3 Diffusing Driven Mixing Event with Different Chemical Reaction Demonstration 30 3.4 Mechanism Detection of the Increasing Reaction Rate in the Pseudo Solid Phase 40 Chapter 4. Conclusion 55 Chapter 5. Future Perspective 57 Chapter 6. References 60 Chapter 7. Appendix 71 7.1 Ninhydrin Reaction 71 7.2 Diels-Alder Reaction 71 7.3 Aldol Condensation 72 7.4 Click Chemistry 72 7.5 Pdms Cross-Linking 74
dc.language.isoen
dc.title利用擬固體空間限制調控化學反應進程zh_TW
dc.titleManipulating Chemical Processes by Pseudo-Solid Spatial Limitationen
dc.date.schoolyear109-2
dc.description.degree碩士
dc.contributor.author-orcid0000-0003-3331-0980
dc.contributor.oralexamcommittee陳浩銘 (Hsin-Tsai Liu),詹益慈(Chih-Yang Tseng),張煥宗,王宗興
dc.subject.keyword擴散,空間侷限,反應速率,分離,擬固態機材,zh_TW
dc.subject.keywordDiffusion,Spatial limitation,Pseudo-solid phase,Separation,Reaction rate,en
dc.relation.page74
dc.identifier.doi10.6342/NTU202101086
dc.rights.note同意授權(全球公開)
dc.date.accepted2021-07-01
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept化學研究所zh_TW
dc.date.embargo-lift2024-07-01-
顯示於系所單位:化學系

文件中的檔案:
檔案 大小格式 
U0001-2106202120583900.pdf7.09 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved