請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82310完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳永芳(Yang-Fang Chen) | |
| dc.contributor.author | Chia-Lin Tsai | en |
| dc.contributor.author | 蔡佳霖 | zh_TW |
| dc.date.accessioned | 2022-11-25T07:29:04Z | - |
| dc.date.available | 2023-08-07 | |
| dc.date.copyright | 2021-11-06 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-08-06 | |
| dc.identifier.citation | L. U. Khan, Visible light communication: Applications, architecture, standardization and research challenges, Digital Commun. Networks 3, 78–88 (2017). J. Shi, J. He, R. Deng, Y. Wei, F. Long, Y. Cheng, and L. Chen, Multilevel modulation scheme using the overlapping of two light sources for visible light communication with mobile phone camera, Opt. Express 25,15905–15912 (2017). M. Bock, P. Eich, S. Kucera, M. Kreis, A. Lenhard, C. Becher, and J. Eschner, High-fidelity entanglement between a trapped ion and a telecom photon via quantum frequency conversion, Nat. Commun. 9, 1998 (2018). W.-Y. Lin, C.-Y. Chen, H.-H. Lu, C.-H. Chang, Y.-P. Lin, H.-C. Lin, and H.-W. Wu, 10m/500Mbps WDM visible light communication systems, Opt. Express 20, 9919–9924 (2012). L. Grobe, A. Paraskevopoulos, J. Hilt, D. Schulz, F. Lassak, F. Hartlieb, C.Kottke, V. Jungnickel, and K.-D. Langer, High-Speed Visible Light Communication Systems, IEEE Commun. Mag. 51, 60–66(2013). A. Kumar, A. Mihovska, S. Kyriazakos, and R. Prasad, Visible Light Communications (VLC) for Ambient Assisted Living Wireless, Pers. Commun. 78, 1699–1717 (2014). S. Rajbhandari, H. Chun, G. Faulkner, K. Cameron, A. V. Jalajakumari, R.Henderson, D. Tsonev, M. Ijaz, Z. Chen, and H. Haas, High-Speed Integrated Visible Light Communication System: Device Constraints and Design Considerations, IEEE J. Sel. Areas Commun. 33, 1750–1757 (2015). K. J. Baeg, M. Binda, D. Natali, M. Caironi, and Y. Y. Noh, Organic Light Detectors: Photodiodes and Phototransistors, Adv. Mater. 25, 4267–4295 (2013). P. Gu, Y. Yao, L. Feng, S. Niu, and H. Dong, Recent advances in polymer phototransistors, Polym. Chem. 6, 7933–7944 (2015). D.H. Kim, N. Lu, R. Ma, Y.S. Kim, R.H. Kim, S. Wang, J. Wu, S.M. Won, H. Tao, A. Islam, K.J. Yu, T.I. Kim, R. Chowdhury, Sensitive flexible magnetic sensors using organic transistors with magnetic-functionalized suspended gate electrodes, Adv. Mater. 27 7979–7985 (2015). D.H. Kim, N. Lu, R. Ma, Y.S. Kim, R.H. Kim, S. Wang, J. Wu, S.M. Won, H. Tao, A. Islam, K.J. Yu, T.I. Kim, R. Chowdhury, M. Ying, L. Xu, H.J. Chung, H. Keum, M. McCormick, P. Liu, Y.W. Zhang, F.G. Omenetto, Y. Huang, T. Coleman, J. A. Rogers, Epidermal Electronics, Science 333 838–843 (2011). T. Sekitani, T. Yokota, U. Zschieschang, H. Klauk, S. Bauer, K. Takeuchi, M. Takamiya, T. Sakurai, T. Someya, Organic nonvolatile memory transistors for flexible sensor arrays, Science 326 1516–1519 (2009). W. Wu, X. Wen, Z. Wang, Taxel-addressable matrix of vertical-nanowire piezotronic transistors for active and adaptive tactile imaging, Science 340 952–957 (2013). M. Johnson, B. R. Bennett, M. J. Yang, M. M. Miller, B. V. Shanabrook, Hybrid Hall effect device, Appl. Phys. Lett. 71 974–976 (1997). S. Thiele, R. Vincent, M. Holzmann, S. Klyatskaya, M. Ruben, F. Balestro, and W. Wernsdorfer, Electrical readout of individual nuclear spin trajectories in a single-molecule magnet spin transistor, Phys. Rev. Lett. 111 037203 (2013). L. Bogani, W. Wernsdorfer, Molecular spintronics using single-molecule magnets, Nat. Mater. 7 179–186 (2008). R. Jansen, The spin-valve transistor: a review and outlook, J. Phys. D: Appl. Phys. 36 289–308 (2003). M. M. Miller, P. E. Sheehan, R. L. Edelstein, C. R. Tamanaha, L. Zhong, S. Bounnak, L.J. Whitman, R.J. Colton, A DNA array sensor utilizing magnetic microbeads and magnetoelectronic detection, J. Magn. Magn. Mater. 225 138–144 (2001). T. Dogaru, S. T. Smith, Giant magnetoresistance-based Eddy-current sensor, IEEE Trans. Magn. 37 3831–3838 (2001). C.Y . Tzou, S. Y. Cai, C. Y. Tseng, C. Y. Chang, S. Y. Chiang, C. Y. Jiang, Y. H. Li, J. M. Ma, Y. M. Liao, F. C. Hsu, Y. F. Chen, An ultra-fast two-terminal organic phototransistor with vertical topology for information technologies. Appl. Phys. Lett., 114(19) 193301 (2019). S. Y. Cai, C. H. Chang, H. I. Lin, Y. F. Huang, W. J. Lin, S. Y. Lin, Y. R. Liou, T. L. Shen, Y. H. Huang, P. W. Tsao, C. Y. Tzou, Y. M. Liao, and Y. F. Chen, Ultrahigh sensitive and flexible magnetoelectronics with magnetic nanocomposites: Toward an additional perception of artificial intelligence. ACS Appl. Mater. Interfaces, 10(20) 17393-17400 (2018). C. Y. Jiang, C. H. Tsai, C. Y. Tzou, F. C. Hsu, and Y. F. Chen. Magnetically controllable and flexible phototransistors for artificial intelligent skin with additional perception. Organic Electronics 85 105849 (2020). Meng Li, Yu Wang, Aiping Chen, Arin Naidu, Bradley S. Napier, Wenyi Li, C. L. Rodriguezb, S. A. Crookerd, and F. G. Omenetto, Flexible magnetic composites for light-controlled actuation and interfaces. PNAS, 115 8119-8124 (2018). A.Pe ́erez-Toma ́s, A. Lima, Q. Billon, I. Shirley, G. Catalan, and M. Lira-Cantu ́, A solar transistor and photoferroelectric memory, Adv. Funct. Mater. 28, 1707099 (2018). M. N. Baibich, J. M. Broto, A. Fert, F. N. Van Dau, F. Petroff, P. Etienne, G. Creuzet, A. Friederich, and J. Chazelas, Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices, Phys. Rev. Lett. 61, 2472 (1988). I. Vlassiouk, C.-D. Park, S. A. Vail, D. Gust, and S. Smirnov, Control of nanopore wetting by a photochromic spiropyran: A light-controlled valve and electrical switch, Nano Lett. 6,1013–1017 (2006). H. Ling, K. Tan, Q. Fang, X. Xu, H. Chen, W. Li, Y. Liu, L. Wang, M. Yi, and R. Huang, Light-tunable nonvolatile memory characteristics in photochromic RRAM, Adv. Electron. Mater. 3, 1600416 (2017). https://en.wikipedia.org/wiki/Air_mass_(solar_energy) https://www.laserfocusworld.com/lasers-sources/article/16566681/photovoltaics-measuring-the-sun https://www.pveducation.org/pvcdrom/appendices/standard-solar-spectra Banerji A, Tausch MW, Scherf U. Classroom experiments and teaching materials on OLEDs with semiconducting polymers. Educ. Quim. 24, 17-22 (2013) Tress W. Organic solar cells: Theory, Experiment, and device simulation. Springer International Publishing (2014) Steim, R., Kogler, F. R., Brabec, C. J. Interface materials for organic solar cells. J.Mater. Chem., 20(13), 2499-2512 (2010) Lin WP, Liu SJ, Gong T, Zhao Q, Huang W. Polymer-based resistive memory materials and devices. Adv. Mater. 26,570-606 (2014). Waser R, Dittmann R, Staikov G, Redoxed-based resistive switching memories-nanoionic mechanisms, prospects, and challenges. Adv. Mater. 21, 2632-2663 (2009) Flexible Electronic Devices Are The Future — Here’s Why, September, 2018, https://www.youngupstarts.com/2018/09/21/flexible-electronic-devices-are-the-future-heres-why/ Nathan, A., Ahnood, A.< Cole, M. T., Lee, S. Suzuki, Y. Hiralal, P., … Haque, S. Flexible electronics: the next ubiquitous platform. Proc. IEEE, 100(Special Centennial Issue), 1486-1517 (2012) Wong, W. S., Salleo, A. (Eds.). Flexible electronics: materials and applications (Vol.11). Springer Science Business Media. (2009) Harris, K. D., Elias, A. L. Chung, H. J. Flexible electronics under strain: a review of mechanical characterization and durability enhancement strategies. J. Mater. Sci., 51(6), 2771-2805 (2016) Choong, C. L., Shim, M. B., Lee, B. S., Jeon, S., Ko, D. S., Kang, T. H., … Jeong, Y. J. Highly stretchable resistive pressure sensors using a conductive elastomeric composite on a micropyramid array. Adv. Mater., 26(21), 3451-3458 (2014). Fa, F. R., Lin, L., Zhu, G., Wu, W., Zhang, R., Wang, Z. L. Transparent triboelectric nanogenerators and self-powered pressure sensors based on micropatterned plastic films. Nano Lett., 14(14), 1704232 (2018). Kim, K. H. Jang, N. S., Ha, S. H., Cho, J. H., Kim, J. M. Highly sensitive and stretchable resistive strain sensors based on microstructured metal nanowire/elastomer composite films, Small, 14(14), 1704232 (2018). Mannsfeld, S. C., Tee, B. C., Stoltenberg, R. M., Chen, C. V. H., Barman, S., Muir, B. V., … Bao, Z. Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers. Nat. Mater., 11(9), 795 (2012) Pang, C., Lee, G. Y., Kim, T. I., Kim, S. M., Kim, H. N., Ahn, S. H., Suh, K. Y. A flexible and highly sensitive strain-gauge sensor using reversible interlocking of nanofiber. Nat Mater., 9(10), 795 (2012) https://en.wikipedia.org/wiki/Polydimethylsiloxane https://en.wikipedia.org/wiki/Poly(methyl_methacrylate) K. H. Kim, S. Y. Bae, Y. S. Kim, J. A. Hur, M. H. Hoang, T. W. Lee, M. J. Cho, Y. Kim, M. Kim, and J. I. Jin, Highly photosensitive J-aggregated single-crystalline organic transistors, Adv. Mater. 23, 3095-3099 (2011). T. P. I. Saragi, R. Pudzich, T. Fuhrmann, and J. Salbeck, Organic phototransistor based on intramolecular charge transfer in a bifunctional spiro compound, Appl. Phys. Lett. 84, 2334-2336 (2004). M. Y. Cho, S. J. Kim, Y. D. Han, D. H. Park, K. H. Kim, D. H. Choi, and J. Joo, Highly sensitive, photocontrolled, organic thin-film transistors using soluble star-shaped conjugated molecules, Adv. Funct. Mater. 18, 2905-2912 (2008). J. Labram, P. Wöbkenberg, D. Bradley, and T. Anthopoulos, Low-voltage ambipolar phototransistors based on a pentacene/PC61BM heterostructure and a self-assembled nano-dielectric, Org. Electron. 11, 1250-1254 (2010). S. M. Mok, F. Yan, and H. L. Chan, Organic phototransistor based on poly(3-hexylthiophene)/TiO2 nanoparticle composite, Appl. Phys. Lett. 93, 023310 (2008). B. Lucas, A. El Amrani, M. Chakaroun, B. Ratier, R. Antony, and A. Moliton, Ultraviolet light effect on electrical properties of a flexible organic thin film transistor, Thin Solid Films 517, 6280-6282 (2009). S. Dutta and K. Narayan, Photoinduced charge transport in polymer field effect transistors, Synthetic Met. 146, 321-324 (2004). B. Mukherjee, M. Mukherjee, Y. Choi, and S. Pyo, Organic Phototransistor with n-Type Semiconductor Channel and Polymeric Gate Dielectric, J. Phys. Chem. C 113, 18870-18873 (2009). T. D. Anthopoulos, Electro-optical circuits based on light-sensing ambipolar organic field-effect transistors, Appl. Phys. Lett. 91, 113513 (2007). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82310 | - |
| dc.description.abstract | 我們在此提出一種可透過光/電/磁三種變因控制的雙閘式雙極有機光電晶體。此光電晶體以垂直方式整合有機太陽能電池(ITO/ZnO/P3HT:PC_61BM/MoO_3/Ag)、電阻式隨機存取記憶體(Ag/PMMA/Au)及具金字塔結構的磁電元件(FeNi/PDMS/AgNWs)。此元件具有上述三種元件分別的特性,透過對於光、電場、磁場的反應形成雙閘式光電晶體。和傳統的光電晶體相比,此元件具有超快的光響應時間、可調節的光電流、高開關電流比率及非接觸式人機互動等特性,這些獨特的特性均有利於高速光通訊及電路微型化。此外,這種光電晶體具有獨特的數位邏輯特性,使其在光通訊及資訊安全領域的應用具有莫大的潛力。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-25T07:29:04Z (GMT). No. of bitstreams: 1 U0001-0608202101242500.pdf: 2664390 bytes, checksum: e732f59643337fa871f6e1ba5c3d3b19 (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | "口試委員會審定書 ...................................................................I 致謝 .............................................................................II 中文摘要 .........................................................................III ABSTRACT ..........................................................................IV Content ...........................................................................VI List of Figure and Tables .........................................................X Chapter 1 Introduction ..........................................................1 Reference...........................................................................4 Chapter 2 Theoretical Background.................................................9 2.1 Solar Spectrum ..........................................................9 2.2 Models of solar cells ..................................................11 2.2.1 Ideal model .......................................................13 2.2.2 Non-ideal model ...................................................14 2.3 Parameters of solar cells ..............................................15 2.3.1 Quantum efficiency (QE) ...........................................15 2.3.2 Spectral response (SR) .............................................16 2.3.3 Short circuit current density (Jsc) ................................16 2.3.4 Open circuit voltage (Voc) .........................................17 2.3.5 Power convert efficiency (PCE, η) and Fill faceor (FF) .............18 2.4 Organic solar cells (OSCs)...............................................19 2.4.1 Organic semiconductor ..............................................19 2.4.2 Structures of OSCs .................................................21 2.4.3 Photovoltaic effect ................................................23 2.5 Resistive random access memory (RRAM)....................................24 2.5.1 Resistive switching behaviors ......................................25 2.5.2 Resistive switching mechanisms .....................................26 2.6 Megnetoelectronic device ................................................28 2.6.1 Flexible electronics ...............................................28 2.6.2 The stretchable resistive sensor ...................................30 Reference..........................................................................32 Chapter 3 Experimental Details ..................................................35 3.1 Instrument ..............................................................35 3.1.1 The list of equipment ..............................................35 3.1.2 Scanning electron microscope (SEM) .................................36 3.1.3 Solar simulator ....................................................37 3.1.4 Thermal evaporation ................................................38 3.2 Materials ...............................................................40 3.2.1 The list of materials ..............................................40 3.2.2 P3HT ...............................................................41 3.2.3 PC61BM .............................................................41 3.2.4 PMMA ...............................................................42 3.2.5 Polydimethylsiloxane (PDMS) ........................................42 3.2.6 Silver nanowires (AgNWs) ...................................................43 3.3 Material preparation ....................................................43 3.3.1 Preparation of ITO glass ...........................................43 3.3.2 Preparation of Sol-gel-derived ZnO .................................44 3.3.3 Preparation of P3HT: PC61BM solution ...............................44 3.4 Device fabrication ......................................................44 3.4.1 Organic solar cells ................................................44 3.4.2 RRAM cells .........................................................45 3.4.3 Flexible magnetoelectronic device ..................................45 3.4.4 Phototransistor ....................................................46 Reference..........................................................................47 Chapter 4 Result and Discussion .................................................48 4.1 Characteristics of resistive random access memory .......................48 4.2 Characteristics of organic solar cell ...................................50 4.3 Characteristics of flexible magnetoelectronic device ....................52 4.4 Characteristics of the double-gate phototransistor.......................54 4.5 Demonstration of potential application...................................64 Reference..........................................................................69 Chapter 5 Conclusion ............................................................71 " | |
| dc.language.iso | en | |
| dc.subject | 光電晶體 | zh_TW |
| dc.subject | 磁電元件 | zh_TW |
| dc.subject | 電阻式隨機存取記憶體 | zh_TW |
| dc.subject | 有機太陽能電池 | zh_TW |
| dc.subject | 光通訊 | zh_TW |
| dc.subject | 超快光響應 | zh_TW |
| dc.subject | 非接觸式元件 | zh_TW |
| dc.subject | magnetoelectronic device | en |
| dc.subject | dual-gate phototransistor | en |
| dc.subject | information encryption | en |
| dc.subject | Li-Fi optical communication | en |
| dc.subject | ultra-fast response | en |
| dc.subject | touchless | en |
| dc.title | 光/電/磁可控雙閘式雙極有機光電晶體 | zh_TW |
| dc.title | An optical/electrical/magnetic controllable dual-gate phototransistor | en |
| dc.date.schoolyear | 109-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 許芳琪(Fang-Chi Hsu) | |
| dc.contributor.oralexamcommittee | 林泰源(Hsin-Tsai Liu),(Chih-Yang Tseng) | |
| dc.subject.keyword | 超快光響應,光通訊,有機太陽能電池,電阻式隨機存取記憶體,光電晶體,磁電元件,非接觸式元件, | zh_TW |
| dc.subject.keyword | ultra-fast response,Li-Fi optical communication,information encryption,dual-gate phototransistor,magnetoelectronic device,touchless, | en |
| dc.relation.page | 71 | |
| dc.identifier.doi | 10.6342/NTU202102134 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2021-08-06 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 物理學研究所 | zh_TW |
| dc.date.embargo-lift | 2023-08-07 | - |
| 顯示於系所單位: | 物理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-0608202101242500.pdf | 2.6 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
