請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82340
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 吳信志 | zh_TW |
dc.contributor.advisor | Shinn-Chih Wu | en |
dc.contributor.author | 郭佶鑫 | zh_TW |
dc.contributor.author | JI-SHIN KUO | en |
dc.date.accessioned | 2022-11-25T07:29:26Z | - |
dc.date.available | 2025-01-25 | - |
dc.date.copyright | 2022-02-18 | - |
dc.date.issued | 2022 | - |
dc.date.submitted | 2002-01-01 | - |
dc.identifier.citation | Aiello, D., Patel, K. & Lasagna, E. 2018. The myostatin gene: an overview of mechanisms of action and its relevance to livestock animals. Animal Genetics, 49, 505-519.
Anderson, S. B., Goldberg, A. L. & Whitman, M. 2008. Identification of a novel pool of extracellular pro-myostatin in skeletal muscle. Journal of Biological Chemistry, 283, 7027-7035. Aversa, Z., Bonetto, A., Penna, F., Costelli, P., Di Rienzo, G., Lacitignola, A., Baccino, F. M., Ziparo, V., Mercantini, P. & Fanelli, F. R. 2012. Changes in myostatin signaling in non-weight-losing cancer patients. Annals of Surgical Oncology, 19, 1350-1356. Barrangou, R., Fremaux, C., Deveau, H., Richards, M., Boyaval, P., Moineau, S., Romero, D. A. & Horvath, P. 2007. CRISPR provides acquired resistance against viruses in prokaryotes. Science, 315, 1709-1712. Baumann, A., Ibebunjo, C., Grasser, W. & Paralkar, V. 2003. Myostatin expression in age and denervation-induced skeletal muscle atrophy. Journal of Musculoskeletal and Neuronal Interactions, 3, 8-16. Bialek, P., Parkington, J., Li, X., Gavin, D., Wallace, C., Zhang, J., Root, A., Yan, G., Warner, L. & Seeherman, H. 2014. A myostatin and activin decoy receptor enhances bone formation in mice. Bone, 60, 162-171. Boch, J., Scholze, H., Schornack, S., Landgraf, A., Hahn, S., Kay, S., Lahaye, T., Nickstadt, A. & Bonas, U. 2009. Breaking the code of DNA binding specificity of TAL-type III effectors. Science, 326, 1509-1512. Bolotin, A., Quinquis, B., Sorokin, A. & Ehrlich, S. D. 2005. Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology, 151, 2551-2561. Campbell, C., McMillan, H. J., Mah, J. K., Tarnopolsky, M., Selby, K., McClure, T., Wilson, D. M., Sherman, M. L., Escolar, D. & Attie, K. M. 2017. Myostatin inhibitor ACE‐031 treatment of ambulatory boys with Duchenne muscular dystrophy: results of a randomized, placebo‐controlled clinical trial. Muscle & Nerve, 55, 458-464. Cash, J. N., Angerman, E. B., Kattamuri, C., Nolan, K., Zhao, H., Sidis, Y., Keutmann, H. T. & Thompson, T. B. 2012. Structure of myostatin· follistatin-like 3: N-terminal domains of follistatin-type molecules exhibit alternate modes of binding. Journal of Biological Chemistry, 287, 1043-1053. Chapman, J. R., Taylor, M. R. & Boulton, S. J. 2012. Playing the end game: DNA double-strand break repair pathway choice. Molecular Cell, 47, 497-510. Clop, A., Marcq, F., Takeda, H., Pirottin, D., Tordoir, X., Bibé, B., Bouix, J., Caiment, F., Elsen, J.-M. & Eychenne, F. 2006. A mutation creating a potential illegitimate microRNA target site in the myostatin gene affects muscularity in sheep. Nature Genetics, 38, 813-818. Crispo, M., Mulet, A., Tesson, L., Barrera, N., Cuadro, F., dos Santos-Neto, P., Nguyen, T., Crénéguy, A., Brusselle, L. & Anegón, I. 2015. Efficient generation of myostatin knock-out sheep using CRISPR/Cas9 technology and microinjection into zygotes. PLoS One, 10, e0136690. Cruz-Jentoft, A. J., Bahat, G., Bauer, J., Boirie, Y., Bruyère, O., Cederholm, T., Cooper, C., Landi, F., Rolland, Y. & Sayer, A. A. 2019. Sarcopenia: revised European consensus on definition and diagnosis. Age and Ageing, 48, 16-31. D'Orlando, C., Marzetti, E., François, S., Lorenzi, M., Conti, V., Di Stasio, E., Rosa, F., Brunelli, S., Doglietto, G. B. & Pacelli, F. 2014. Gastric cancer does not affect the expression of atrophy‐related genes in human skeletal muscle. Muscle & Nerve, 49, 528-533. Dennis, R. A., Przybyla, B., Gurley, C., Kortebein, P. M., Simpson, P., Sullivan, D. H. & Peterson, C. A. 2008. Aging alters gene expression of growth and remodeling factors in human skeletal muscle both at rest and in response to acute resistance exercise. Physiological Genomics, 32, 393-400. Elkina, Y., von Haehling, S., Anker, S. D. & Springer, J. 2011. The role of myostatin in muscle wasting: an overview. Journal of Cachexia, Sarcopenia and Muscle, 2, 143-151. Gasiunas, G., Barrangou, R., Horvath, P. & Siksnys, V. 2012. Cas9–crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proceedings of the National Academy of Sciences,USA. 109, E2579-E2586. Grobet, L., Martin, L. J., Poncelet, D., Pirottin, D., Brouwers, B., Riquet, J., Schoeberlein, A., Dunner, S., Menissier, F., Massabanda, J., Fries, R., Hanset, R. & Georges, M. 1997. A deletion in the bovine myostatin gene causes the double-muscled phenotype in cattle. Nature Genetics, 17, 71-4. Hanset, R. & Michaux, C. 1985. On the genetic determinism of muscular hypertrophy in the Belgian White and Blue cattle breed I. Experimental Data. Génétique Sélection Evolution, 17, 359-368. He, Z., Zhang, T., Jiang, L., Zhou, M., Wu, D., Mei, J. & Cheng, Y. 2018. Use of CRISPR/Cas9 technology efficiently targetted goat myostatin through zygotes microinjection resulting in double-muscled phenotype in goats. Bioscience Reports, 38. Hoogaars, W. M. & Jaspers, R. T. 2018. Past, present, and future perspective of targeting myostatin and related signaling pathways to counteract muscle atrophy. Muscle Atrophy. Springer, 1038, 153-206. Huang, Z., Chen, D., Zhang, K., Yu, B., Chen, X. & Meng, J. 2007. Regulation of myostatin signaling by c-Jun N-terminal kinase in C2C12 cells. Cellular Signalling, 19, 2286-2295. Huang, Z., Chen, X. & Chen, D. 2011. Myostatin: a novel insight into its role in metabolism, signal pathways, and expression regulation. Cellular Signalling, 23, 1441-1446. Inui, M., Miyado, M., Igarashi, M., Tamano, M., Kubo, A., Yamashita, S., Asahara, H., Fukami, M. & Takada, S. 2014. Rapid generation of mouse models with defined point mutations by the CRISPR/Cas9 system. Scientific Reports, 4, 1-8. Ishino, Y., Shinagawa, H., Makino, K., Amemura, M. & Nakata, A. 1987. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. Journal of Bacteriology, 169, 5429-5433. Janik, E., Niemcewicz, M., Ceremuga, M., Krzowski, L., Saluk-Bijak, J. & Bijak, M. 2020. Various Aspects of a Gene Editing System—CRISPR–Cas9. International Journal of Molecular Sciences, 21, 9604. Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J. A. & Charpentier, E. 2012. A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity. Science, 337, 816-821. Ju, C.-R. & Chen, R.-C. 2012. Serum myostatin levels and skeletal muscle wasting in chronic obstructive pulmonary disease. Respiratory Medicine, 106, 102-108. Ko, I. G., Jeong, J. W., Kim, Y. H., Jee, Y. S., Kim, S. E., Kim, S. H., Jin, J. J., Kim, C. J. & Chung, K. J. 2014. Aerobic exercise affects myostatin expression in aged rat skeletal muscles: a possibility of antiaging effects of aerobic exercise related with pelvic floor muscle and urethral rhabdosphincter. International Neurourology Journal, 18, 77. Kouranova, E., Forbes, K., Zhao, G., Warren, J., Bartels, A., Wu, Y. & Cui, X. 2016. CRISPRs for optimal targeting: delivery of CRISPR components as DNA, RNA, and protein into cultured cells and single-cell embryos. Human Gene Therapy, 27, 464-475. Léger, B., Derave, W., De Bock, K., Hespel, P. & Russell, A. P. 2008. Human sarcopenia reveals an increase in SOCS-3 and myostatin and a reduced efficiency of Akt phosphorylation. Rejuvenation Research, 11, 163-175B. Latt, S. A. 1981. Sister chromatid exchange formation. Annual Review of Genetics, 15, 11-53. Lee, S.-J. 2021. Targeting the myostatin signaling pathway to treat muscle loss and metabolic dysfunction. Journal of Clinical Investigation, 131, e148372. Lee, S. J. 2008. Genetic analysis of the role of proteolysis in the activation of latent myostatin. PLoS One, 3, e1628. Leymaster, K. & Jenkins, T. 1993. Comparison of Texel-and Suffolk-sired crossbred lambs for survival, growth, and compositional traits. Journal of Animal Science, 71, 859-869. Luo, Z. B., Luo, Q. R., Xuan, M. F., Han, S. Z., Wang, J. X., Guo, Q., Choe, Y.-G., Jin, S. S., Kang, J. D. & Yin, X. J. 2019. Comparison of internal organs between myostatin mutant and wild‐type piglets. Journal of the Science of Food and Agriculture, 99, 6788-6795. Lv, Q., Yuan, L., Deng, J., Chen, M., Wang, Y., Zeng, J., Li, Z. & Lai, L. 2016. Efficient generation of myostatin gene mutated rabbit by CRISPR/Cas9. Scientific Reports, 6, 1-8. Marcell, T. J., Harman, S. M., Urban, R. J., Metz, D. D., Rodgers, B. D. & Blackman, M. R. 2001. Comparison of GH, IGF-I, and testosterone with mRNA of receptors and myostatin in skeletal muscle in older men. American Journal of Physiology-Endocrinology and Metabolism, 281, E1159-E1164. McCroskery, S., Thomas, M., Maxwell, L., Sharma, M. & Kambadur, R. 2003. Myostatin negatively regulates satellite cell activation and self-renewal. Journal of Cell Biology, 162, 1135-1147. McKay, B. R., Ogborn, D. I., Bellamy, L. M., Tarnopolsky, M. A. & Parise, G. 2012. Myostatin is associated with age‐related human muscle stem cell dysfunction. The FASEB Journal, 26, 2509-2521. McPherron, A. C. & Lee, S.-J. 1997. Double muscling in cattle due to mutations in the myostatin gene. Proceedings of the National Academy of Sciences,USA. 94, 12457-12461. Miller, J., McLachlan, A. & Klug, A. 1985. Repetitive zinc‐binding domains in the protein transcription factor IIIA from Xenopus oocytes. The EMBO Journal, 4, 1609-1614. Mirhoseini, S. Z. & Zare, J. 2012. The role of myostatin on growth and carcass traits and its application in animal breeding. Life Science Journal, 9, 2353-2357. Mojica, F. J., García-Martínez, J. & Soria, E. 2005. Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. Journal of Molecular Evolution, 60, 174-182. Morissette, M. R., Stricker, J. C., Rosenberg, M. A., Buranasombati, C., Levitan, E. B., Mittleman, M. A. & Rosenzweig, A. 2009. Effects of myostatin deletion in aging mice. Aging Cell, 8, 573-583. Moscou, M. J. & Bogdanove, A. J. 2009. A simple cipher governs DNA recognition by TAL effectors. Science, 326, 1501-1501. Mosher, D. S., Quignon, P., Bustamante, C. D., Sutter, N. B., Mellersh, C. S., Parker, H. G. & Ostrander, E. A. 2007. A mutation in the myostatin gene increases muscle mass and enhances racing performance in heterozygote dogs. PLoS Genetics, 3, e79. Murphy, K. T., Koopman, R., Naim, T., Léger, B., Trieu, J., Ibebunjo, C. & Lynch, G. S. 2010. Antibody‐directed myostatin inhibition in 21‐mo‐old mice reveals novel roles for myostatin signaling in skeletal muscle structure and function. The FASEB Journal, 24, 4433-4442. Ni, J. & Zhang, L. 2020. Cancer cachexia: Definition, staging, and emerging treatments. Cancer Management and Research, 12, 5597. Pabo, C. O., Peisach, E. & Grant, R. A. 2001. Design and selection of novel Cys2His2 zinc finger proteins. Annual Review of Biochemistry, 70, 313-340. Palmiter, R. D., Brinster, R. L., Hammer, R. E., Trumbauer, M. E., Rosenfeld, M. G., Birnberg, N. C. & Evans, R. M. 1982. Dramatic growth of mice that develop from eggs microinjected with metallothionein–growth hormone fusion genes. Nature, 300, 611-615. Paquet, D., Kwart, D., Chen, A., Sproul, A., Jacob, S., Teo, S., Olsen, K. M., Gregg, A., Noggle, S. & Tessier-Lavigne, M. 2016. Efficient introduction of specific homozygous and heterozygous mutations using CRISPR/Cas9. Nature, 533, 125-129. Philip, B., Lu, Z. & Gao, Y. 2005. Regulation of GDF-8 signaling by the p38 MAPK. Cellular Signalling, 17, 365-375. Proudfoot, C., Carlson, D. F., Huddart, R., Long, C. R., Pryor, J. H., King, T. J., Lillico, S. G., Mileham, A. J., McLaren, D. G. & Whitelaw, C. B. A. 2015. Genome edited sheep and cattle. Transgenic Research, 24, 147-153. Qian, L., Tang, M., Yang, J., Wang, Q., Cai, C., Jiang, S., Li, H., Jiang, K., Gao, P. & Ma, D. 2015. Targeted mutations in myostatin by zinc-finger nucleases result in double-muscled phenotype in Meishan pigs. Scientific Reports, 5, 1-13. Sakuma, K. & Yamaguchi, A. 2012. Sarcopenia and cachexia: the adaptations of negative regulators of skeletal muscle mass. Journal of Cachexia, Sarcopenia and Muscle, 3, 77-94. Scherer, S. & Davis, R. W. 1979. Replacement of chromosome segments with altered DNA sequences constructed in vitro. Proceedings of the National Academy of Sciences,USA. 76, 4951-4955. Schuelke, M., Wagner, K. R., Stolz, L. E., Hübner, C., Riebel, T., Kömen, W., Braun, T., Tobin, J. F. & Lee, S.-J. 2004. Myostatin mutation associated with gross muscle hypertrophy in a child. New England Journal of Medicine, 350, 2682-2688. Shan, T., Liang, X., Bi, P. & Kuang, S. 2013. Myostatin knockout drives browning of white adipose tissue through activating the AMPK‐PGC1α‐Fndc5 pathway in muscle. The FASEB Journal, 27, 1981-1989. Siriett, V., Salerno, M. S., Berry, C., Nicholas, G., Bower, R., Kambadur, R. & Sharma, M. 2007. Antagonism of myostatin enhances muscle regeneration during sarcopenia. Molecular Therapy, 15, 1463-1470. Suh, J., Kim, N.-K., Lee, S.-H., Eom, J.-H., Lee, Y., Park, J.-C., Woo, K. M., Baek, J.-H., Kim, J.-E. & Ryoo, H.-M. 2020. GDF11 promotes osteogenesis as opposed to MSTN, and follistatin, a MSTN/GDF11 inhibitor, increases muscle mass but weakens bone. Proceedings of the National Academy of Sciences,USA. 117, 4910-4920. Tellam, R. L., Cockett, N. E., Vuocolo, T. & Bidwell, C. A. 2012. Genes contributing to genetic variation of muscling in sheep. Frontiers in Genetics, 3, 164. Thomas, M., Langley, B., Berry, C., Sharma, M., Kirk, S., Bass, J. & Kambadur, R. 2000. Myostatin, a negative regulator of muscle growth, functions by inhibiting myoblast proliferation. Journal of Biological Chemistry, 275, 40235-40243. Verzola, D., Milanesi, S., Viazzi, F., Ansaldo, F., Saio, M., Garibaldi, S., Carta, A., Costigliolo, F., Salvidio, G. & Barisione, C. 2020. Enhanced myostatin expression and signalling promote tubulointerstitial inflammation in diabetic nephropathy. Scientific Reports, 10, 1-13. Wang, K., Ouyang, H., Xie, Z., Yao, C., Guo, N., Li, M., Jiao, H. & Pang, D. 2015a. Efficient generation of myostatin mutations in pigs using the CRISPR/Cas9 system. Scientific Reports, 5, 1-11. Wang, K., Tang, X., Xie, Z., Zou, X., Li, M., Yuan, H., Guo, N., Ouyang, H., Jiao, H. & Pang, D. 2017. CRISPR/Cas9-mediated knockout of myostatin in Chinese indigenous Erhualian pigs. Transgenic Research, 26, 799-805. Wang, X., Yu, H., Lei, A., Zhou, J., Zeng, W., Zhu, H., Dong, Z., Niu, Y., Shi, B. & Cai, B. 2015b. Generation of gene-modified goats targeting MSTN and FGF5 via zygote injection of CRISPR/Cas9 system. Scientific Reports, 5, 1-9. Wegner, J., Albrecht, E., Fiedler, I., Teuscher, F., Papstein, H.-J. & Ender, K. 2000. Growth-and breed-related changes of muscle fiber characteristics in cattle. Journal of Animal Science, 78, 1485-1496. Welle, S., Bhatt, K., Shah, B. & Thornton, C. A. 2002. Insulin-like growth factor-1 and myostatin mRNA expression in muscle: comparison between 62–77 and 21–31 yr old men. Experimental Gerontology, 37, 833-839. Yang, W., Zhang, Y., Li, Y., Wu, Z. & Zhu, D. 2007. Myostatin induces cyclin D1 degradation to cause cell cycle arrest through a phosphatidylinositol 3-kinase/AKT/GSK-3β pathway and is antagonized by insulin-like growth factor 1. Journal of Biological Chemistry, 282, 3799-3808. Youds, J. L. & Boulton, S. J. 2011. The choice in meiosis–defining the factors that influence crossover or non-crossover formation. Journal of CellSscience, 124, 501-513. Zhang, L., Rajan, V., Lin, E., Hu, Z., Han, H., Zhou, X., Song, Y., Min, H., Wang, X. & Du, J. 2011. Pharmacological inhibition of myostatin suppresses systemic inflammation and muscle atrophy in mice with chronic kidney disease. The FASEB Journal, 25, 1653-1663. Zhang, T., Lu, Y., Song, S., Lu, R., Zhou, M., He, Z., Yuan, T., Yan, K. & Cheng, Y. 2019. ‘Double-muscling’and pelvic tilt phenomena in rabbits with the cystine-knot motif deficiency of myostatin on exon 3. Bioscience Reports, 39, BSR20190207. Zhu, X., Hadhazy, M., Wehling, M., Tidball, J. G. & McNally, E. M. 2000. Dominant negative myostatin produces hypertrophy without hyperplasia in muscle. FEBS letters, 474, 71-75. Zimmers, T. A., Davies, M. V., Koniaris, L. G., Haynes, P., Esquela, A. F., Tomkinson, K. N., McPherron, A. C., Wolfman, N. M. & Lee, S.-J. 2002. Induction of Cachexia in Mice by Systemically Administered Myostatin. Science, 296, 1486-1488. Zou, Q., Wang, X., Liu, Y., Ouyang, Z., Long, H., Wei, S., Xin, J., Zhao, B., Lai, S. & Shen, J. 2015. Generation of gene-target dogs using CRISPR/Cas9 system. Journal of Molecular Cell Biology, 7, 580-583. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82340 | - |
dc.description.abstract | 肌肉生長抑制素(myostatin)為乙型轉化生長因子(transforming growth factor beta)蛋白質家族的一員,myostatin 在體內主要功能為骨骼肌的負調控蛋白,當myostatin存在時會抑制肌肉生長。在1997年McPherron等人產製出myostatin null小鼠且發現其骨骼肌含量有明顯增加,此後便有許多對於myostatin應用之研究,例如:抑制myostatin挽救因疾病而造成之肌肉萎縮,或是將動物體之myostatin突變使產肉率增加,但上述之應用方法都有其副作用,因此,本研究擬尋找較溫和之方法抑制myostatin,期能增加myostatin之應用性。本試驗預計將小鼠myostatin之基因進行點突變以產出兩種品系之myostatin基因編輯小鼠,分別為將小鼠myostatin第100個胺基酸由aspartate(D)突變為alanine(A)及第264~267之胺基酸由arginine-serine-arginine-arginine (RSRR)突變為glycine-leucine-aspartate-glycine (GLDG),預期此兩種突變將分別造成myostatin前驅蛋白無法被bmp-1及furin convertase 蛋白酶進行水解使得myostatin 之配體無法產生,而導致myostatin無法活化下游訊號進而造成小鼠肌肉量增加。CRISPR/Cas9基因系統能對目標基因產生雙股斷裂,提供外源基因當作修補斷裂之模板股便可以達到精準之基因編輯,且CRISPR/Cas9設計上較為方便因此被廣泛使用,本試驗首先對候選之sgRNA進行效率分析,選擇最適當之sgRNA進行myostatin基因編輯小鼠產製,利用小鼠胚原核注射的方式將sgRNA、ssodn模板股以及Cas9蛋白注入小鼠之原核,並將存活之胚移置進入假孕母小鼠輸卵管,待仔小鼠生下後進行基因型及表現型鑑定。本試驗成功產製出BMP-1水解點位突變之myostatin基因編輯小鼠,但目前仍只有基因型上之鑑定成功且為異型合子,未來將進行配種、增加小鼠族群數量並且配種出同型合子之小鼠,比較此種myostatin基因編輯小鼠之身體組成及myostatin與野生型小鼠有無差異,以期未來能對疾病所造成肌肉萎縮病人之治療研究提供參考方向,亦可能應用在經濟動物的生產上。 | zh_TW |
dc.description.abstract | Myostatin is a member of the transforming growth factor beta protein family. The main function of myostatin in the body is a negative regulatory protein of skeletal muscle. When myostatin expressed, it can inhibit skeletal muscle growth. In 1997, McPherron et al. produced myostatin null mice and found that their skeletal muscle content increased significantly compared to skeletal muscle content of wild type mouse.
Since then, there have been many studies on the application of myostatin, such as inhibiting myostatin to rescue muscle atrophy caused by disease, or mutate the myostatin in animals to increases the meat production. But the application mentioned above have their side effects. Therefore, this study intends to find a milder method to inhibit myostatin, hoping to increase the applicability of myostatin.This experiment is expected to point-mutated myostatin gene of mouse to produce two strains of myostatin gene-edited mice. One is mutated the 100th amino acid of mouse myostatin from aspartate (D) to alanine (A). The other is mutated the 264~267th amino acid from arginine-serine-arginine-arginine (RSRR) to glycine-leucine-aspartate-glycine (GLDG). Expect that these two mutations would cause the myostatin precursor protein to fail to be hydrolysis by bmp-1 protein and furin convertase, respectively. This would cause less myostatin ligand produced, then the myostatin signal pathway would not be activated causing skeletal muscle content increase in mouse. The CRISPR/Cas9 gene editing system can produce double-strand breaks in the target gene. By providing exogenous genes as template strands to repair the breaks, precise gene editing can be achieved. CRISPR/Cas9 is more convenient in design than previous nuclease and therefore widely used. The candidate sgRNAs would be chosen to test their gene editing efficiency at first. Then chose the appropriate sgRNA to produce myostatin gene edited mice. The sgRNA, ssodn template s and Cas9 protein were injected into the pronucleus of the mouse by pronuclear injection, and the surviving embryos were transferred into the oviducts of pseudopregnant mouse. Genotype and phenotype identification were performed after the newborns were birth. In this experiment, the myostatin BMP-1 hydrolysis site mutation mouse had been produced, but currently only the genotype had been successfully identified and were heterozygous. In the future, need to increase the population of transgenic mouse and breed homozygous mouse. To compare the biological composition of this myostatin gene edited mouse and whether myostatin is different from wild-type mice. Hope it can provide a reference direction for the treatment and research of patients with muscle atrophy caused by diseases, and might also be applied to economic animal in the future. | en |
dc.description.provenance | Made available in DSpace on 2022-11-25T07:29:26Z (GMT). No. of bitstreams: 1 U0001-2401202217342700.pdf: 4605228 bytes, checksum: c8e7af82809d735bac7a89c65e71359c (MD5) Previous issue date: 2022 | en |
dc.description.tableofcontents | 目錄
中文摘要 II Abstract IV 目錄 VI 圖次 VIII 表次 IX 緒論 1 1.文獻探討 2 1.1肌肉生長抑制素 (Myostatin) 2 1.1.1肌肉生長抑制素簡介 2 1.1.2肌肉生長抑制素之分布、生成及修飾 3 1.1.3 肌肉生長抑制素之訊息傳導 7 1.1.4 肌肉生長抑制素對肌肉細胞之影響 10 1.1.5肌肉生長抑制素與肌肉萎縮 12 1.1.6肌肉生長抑制素於其他動物之研究 14 1.1.7抑制肌肉生長抑制素之方法 18 1.1.8 抑制肌肉生長抑制素之負面影響 19 1.2 Crispr/cas9基因編輯技術介紹 20 1.2.1基因編輯簡介 20 1.2.2 CRISPR/Cas9系統介紹 22 1.2.3 CRISPR/Cas9與顯微注射 26 2.研究動機與策略 27 3.材料方法 31 3.1體外試驗 31 3.1.1CRISPR-Cas9 系統表現質體構築 31 3.1.2小鼠肌肉纖維母細胞培養、繼代與保存 32 3.1.3 C2C12細胞轉染試驗 33 3.1.4細胞分選試驗 33 3.1.5 sgRNA 效率分析 34 3.2基因編輯小鼠產製 38 3.2.1 sgRNA 製備 38 3.2.2 Cas9 蛋白 40 3.2.3 ssODN模板備製 40 3.2.4試驗動物 41 3.2.5母鼠超數排卵 41 3.2.6小鼠胚之沖取、培養及操作 42 3.2.7基因型鑑定 44 3.2.8 TA cloning 與定序 44 3.2.9 仔鼠出生率及基因編輯效率分析 45 4.實驗結果與討論 46 4.1 sgRNA效率測定試驗 46 4.2小鼠胚顯微注射之結果 50 5.結論 66 6.參考文獻 68 圖次 圖 1.人類肌肉生長抑制素基因之分子組織示意圖 5 圖 2. 肌肉生長抑制素前驅蛋白質修飾流程。 6 圖 3.肌肉生長抑制素之細胞內活化訊號。 9 圖 4. 肌肉生長抑制素對細胞增生分化之影響 11 圖 5. CRISPR/Cas9 系統作用分子機制。 24 圖 6. sgRNA效率測試流程圖。. 29 圖 7. 基因編輯動物產製流程圖。 30 圖 8. ICE synthego CRISPR/Cas9 分析網站 。 36 圖 9. Ice synthego分析結果,與WT相比無差別之結果 。 37 圖 10. Ice synthego 分析結果,與WT相比有差異之結果。 37 圖 11. C2C12細胞轉染質體30小時後之照片 47 圖 12. 候選sgRNA 與MSTN 基因之相關位置。 48 圖 13. 胚胎存活率測試。 52 圖 14. 05/25 NO.4 MSTN基因編輯小鼠基因型分析。 56 圖 15. 05/25 no.4 基因編輯小鼠之外觀。 57 圖 16. 05/25 no.4 F1 之外觀照片。 57 圖 17. 05/31 no.4 ICE synthego網站基因型分析。 60 圖 18. 利用TA cloning 分析05/31 no.4 基因型。 60 圖 19. 10/11 no.4 ICE synthego網站基因型分析。 63 圖 20. 利用TA cloning 分析10/11 no.4 基因型。 63 圖 21. 10/11 no.4 之外觀照片。 64 圖 22. MSTN基因編輯小鼠藥物開發應用示意圖。 67 表次 表 1. 在牛中肌肉生長抑制素基因發現之多型性 16 表 2. CRISPR/Cas9 、ZFNs及TALENs比較。 25 表 3. 引子名稱與序列表。 35 表 4 ssODN之名稱與序列。. 41 表 5. sgRNA 效率分析(D100A) 49 表 6. sgRNA 效率分析(RSRR) 49 表 7. 基因編輯小鼠效率分析 53 表 8. 基因編輯動物效率分析(D100A組別) 53 表 9. 基因編輯動物效率分析(RSRR) 53 表 10. 基因編輯小鼠基因型概述 54 表 11. 05/25 no.4 f1之基因型 58 表 12. 05/31 NO.4 F1 之基因型。 61 | - |
dc.language.iso | zh_TW | - |
dc.title | 以CRISPR-Cas9 系統產製肌肉生長抑制素基因編輯小鼠 | zh_TW |
dc.title | Generation of myostatin gene edited mouse via CRISPR/Cas9 system | en |
dc.type | Thesis | - |
dc.date.schoolyear | 110-1 | - |
dc.description.degree | 碩士 | - |
dc.contributor.coadvisor | 陳全木 | zh_TW |
dc.contributor.coadvisor | Chuan-Mu Chen | en |
dc.contributor.oralexamcommittee | 陳銘正 | zh_TW |
dc.contributor.oralexamcommittee | Ming-Cheng Chen | en |
dc.subject.keyword | 肌肉生長抑制素,bmp-1,furin convertase,CRISPR/Cas9,顯微注射, | zh_TW |
dc.subject.keyword | myostatin,bmp-1,furin convertase,CRISPR/Cas9,microinjection, | en |
dc.relation.page | 92 | - |
dc.identifier.doi | 10.6342/NTU202200185 | - |
dc.rights.note | 同意授權(全球公開) | - |
dc.date.accepted | 2022-01-27 | - |
dc.contributor.author-college | 生物資源暨農學院 | - |
dc.contributor.author-dept | 動物科學技術學系 | - |
dc.date.embargo-lift | 2025-01-25 | - |
顯示於系所單位: | 動物科學技術學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-110-1.pdf | 4.5 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。