Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82334
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor劉懷勝(Hwai-Shen Liu)
dc.contributor.authorDong-You Wuen
dc.contributor.author吳東祐zh_TW
dc.date.accessioned2022-11-25T07:29:21Z-
dc.date.available2023-07-31
dc.date.copyright2021-08-20
dc.date.issued2021
dc.date.submitted2021-07-27
dc.identifier.citationAbdalla, O., Wahab, M. A., Abdala, A. (2020). Mixed matrix membranes containing aspartic acid functionalized graphene oxide for enhanced oil-water emulsion separation. Journal of Environmental Chemical Engineering, 8(5), 104269. Amemiya, T., Mizuno, S., Yuasa, H., Watanabe, J. (1998). Development of emulsion type new vehicle for soft gelatin capsule. I. Selection of surfactants for development of new vehicle and its physicochemical properties. Chemical and Pharmaceutical Bulletin, 46(2), 309-313. Arslan, O., Aytac, Z., Uyar, T. (2016). Superhydrophobic, hybrid, electrospun cellulose acetate nanofibrous mats for oil/water separation by tailored surface modification. Applied Materials Interfaces, 8(30), 19747-19754. Azeredo, H., Barud, H., Farinas, C. S., Vasconcellos, V. M., Claro, A. M. (2019). Bacterial cellulose as a raw material for food and food packaging applications. Frontiers in Sustainable Food Systems, 3, 7. Azuma, Y., Hosoyama, A., Matsutani, M., Furuya, N., Horikawa, H., Harada, T., . . . Fujita, N. (2009). Whole-genome analyses reveal genetic instability of Acetobacter pasteurianus. Nucleic Acids Research, 37(17), 5768-5783. Brown, A. J. (1886). XLIII.—On an acetic ferment which forms cellulose. Journal of the Chemical Society, Transactions, 49, 432-439. Carman, P. C. (1937). Fluid flow through granular beds. Trans. Inst. Chem. Eng., 15, 150-166. Chakrabarty, B., Ghoshal, A., Purkait, M. (2008). Ultrafiltration of stable oil-in-water emulsion by polysulfone membrane. Journal of Membrane Science, 325(1), 427-437. Czaja, W. K., Young, D. J., Kawecki, M., Brown, R. M. (2007). The future prospects of microbial cellulose in biomedical applications. Biomacromolecules, 8(1), 1-12. Damian, F., Harati, M., Schwartzenhauer, J., Van Cauwenberghe, O., Wettig, S. D. (2021). Challenges of Dissolution Methods Development for Soft Gelatin Capsules. Pharmaceutics, 13(2), 214. Deng, Y., Zhang, G., Bai, R., Shen, S., Zhou, X., Wyman, I. (2019). Fabrication of superhydrophilic and underwater superoleophobic membranes via an in situ crosslinking blend strategy for highly efficient oil/water emulsion separation. Journal of Membrane Science, 569, 60-70. Dennis, A., Farr, S., Kellaway, I., Taylor, G., Davidson, R. (1990). In vivo evaluation of rapid release and sustained release Gelucire capsule formulations. International Journal of Pharmaceutics, 65(1-2), 85-100. Dickhout, J. M., Moreno, J., Biesheuvel, P., Boels, L., Lammertink, R. G., de Vos, W. M. (2017). Produced water treatment by membranes: a review from a colloidal perspective. Journal of Colloid and Interface Science, 487, 523-534. Djekic, L., Jankovic, J., Čalija, B., Primorac, M. (2017). Development of semisolid self-microemulsifying drug delivery systems (SMEDDSs) filled in hard capsules for oral delivery of aciclovir. International Journal of Pharmaceutics, 528(1-2), 372-380. Feng, X., Yu, Z., Long, R., Sun, Y., Wang, M., Li, X., Zeng, G. (2020). Polydopamine intimate contacted two-dimensional/two-dimensional ultrathin nylon basement membrane supported RGO/PDA/MXene composite material for oil-water separation and dye removal. Separation and Purification Technology, 247, 116945. Gadim, T. D., Loureiro, F. J., Vilela, C., Rosero-Navarro, N., Silvestre, A. J., Freire, C. S., Figueiredo, F. M. (2017). Protonic conductivity and fuel cell tests of nanocomposite membranes based on bacterial cellulose. Electrochimica Acta, 233, 52-61. Gao, H., Sun, Q., Han, Z., Li, J., Liao, B., Hu, L., . . . Huang, J. (2020). Comparison of bacterial nanocellulose produced by different strains under static and agitated culture conditions. Carbohydrate Polymers, 227, 115323. Gorgieva, S., Trček, J. (2019). Bacterial cellulose: Production, modification and perspectives in biomedical applications. Nanomaterials, 9(10), 1352. Hamoudi, M., Bourasset, F., Domergue-Dupont, V., Gueutin, C., Nicolas, V., Fattal, E., Bochot, A. (2012). Formulations based on alpha cyclodextrin and soybean oil: an approach to modulate the oral release of lipophilic drugs. Journal of Controlled Release, 161(3), 861-867. Harker, J., Backhurst, J., Richardson, J. (2013). Chemical Engineering Volume 2 (Vol. 2): Elsevier. Hassan, E., Hassan, M., Abou-zeid, R., Berglund, L., Oksman, K. (2017). Use of Bacterial Cellulose and Crosslinked Cellulose Nanofibers Membranes for Removal of Oil from Oil-in-Water Emulsions. Polymers, 9(9). doi:ARTN 38810.3390/polym9090388 He, F., Yang, H., Zeng, L., Hu, H., Hu, C. (2020). Production and characterization of bacterial cellulose obtained by Gluconacetobacter xylinus utilizing the by-products from Baijiu production. Bioprocess and Biosystems Engineering, 43(5), 927-936. Hestrin, S., Schramm, M. (1954). Synthesis of cellulose by Acetobacter xylinum. 2. Preparation of freeze-dried cells capable of polymerizing glucose to cellulose. Biochemical Journal, 58(2), 345. Hong, S. K., Bae, S., Jeon, H., Kim, M., Cho, S. J., Lim, G. (2018). An underwater superoleophobic nanofibrous cellulosic membrane for oil/water separation with high separation flux and high chemical stability. Nanoscale, 10(6), 3037-3045. Jiji, S., Udhayakumar, S., Maharajan, K., Rose, C., Muralidharan, C., Kadirvelu, K. (2020). Bacterial cellulose matrix with in situ impregnation of silver nanoparticles via catecholic redox chemistry for third degree burn wound healing. Carbohydrate Polymers, 245, 116573. Jonas, R., Farah, L. F. (1998). Production and application of microbial cellulose. Polymer Degradation and Stability, 59(1-3), 101-106. Kozeny, J. (1927). Uber kapillare leitung der wasser in boden. Royal Academy of Science, Vienna, Proc. Class I, 136, 271-306. Krystynowicz, A., Czaja, W., Wiktorowska-Jezierska, A., Gonçalves-Miśkiewicz, M., Turkiewicz, M., Bielecki, S. (2002). Factors affecting the yield and properties of bacterial cellulose. Journal of Industrial Microbiology and Biotechnology, 29(4), 189-195. Lee, K. P., Arnot, T. C., Mattia, D. (2011). A review of reverse osmosis membrane materials for desalination—development to date and future potential. Journal of Membrane Science, 370(1-2), 1-22. Lehtonen, J., Chen, X., Beaumont, M., Hassinen, J., Orelma, H., Dumée, L. F., . . . Rojas, O. J. (2021). Impact of incubation conditions and post-treatment on the properties of bacterial cellulose membranes for pressure-driven filtration. Carbohydrate Polymers, 251, 117073. Lin, D., Lopez-Sanchez, P., Li, R., Li, Z. (2014). Production of bacterial cellulose by Gluconacetobacter hansenii CGMCC 3917 using only waste beer yeast as nutrient source. Bioresource Technology, 151, 113-119. Lin, S.-P., Calvar, I. L., Catchmark, J. M., Liu, J.-R., Demirci, A., Cheng, K.-C. (2013). Biosynthesis, production and applications of bacterial cellulose. Cellulose, 20(5), 2191-2219. Listiarini, K., Sun, D. D., Leckie, J. O. (2009). Organic fouling of nanofiltration membranes: Evaluating the effects of humic acid, calcium, alum coagulant and their combinations on the specific cake resistance. Journal of Membrane Science, 332(1-2), 56-62. Lustri, W. R., Barud, H., Barud, H., Peres, M. F., Gutierrez, J., Tercjak, A., . . . Ribeiro, S. J. L. (2015). Microbial cellulose—biosynthesis mechanisms and medical applications. Cellulose-Fundamental Aspects and Current Trends, 1, 133-157. Mahwachi, M., Mihoubi, D. (2020). Pressure and Porosity Profiles During Filtration–Expression Process. Theoretical Foundations of Chemical Engineering, 54, 370-379. Miyashiro, D., Hamano, R., Umemura, K. (2020). A review of applications using mixed materials of cellulose, nanocellulose and carbon nanotubes. Nanomaterials, 10(2), 186. Ng, D. Y. F., Chen, Y., Dong, Z., Wang, R. (2019). Membrane compaction in forward osmosis process. Desalination, 468, 114067. Nikzad, J., Shahhosseini, S., Tabarzad, M., Nafissi-Varcheh, N., Torshabi, M. (2017). Simultaneous detection of bovine and porcine DNA in pharmaceutical gelatin capsules by duplex PCR assay for Halal authentication. DARU Journal of Pharmaceutical Sciences, 25(1), 1-11. Niyazbekova, Z. T., Nagmetova, G. Z., Kurmanbayev, A. (2018). An Overview of Bacterial Cellulose Applications. Eurasian Journal of Applied Biotechnology(2), 17-25. Okiyama, A., Shirae, H., Kano, H., Yamanaka, S. (1992). Bacterial cellulose I. Two-stage fermentation process for cellulose production by Acetobacter aceti. Food Hydrocolloids, 6(5), 471-477. Pacheco, G., Nogueira, C. R., Meneguin, A. B., Trovatti, E., Silva, M. C., Machado, R. T., . . . Barud, H. d. S. (2017). Development and characterization of bacterial cellulose produced by cashew tree residues as alternative carbon source. Industrial Crops and Products, 107, 13-19. Persson, K. M., Gekas, V., Trägårdh, G. (1995). Study of membrane compaction and its influence on ultrafiltration water permeability. Journal of Membrane Science, 100(2), 155-162. Picheth, G. F., Pirich, C. L., Sierakowski, M. R., Woehl, M. A., Sakakibara, C. N., de Souza, C. F., . . . de Freitas, R. A. (2017). Bacterial cellulose in biomedical applications: A review. International Journal of Biological Macromolecules, 104, 97-106. Rangaswamy, B., Vanitha, K., Hungund, B. S. (2015). Microbial cellulose production from bacteria isolated from rotten fruit. International Journal of Polymer Science, 2015. Ross, P., Mayer, R., Benziman, M. (1991). Cellulose biosynthesis and function in bacteria. Microbiological reviews, 55(1), 35. Ruth, B. (1946). Correlating filtration theory with industrial practice. Industrial Engineering Chemistry, 38(6), 564-571. Singhsa, P., Narain, R., Manuspiya, H. (2018). Physical structure variations of bacterial cellulose produced by different Komagataeibacter xylinus strains and carbon sources in static and agitated conditions. Cellulose, 25(3), 1571-1581. Strickley, R. G. (2004). Solubilizing excipients in oral and injectable formulations. Pharmaceutical Research, 21(2), 201-230. Sulaeva, I., Henniges, U., Rosenau, T., Potthast, A. (2015). Bacterial cellulose as a material for wound treatment: Properties and modifications. A review. Biotechnology Advances, 33(8), 1547-1571. Sulaeva, I., Hettegger, H., Bergen, A., Rohrer, C., Kostic, M., Konnerth, J., . . . Potthast, A. (2020). Fabrication of bacterial cellulose-based wound dressings with improved performance by impregnation with alginate. Materials Science and Engineering: C, 110, 110619. Tabaii, M. J., Emtiazi, G. (2016). Comparison of bacterial cellulose production among different strains and fermented media. Applied Food Biotechnology, 3(1), 35-41. Tabarsa, T., Sheykhnazari, S., Ashori, A., Mashkour, M., Khazaeian, A. (2017). Preparation and characterization of reinforced papers using nano bacterial cellulose. International Journal of Biological Macromolecules, 101, 334-340. Tantratian, S., Tammarate, P., Krusong, W., Bhattarakosol, P., Phunsri, A. (2005). Effect of dissolved oxygen on cellulose production by Acetobacter sp. J Sci Res Chula Univ, 30, 179-186. Teow, Y. H., Amirudin, S. N., Ho, K. C. (2020). Sustainable approach to the synthesis of cellulose membrane from oil palm empty fruit bunch for dye wastewater treatment. Journal of Water Process Engineering, 34, 101182. Udegbunam, O. E., Ademiluyi, J. O. (2018). Problems and prospects of cake filtration theories. International Journal of Research in Environmental Studies, 5(3), 42-47. Ullah, H., Badshah, M., Mäkilä, E., Salonen, J., Shahbazi, M.-A., Santos, H. A., Khan, T. (2017). Fabrication, characterization and evaluation of bacterial cellulose-based capsule shells for oral drug delivery. Cellulose, 24(3), 1445-1454. Ullah, H., Santos, H. A., Khan, T. (2016). Applications of bacterial cellulose in food, cosmetics and drug delivery. Cellulose, 23(4), 2291-2314. Vandamme, E., De Baets, S., Vanbaelen, A., Joris, K., De Wulf, P. (1998). Improved production of bacterial cellulose and its application potential. Polymer Degradation and Stability, 59(1-3), 93-99. Williams, W. S., Cannon, R. E. (1989). Alternative environmental roles for cellulose produced by Acetobacter xylinum. Applied and Environmental Microbiology, 55(10), 2448-2452. Xue, S., Li, C., Li, J., Zhu, H., Guo, Y. (2017). A catechol-based biomimetic strategy combined with surface mineralization to enhance hydrophilicity and anti-fouling property of PTFE flat membrane. Journal of Membrane Science, 524, 409-418. Yamada, Y., Yukphan, P., Vu, H. T. L., Muramatsu, Y., Ochaikul, D., Tanasupawat, S., Nakagawa, Y. (2012). Description of Komagataeibacter gen. nov., with proposals of new combinations (Acetobacteraceae). The Journal of General and Applied Microbiology, 58(5), 397-404. Yang, S., Wang, T., Tang, R., Yan, Q., Tian, W., Zhang, L. (2020). Enhanced permeability, mechanical and antibacterial properties of cellulose acetate ultrafiltration membranes incorporated with lignocellulose nanofibrils. International Journal of Biological Macromolecules, 151, 159-167. Zahan, K. A., Nordin, K., Mustapha, M., Mohd Zairi, M. N. (2015). Effect of incubation temperature on growth of Acetobacter xylinum 0416 and bacterial cellulose production. Applied Mechanics and Materials, 815,3-8. Zhijiang, C., Ping, X., Cong, Z., Tingting, Z., Jie, G., Kongyin, Z. (2018). Preparation and characterization of a bi-layered nano-filtration membrane from a chitosan hydrogel and bacterial cellulose nanofiber for dye removal. Cellulose, 25(9), 5123-5137. Zhong, C., Zhang, G.-C., Liu, M., Zheng, X.-T., Han, P.-P., Jia, S.-R. (2013). Metabolic flux analysis of Gluconacetobacter xylinus for bacterial cellulose production. Applied Microbiology and Biotechnology, 97(14), 6189-6199. Zhuang, G.-L., Wu, S.-Y., Lo, Y.-C., Chen, Y.-C., Tung, K.-L., Tseng, H.-H. (2020). Gluconacetobacter xylinus synthesized biocellulose nanofiber membranes with superhydrophilic and superoleophobic underwater properties for the high-efficiency separation of oil/water emulsions. Journal of Membrane Science, 605, 118091. 范千鈺. (2020). 培養條件對細菌纖維素之乾重、含水量、機械性質的影響. 臺灣大學化學工程學研究所學位論文. 黃翔瑜. (2010). 以 Gluconacetobacter xylinus 連續式生產細菌纖維素薄膜之研究. 臺灣大學化學工程學研究所學位論文. 詹詠蓁. (2013). 以 Gluconacetobacter xylinus 饋料批次靜置生產細菌纖維素之研究. 臺灣大學化學工程學研究所學位論文. 謝榕庭. (2010). 以 Gluconacetobacter xylinus 生產細菌纖維素之研究. 臺灣大學化學工程學研究所學位論文. 藍翊蓁. (2017). 利用瀝乾法測量細菌纖維素含水量與乾燥後復水量. 臺灣大學化學工程學研究所學位論文.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82334-
dc.description.abstract"由於細菌纖維素其內部具有獨特的 3D 網狀結構和許多特色如:高親水性、可食用,因此常被應用於食品、生醫材料等應用。近年來亦有文獻指出 BC 可被作為油水過濾膜或膠囊外殼之潛力。 先前實驗室訂立了量測細菌纖維素之含水量準則(藍, 2017),能夠精確的定量出含水量,隨後實驗室的另一研究(范, 2020),分別以不同起始培養基 pH 值與不同的碳源培養出不同產量的細菌纖維素,並發現產量與含水量為一反向關係,可能顯示其結構緊密程度不同所致。故本研究利用不同含水量之細菌纖維素過濾油水乳液的方式來了解細菌纖維素與對油的阻抗性及結構差異並分析其過濾特性,結果發現不同含水量之細菌纖維素皆對油有良好的阻抗性,對油的排斥係數(Rejection coefficient, R)皆大於 99%。 進一步分析顯示了薄膜之含水量(θ)、厚度(L)的改變對過濾比阻(Specific resistance, α)影響不明顯;而薄膜阻力(Resistance of membrane, Rm)對含水量呈現反向關係,但對厚度呈現正向關係,顯示了含水量越低的細菌纖維素其內部纖維結構較密,因此其薄膜阻力較高;而厚度的增加也會使得細菌纖維素對於流體的阻力增加。根據實驗結果將細菌纖維素的含水量、厚度與薄膜阻力(Rm)做連結,可整理出薄膜阻力和含水量與厚度的關係式:Rm = 1.95 × 10^(16) × θ^(−0.7) × L,往後可根據已知的細菌纖維素含水量及厚度來評估其薄膜阻力及預測不同操作條件下的過濾通量曲線。"zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-25T07:29:21Z (GMT). No. of bitstreams: 1
U0001-2707202114404600.pdf: 6833237 bytes, checksum: 709275be47b6b3a81abff44610ae440f (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents"致謝 I 中文摘要 II Abstract III 目錄 IV 圖目錄 VII 表目錄 XV 第一章 緒論 1 第二章 文獻回顧 2 2.1 細菌纖維素的介紹 2 2.1.1 細菌纖維素生產菌株 2 2.1.2 Gluconacetobacter xylinus的特性 3 2.1.3 細菌纖維素的合成機制 5 2.2 細菌纖維素生成的因素及影響 8 2.2.1 培養基組成 8 2.2.2 培養環境 13 2.2.3 培養方式 18 2.3 細菌纖維素的特性 20 2.3.1 纖維結構 20 2.3.2 可食用性 21 2.3.3 高含水量及高親水性 22 2.3.4 高純度 23 2.3.5 機械性質優異 24 2.3.6 生物相容性 25 2.3.7 生物可分解性 27 2.4 細菌纖維素的應用 28 2.4.1 不同領域之應用 28 2.4.2 過濾膜 29 2.4.3 藥物傳遞 35 2.5 過濾 42 2.5.1 過濾速度方程式 42 2.5.2 不同的過濾膜 47 第三章 實驗與方法 53 3.1 實驗菌株 53 3.2 生產細菌纖維素之實驗步驟 54 3.2.1 製作固態培養基 54 3.2.2 預培養 55 3.2.3 主培養 56 3.2.4 產物處理 57 3.3 細菌纖維素含水量(Water Holding Capacity, WHC)之量測 59 3.4 定量大豆油乳液濃度 62 3.5 細菌纖維素薄膜之過濾實驗 65 3.6 實驗藥品 67 3.7 實驗儀器 68 第四章 實驗結果與討論 69 4.1 細菌纖維素培養條件及過濾條件 69 4.2 過濾壓力選擇 70 4.3 不同WHC的BC對過濾效果之影響 75 4.3.1 pH4~7+glu2之含水量與其過濾效果 76 4.3.2 pH4~7+gly2之含水量與其過濾效果 81 4.3.3 pH4~7+glu1+gly1之含水量與其過濾效果 85 4.3.4 pH4~7+glu0.5+gly1.5之含水量與其過濾效果 89 4.3.5 pH4~7+eth2之含水量與其過濾效果 93 4.4 不同培養條件對於細菌纖維素產量、WHC之關係 97 4.5 BC之WHC與Rm、α之關係 99 4.6 不同厚度、不同WHC之BC對於過濾效果之影響 101 4.6.1 pH4~7+glu2之不同厚度其過濾效果 102 4.6.2 pH4~7+gly2之不同厚度其過濾效果 109 4.6.3 pH4~7+glu+1+gly1之不同厚度其過濾效果 115 4.6.4 pH4~7+glu0.5+gly1.5之不同厚度其過濾效果 122 4.6.5 pH4~7+eth2之不同厚度其過濾效果 128 4.7 BC之WHC、厚度與Rm、α之關係 134 4.8 清洗細菌纖維素薄膜 141 4.9 不同過濾膜的比較 146 第五章 結論 151 第六章 附錄 153 參考文獻 156 "
dc.language.isozh-TW
dc.subject油水過濾膜zh_TW
dc.subject軟膠囊zh_TW
dc.subject薄膜阻力zh_TW
dc.subject含水量zh_TW
dc.subject細菌纖維素zh_TW
dc.subjectMembrane resistanceen
dc.subjectBacterial celluloseen
dc.subjectWater holding capacityen
dc.subjectOil-water filtration membraneen
dc.subjectCapsule shellen
dc.title不同含水量、厚度之細菌纖維素用以油水分離與其過濾特性之研究zh_TW
dc.titleOil/Water Separation by Bacterial Cellulose with Different Water Holding Capacity and Thicknessen
dc.date.schoolyear109-2
dc.description.degree碩士
dc.contributor.oralexamcommittee江佳穎(Hsin-Tsai Liu),陳立仁(Chih-Yang Tseng),賴進此
dc.subject.keyword細菌纖維素,含水量,油水過濾膜,軟膠囊,薄膜阻力,zh_TW
dc.subject.keywordBacterial cellulose,Water holding capacity,Oil-water filtration membrane,Capsule shell,Membrane resistance,en
dc.relation.page164
dc.identifier.doi10.6342/NTU202101803
dc.rights.note同意授權(全球公開)
dc.date.accepted2021-07-28
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept化學工程學研究所zh_TW
dc.date.embargo-lift2023-07-31-
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
U0001-2707202114404600.pdf6.67 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved