請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82307完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳信志(Shinn-Chih Wu) | |
| dc.contributor.author | Xuan-Chun Su | en |
| dc.contributor.author | 蘇暄淳 | zh_TW |
| dc.date.accessioned | 2022-11-25T07:29:02Z | - |
| dc.date.available | 2025-01-25 | |
| dc.date.copyright | 2022-02-18 | |
| dc.date.issued | 2022 | |
| dc.date.submitted | 2022-01-25 | |
| dc.identifier.citation | 1. Black, J.D.J. and B.J. Tadros, Bone structure: from cortical to calcium. Orthopaedics and Trauma, 2020. 34(3): p. 113-119. 2. Karpiński, R., Ł. Jaworski, and P. Czubacka, The structural and mechanical properties of the bone. Journal of Technology and Exploitation in Mechanical Engineering, 2017. 3(1): p. 43-50. 3. Buckwalter, J., et al., Bone biology. J. Bone Joint Surg. Am., 1995. 77(8): p. 1256-1275. 4. Clarke, B., Normal Bone Anatomy and Physiology. Clinical Journal of the American Society of Nephrology, 2008. 3(Supplement 3): p. S131-S139. 5. Buck, D.W.I. and G.A. Dumanian, Bone Biology and Physiology: Part I. The Fundamentals. Plastic and Reconstructive Surgery, 2012. 129(6): p. 1314-1320. 6. Rodan, G.A., Introduction to bone biology. Bone, 1992. 13: p. S3-S6. 7. Florencio-Silva, R., et al., Biology of Bone Tissue: Structure, Function, and Factors That Influence Bone Cells. BioMed Research International, 2015. 2015: 421746. 8. Lian, J.B., et al., MicroRNA control of bone formation and homeostasis. Nature Reviews Endocrinology, 2012. 8(4): p. 212-227. 9. J. Gordon Betts, K.A.Y., James A. Wise, Eddie Johnson, Brandon Poe, Dean H. Kruse, Oksana Korol, Jody E. Johnson, Mark Womble, Peter DeSaix, Anatomy and Physiology. 2013, Houston, Texas: OpenStax. 10. Whedon, G.D.a.H., Robert Proulx, bone. 2019: Encyclopedia Britannica. 11. Miller, M.D., S.R. Thompson, and J. Hart, Review of Orthopaedics E-Book. 2012: Elsevier Health Sciences. 12. Ramachandran, M., Basic orthopaedic Sciences. 2018: CRC Press. 13. Rho, J.-Y., L. Kuhn-Spearing, and P. Zioupos, Mechanical properties and the hierarchical structure of bone. Medical Engineering physics, 1998. 20(2): p. 92-102. 14. Duchamp de Lageneste, O., et al., Periosteum contains skeletal stem cells with high bone regenerative potential controlled by Periostin. Nature Communications, 2018. 9(1): 773. 15. van Gastel, N., et al., Engineering vascularized bone: osteogenic and proangiogenic potential of murine periosteal cells. Stem Cells, 2012. 30(11): p. 2460-2471. 16. Zhang, X., et al., Periosteal progenitor cell fate in segmental cortical bone graft transplantations: implications for functional tissue engineering. Journal of Bone and Mineral Research, 2005. 20(12): p. 2124-2137. 17. Colnot, C., Skeletal cell fate decisions within periosteum and bone marrow during bone regeneration. Journal of Bone and Mineral Research, 2009. 24(2): p. 274-282. 18. Salhotra, A., et al., Mechanisms of bone development and repair. Nature Reviews Molecular Cell Biology, 2020. 21(11): p. 696-711. 19. Dimitriou, R., et al., Bone regeneration: current concepts and future directions. BMC Medicine, 2011. 9(1): 66. 20. Ferguson, C., et al., Does adult fracture repair recapitulate embryonic skeletal formation? Mechanisms of Development, 1999. 87(1-2): p. 57-66. 21. Berendsen, A.D. and B.R. Olsen, Bone development. Bone, 2015. 80: p. 14-18. 22. Breeland, G., M.A. Sinkler, and R.G. Menezes, Embryology, bone ossification. 2021: StatPearls. 23. Percival, C.J. and J.T. Richtsmeier, Angiogenesis and intramembranous osteogenesis. Developmental Dynamics, 2013. 242(8): p. 909-922. 24. Ortega, N., D.J. Behonick, and Z. Werb, Matrix remodeling during endochondral ossification. Trends in Cell Biology, 2004. 14(2): p. 86-93. 25. Barone, A. and U. Covani, Maxillary alveolar ridge reconstruction with nonvascularized autogenous block bone: clinical results. Journal of Oral and Maxillofacial Surgery, 2007. 65(10): p. 2039-2046. 26. Kurz, L.T., S.R. Garfin, and J.R. Booth, Harvesting autogenous iliac bone grafts. A review of complications and techniques. Spine, 1989. 14(12): p. 1324-1331. 27. Eppley, B.L., W.S. Pietrzak, and M.W. Blanton, Allograft and alloplastic bone substitutes: a review of science and technology for the craniomaxillofacial surgeon. Journal of Craniofacial Surgery, 2005. 16(6): p. 981-989. 28. Moore, W.R., S.E. Graves, and G.I. Bain, Synthetic bone graft substitutes. ANZ journal of surgery, 2001. 71(6): p. 354-361. 29. Langer, R. and J. Vacanti, Tissue engineering. Science, 1993. 260(5110): p. 920-926. 30. Murphy, C.M., et al., Cell-scaffold interactions in the bone tissue engineering triad. Eur. Cell Mater., 2013. 26:p. 120-132. 31. Hsieh, M.K., et al., BMP-2 gene transfection of bone marrow stromal cells to induce osteoblastic differentiation in a rat calvarial defect model. Mater. Sci. Eng. C Mater. Biol. Appl., 2018. 91: p. 806-816. 32. Stockmann, P., et al., Guided bone regeneration in pig calvarial bone defects using autologous mesenchymal stem/progenitor cells - a comparison of different tissue sources. J. Craniomaxillofac. Surg., 2012. 40(4): p. 310-320. 33. Motamedian, S.R., et al., Smart scaffolds in bone tissue engineering: A systematic review of literature. World Journal of Stem Cells, 2015. 7(3): p. 657-668. 34. Pina, S., et al., Scaffolding Strategies for Tissue Engineering and Regenerative Medicine Applications. Materials (Basel), 2019. 12(11): 1824. 35. Arpornmaeklong, P., et al., Phenotypic Characterization, Osteoblastic Differentiation, and Bone Regeneration Capacity of Human Embryonic Stem Cell–Derived Mesenchymal Stem Cells. Stem Cells and Development, 2009. 18(7): p. 955-968. 36. Ikada, Y., Challenges in tissue engineering. Journal of The Royal Society Interface, 2006. 3(10): p. 589-601. 37. Pereira, H., et al., Human meniscus: from biology to tissue engineering strategies. Sports injuries. Berlin, Germany: Springer, 2015: p. 1089-1102. 38. Caplan, A.I., Mesenchymal stem cells. Journal of Orthopaedic Research, 1991. 9(5): p. 641-650. 39. Toma, C., et al., Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart. Circulation, 2002. 105(1): p. 93-98. 40. Caplan, A.I., Adult mesenchymal stem cells for tissue engineering versus regenerative medicine. Journal of Cellular Physiology, 2007. 213(2): p. 341-347. 41. Kirkham, G. and S. Cartmell, Genes and proteins involved in the regulation of osteogenesis. Topics in Tissue Engineering, 2007. 3: p. 1-22. 42. Marie, P., F. Debiais, and E. Hay, Regulation of human cranial osteoblast phenotype by FGF-2, FGFR-2 and BMP-2 signaling. Histology and Histopathology, 2002. 17: p. 877-885. 43. Yang, S., et al., The design of scaffolds for use in tissue engineering. Part I. Traditional factors. Tissue Engineering, 2001. 7(6): p. 679-689. 44. Hutmacher, D.W., Scaffolds in tissue engineering bone and cartilage. Biomaterials, 2000. 21(24): p. 2529-2543. 45. Albrektsson, T. and C. Johansson, Osteoinduction, osteoconduction and osseointegration. European Spine Journal, 2001. 10(2): p. S96-S101. 46. Giannoudis, P.V., H. Dinopoulos, and E. Tsiridis, Bone substitutes: an update. Injury, 2005. 36(3): p. S20-S27. 47. Rizzi, S., et al., Biodegradable polymer/hydroxyapatite composites: surface analysis and initial attachment of human osteoblasts. Journal of Biomedical Materials Research: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, 2001. 55(4): p. 475-486. 48. Pilliar, R., et al., Porous calcium polyphosphate scaffolds for bone substitute applications—in vitro characterization. Biomaterials, 2001. 22(9): p. 963-972. 49. Jiang, T., W.I. Abdel-Fattah, and C.T. Laurencin, In vitro evaluation of chitosan/poly (lactic acid-glycolic acid) sintered microsphere scaffolds for bone tissue engineering. Biomaterials, 2006. 27(28): p. 4894-4903. 50. Ravindran, S., Y. Song, and A. George, Development of three-dimensional biomimetic scaffold to study epithelial–mesenchymal interactions. Tissue Engineering Part A, 2010. 16(1): p. 327-342. 51. Glowacki, J. and S. Mizuno, Collagen scaffolds for tissue engineering. Biopolymers: Original Research on Biomolecules, 2008. 89(5): p. 338-344. 52. Murphy, C.M., M.G. Haugh, and F.J. O'brien, The effect of mean pore size on cell attachment, proliferation and migration in collagen–glycosaminoglycan scaffolds for bone tissue engineering. Biomaterials, 2010. 31(3): p. 461-466. 53. Ma, L., et al., Enhanced biological stability of collagen porous scaffolds by using amino acids as novel cross-linking bridges. Biomaterials, 2004. 25(15): p. 2997-3004. 54. Berglund, J.D., R.M. Nerem, and A. Sambanis, Incorporation of intact elastin scaffolds in tissue-engineered collagen-based vascular grafts. Tissue Engineering, 2004. 10(9-10): p. 1526-1535. 55. Hubbell, J.A., Biomaterials in tissue engineering. Bio/Technology, 1995. 13(6): p. 565-576. 56. Gleeson, J., N. Plunkett, and F. O’Brien, Addition of hydroxyapatite improves stiffness, interconnectivity and osteogenic potential of a highly porous collagen-based scaffold for bone tissue regeneration. Eur. Cell Mater., 2010. 20: p. 218-230. 57. Geiger, M., R. Li, and W. Friess, Collagen sponges for bone regeneration with rhBMP-2. Advanced Drug Delivery Reviews, 2003. 55(12): p. 1613-1629. 58. Darling, E.M. and K.A. Athanasiou, Biomechanical strategies for articular cartilage regeneration. Annals of Biomedical Engineering, 2003. 31(9): p. 1114-1124. 59. Khan, S.N., et al., The biology of bone grafting. JAAOS-Journal of the American Academy of Orthopaedic Surgeons, 2005. 13(1): p. 77-86. 60. Osugi, M., et al., Conditioned media from mesenchymal stem cells enhanced bone regeneration in rat calvarial bone defects. Tissue Eng. Part A, 2012. 18(13-14): p. 1479-1489. 61. Chen, L., et al., Paracrine factors of mesenchymal stem cells recruit macrophages and endothelial lineage cells and enhance wound healing. PloS one, 2008. 3(4): e1886. 62. Phinney, D.G. and M.F. Pittenger, Concise Review: MSC-Derived Exosomes for Cell-Free Therapy. Stem Cells, 2017. 35(4): p. 851-858. 63. Baglio, S.R., D. Pegtel, and N. Baldini, Mesenchymal stem cell secreted vesicles provide novel opportunities in (stem) cell-free therapy. Frontiers in Physiology, 2012. 3: 359. 64. Kinnaird, T., et al., Local delivery of marrow-derived stromal cells augments collateral perfusion through paracrine mechanisms. Circulation, 2004. 109(12): p. 1543-1549. 65. Stamnitz, S. and A. Klimczak, Mesenchymal Stem Cells, Bioactive Factors, and Scaffolds in Bone Repair: From Research Perspectives to Clinical Practice. Cells, 2021. 10(8): 1925. 66. Hsiao, F., et al., Toward an ideal animal model to trace donor cell fates after stem cell therapy: Production of stably labeled multipotent mesenchymal stem cells from bone marrow of transgenic pigs harboring enhanced green fluorescence protein gene1. Journal of Animal Science, 2011. 89(11): p. 3460-3472. 67. Kuo, Z.-K., et al., Osteogenic differentiation of preosteoblasts on a hemostatic gelatin sponge. Scientific Reports, 2016. 6(1): 32884. 68. Hsieh, M.K., et al., Bone regeneration in Ds-Red pig calvarial defect using allogenic transplantation of EGFP-pMSCs - A comparison of host cells and seeding cells in the scaffold. PLoS One, 2019. 14(7): e0215499. 69. Einhorn, T.A. and L.C. Gerstenfeld, Fracture healing: mechanisms and interventions. Nat. Rev. Rheumatol., 2015. 11(1): p. 45-54. 70. Zhang, W., et al., VEGF and BMP-2 promote bone regeneration by facilitating bone marrow stem cell homing and differentiation. Eur. Cell Mater., 2014. 27(12): p. 1-12. 71. Chen, Y.J., et al., Recruitment of mesenchymal stem cells and expression of TGF‐β1 and VEGF in the early stage of shock wave‐promoted bone regeneration of segmental defect in rats. Journal of Orthopaedic Research, 2004. 22(3): p. 526-534. 72. Chou, C.-J., et al., Generation and characterization of a transgenic pig carrying a DsRed-monomer reporter gene. PloS one, 2014. 9(9): e106864. 73. Spicer, P.P., et al., Evaluation of bone regeneration using the rat critical size calvarial defect. Nat. Protoc., 2012. 7(10): p. 1918-1929. 74. Schlegel, K.A., et al., The monocortical critical size bone defect as an alternative experimental model in testing bone substitute materials. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology, 2006. 102(1): p. 7-13. 75. Petite, H., et al., Tissue-engineered bone regeneration. Nature Biotechnology, 2000. 18(9): p. 959-963. 76. Stephan, S.J., et al., Injectable tissue‐engineered bone repair of a rat calvarial defect. The Laryngoscope, 2010. 120(5): p. 895-901. 77. Sze, S.K., et al., Elucidating the secretion proteome of human embryonic stem cell-derived mesenchymal stem cells. Molecular Cellular Proteomics, 2007. 6(10): p. 1680-1689. 78. Vieira, A.E., et al., Intramembranous bone healing process subsequent to tooth extraction in mice: micro-computed tomography, histomorphometric and molecular characterization. PloS one, 2015. 10(5): e0128021. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82307 | - |
| dc.description.abstract | "組織工程作為臨床醫學上新興的骨骼損傷治療方式,改善了無論是自體、異體、異種和人工骨移植等治療的限制。過去已經有許多研究證實以細胞、支架和生長因子共同移植之組織工程於骨修復上有其功效。其中間葉幹細胞(mesenchymal stem cell, MSC)是組織工程研究中的最廣泛被運用的細胞種類。隨著對於間葉幹細胞的研究愈加深入,許多研究認為間葉幹細胞是透過旁分泌作用來調控組織修復,因此無需細胞的治療方式(cell-free therapy)逐漸成為組織工程研究的趨勢。而培養過間葉幹細胞之培養液,被稱為間葉幹細胞條件培養液(MSCs derived-conditioned medium, MSC-CM),其中含有間葉幹細胞分泌的所有因子,被認為是一種可取代細胞的組織工程材料。 明膠止血綿作為臨床醫學中常見的生醫材料,具有良好的生物相容性和生物降解性。在我們先前的研究中,已經證實綠螢光豬的間葉幹細胞搭配明膠止血棉能有效的治療豬的頭骨缺損;進一步,我們希望於大鼠頭骨缺損模型中測試載有條件培養液之明膠止血綿是否同樣具修復效果。 在體外試驗中,我們發現條件培養液能調控間葉幹細胞成骨相關基因的表現,其中包含RUNX2和OCN都有較高的表現量,而透過Transwell的遷移測試,我們則發現條件培養液對於間葉幹細胞有招募的效果。另外一方面,在螢光顯微鏡觀察、CCK-8測定和鹼性磷酸酶的染色結果中,我們證實了明膠止血棉確實是有助於間葉幹細胞的增生和分化。在體內試驗中,空白組作為對照,其餘分別以新鮮培養液(FM group)、條件培養液(CM group)、5×10^4個綠螢光豬間葉幹細胞(MSC group)搭配明膠止血綿移植在大鼠頭骨缺損模型中進行6週和10週的修復測試。在微電腦斷層掃描得結果中,無論是在第6週或第10週,與對照組和FM組相比,CM和MSC組新生成骨頭的面積都是顯著較大的;另外有趣的是,我們發現CM組開始進行骨修復的時間早於MSC組。 綜上所述,在體外試驗中,我們知道條件培養液有招募間葉幹細胞及誘導骨分化的作用,而明膠止血綿有很好的生物相容性讓間葉幹細胞能在其中增殖、分化。在體內則驗證了明膠止血綿搭配條件培養液對骨再生同樣具有治療功效。這些結果顯示條件培養液透過調控宿主間葉幹細胞能取代外源性間葉幹細胞在骨修復組織工程中的作用;而在無需細胞的治療方式中,明膠止血綿搭配條件培養液的治療在未來臨床醫學上的應用是備受期待的。 " | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-25T07:29:02Z (GMT). No. of bitstreams: 1 U0001-2501202213165100.pdf: 3347964 bytes, checksum: 9229c526a3a7d716af8ad7b48076b79c (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | "CONTENTS 致謝 I 中文摘要 II Abstract IV CONTENTS VI LIST OF FIGURES IX LIST OF TABLES X Part 1- Introduction 1 Part 2- Background 2 2.1 Bone 2 2.1.1 Four types of cells in bone 2 2.1.2 Bone structure 4 2.1.3 Bone matrix 8 2.1.4 Bone ossification 8 2.1.5 Therapeutic difficulty in bone 9 2.2 Tissue engineering 10 2.2.1 Bone tissue engineering 11 2.2.2 Cell 11 2.2.3 Scaffold 12 2.2.4 Regulatory signals 14 2.2.5 Exogenic cell-free therapy 14 Part 3- Research motivation 16 Part 4- Experimental design with material and method 20 4.1 The biological regulation of MSC-CM on MSCs in vitro. 20 4.1.1 Culture of EGFP-pMSCs 21 4.1.2 Preparation of MSC-CM 21 4.1.3 RNA extraction 22 4.1.4 Reverse transcription reaction 23 4.1.5 Quantitative polymerase chain reaction, QPCR 23 4.1.6 Migration assay 24 4.1.7 Statistical analysis 25 4.2 In vitro viability and osteogenesis of EGFP-pMSCs loaded on hemostatic gelatin sponge 26 4.2.1 Prepare the construct of scaffold 27 4.2.2 Proliferation test of EGFP-pMSCs on scaffolds 27 4.2.3 Osteogenic differentiation test of EGFP-pMSCs on scaffolds 27 4.2.4 Statistical analysis 28 4.3 Osteogenic regeneration of MSC-CM with hemostatic gelatin sponge transplanted into rat calvarial bone defect 29 4.2.5 Prepare the construct of scaffold 30 4.2.6 Rat calvarial bone defect model 30 4.2.7 Radiographic 30 4.2.8 Statistical analysis 31 Part 5- Results 32 5.1 In vitro regulation of MSC-CM on MSCs. 32 5.1.1 Culture of EGFP-pMSCs and RFP-pMSCs 32 5.1.2 MSC-CM up-regulates osteogenic gene expression of pMSCs 33 5.1.3 In vitro recruitment of MSCs by MSC-CM. 33 5.2 In vitro evaluation of EGFP-pMSCs loaded on hemostatic gelatin sponge 37 5.2.1 Biocompatibility of hemostatic gelatin sponge to EGFP-pMSCs 37 5.2.2 Osteoconduction of hemostatic gelatin sponge with EGFP-pMSCs 37 5.3 Osteogenic regeneration of MSC-CM with hemostatic gelatin sponge transplanted into rat calvarial bone defect 40 Part 6- Discussion 44 Part 7- Conclusion 47 Part 8- Reference 48 LIST OF FIGURES Figure 1. Four types of cells in bone remodeling. 3 Figure 2. The structure of compact bone. 6 Figure 3. The structure of trabeculae. 7 Figure 4. Triad of tissue engineering. 10 Figure 5. Schematic represent the recruitment and following osteogenic differentiation of mesenchymal stem cells (MSCs) during bone regeneration. 15 Figure 6. In vivo fluorescence quantification. 17 Figure 7. In vivo Hematoxylin and eosin staining. 18 Figure 8. In vitro experimental design for biological regulation of MSC-CM. 20 Figure 9. The flow diagram of transwells migration test (A) and parameters for quantitative analysis (B). 25 Figure 10. In vitro experimental design to evaluate the feasibility of hemostatic gelatin sponge to carry EGFP-pMSCs. 26 Figure 11. In vivo experimental design for rat calvarial bone defect model. 29 Figure 12. Fluorescence expression of EGFP-pMSCs and RFP-pMSCs in the dishes. 32 Figure 13. Effect of MSC-CM on EGFP-pMSC gene expression. 34 Figure 14. Effect of MSC-CM on the migration of EGFP-pMSCs. 35 Figure 15. EGFP-pMSCs grew and proliferated in hemostatic gelatin sponge. 38 Figure 16. Osteo-differentiation of EGFP-pMSCs in hemostatic gelatin sponge. 39 Figure 17. Establishment of rat calvarial bone defect model. 41 Figure 18. Micro-CT image of bone regeneration after hemostatic gelatin sponges with FM/CM/ EGFP-pMSC were implanted into rat calvarial bone defect. 42 Figure 19. Quantitation of bone regenerative area after hemostatic gelatin sponges with FM/CM/EGFP-pMSCs were implanted into rat calvarial bone defect. 43 LIST OF TABLES Table 1. Bone classifications 5 Table 2. Primer used in the quantitative polymerase chain reaction 24 Table 3. Composition of quantitative polymerase chain reaction 24 " | |
| dc.language.iso | en | |
| dc.subject | 頭骨缺損治療 | zh_TW |
| dc.subject | 間葉幹細胞 | zh_TW |
| dc.subject | 骨修復組織工程 | zh_TW |
| dc.subject | 條件培養液 | zh_TW |
| dc.subject | 無需細胞的治療方式 | zh_TW |
| dc.subject | conditioned medium | en |
| dc.subject | cell-free therapy | en |
| dc.subject | mesenchymal stem cell | en |
| dc.subject | bone tissue engineering | en |
| dc.subject | calvarial bone defect | en |
| dc.title | 以間葉幹細胞條件培養液搭配明膠止血棉用於治療大鼠頭骨缺損 | zh_TW |
| dc.title | Bone regeneration of mesenchymal stem cell-conditioned medium loaded hemostatic gelatin sponge on rat calvarial defect | en |
| dc.date.schoolyear | 110-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳銘正(Tung-Chieh Chen),賴伯亮(Ting-Ting Hwang),謝明凱(Shao-Yun Fang) | |
| dc.subject.keyword | 間葉幹細胞,骨修復組織工程,條件培養液,無需細胞的治療方式,頭骨缺損治療, | zh_TW |
| dc.subject.keyword | mesenchymal stem cell,bone tissue engineering,conditioned medium,cell-free therapy,calvarial bone defect, | en |
| dc.relation.page | 55 | |
| dc.identifier.doi | 10.6342/NTU202200196 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2022-01-26 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 動物科學技術學研究所 | zh_TW |
| dc.date.embargo-lift | 2025-01-25 | - |
| 顯示於系所單位: | 動物科學技術學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2501202213165100.pdf | 3.27 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
