Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 解剖學暨細胞生物學科所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82304
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor許書豪(SHU-HAO HSU)
dc.contributor.authorPeng-Fang Maen
dc.contributor.author馬鵬芳zh_TW
dc.date.accessioned2022-11-25T06:35:22Z-
dc.date.copyright2021-11-09
dc.date.issued2021
dc.date.submitted2021-09-22
dc.identifier.citation1. Liss KH, Finck BN. PPARs and nonalcoholic fatty liver disease. Biochimie. 2017 May;136:65-74. doi: 10.1016/j.biochi.2016.11.009. 2. Loomba R, Sanyal AJ. The global NAFLD epidemic. Nat Rev Gastroenterol Hepatol. 2013 Nov;10(11):686-90. doi: 10.1038/nrgastro.2013.171. 3. Yamada H, Suzuki K, Ichino N, Ando Y, Sawada A, Osakabe K, Sugimoto K, Ohashi K, Teradaira R, Inoue T, Hamajima N, Hashimoto S. Associations between circulating microRNAs (miR-21, miR-34a, miR-122 and miR-451) and non-alcoholic fatty liver. Clin Chim Acta. 2013 Sep 23;424:99-103. doi: 10.1016/j.cca.2013.05.021. 4. Berlanga A, Guiu-Jurado E, Porras JA, Auguet T. Molecular pathways in non-alcoholic fatty liver disease. Clin Exp Gastroenterol. 2014 Jul 5;7:221-39. doi: 10.2147/CEG.S62831. 5. Pant A, Rondini EA, Kocarek TA. Farnesol induces fatty acid oxidation and decreases triglyceride accumulation in steatotic HepaRG cells. Toxicol Appl Pharmacol. 2019 Feb 15;365:61-70. doi: 10.1016/j.taap.2019.01.003. 6. Mundi MS, Velapati S, Patel J, Kellogg TA, Abu Dayyeh BK, Hurt RT. Evolution of NAFLD and Its Management. Nutr Clin Pract. 2020 Feb;35(1):72-84. doi: 10.1002/ncp.10449. 7. Wang XW, Heegaard NH, Orum H. MicroRNAs in liver disease. Gastroenterology. 2012 Jun;142(7):1431-43. doi: 10.1053/j.gastro.2012.04.007. 8. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004 Jan 23;116(2):281-97. doi: 10.1016/s0092-8674(04)00045-5. 9. Carthew RW. Gene regulation by microRNAs. Curr Opin Genet Dev. 2006 Apr;16(2):203-8. doi: 10.1016/j.gde.2006.02.012. 10. Thakral S, Ghoshal K. miR-122 is a unique molecule with great potential in diagnosis, prognosis of liver disease, and therapy both as miRNA mimic and antimir. Curr Gene Ther. 2015;15(2):142-50. doi: 10.2174/1566523214666141224095610. 11. Hand NJ, Master ZR, Eauclaire SF, Weinblatt DE, Matthews RP, Friedman JR. The microRNA-30 family is required for vertebrate hepatobiliary development. Gastroenterology. 2009 Mar;136(3):1081-90. doi: 10.1053/j.gastro.2008.12.006. 12. Hsu SH, Wang B, Kota J, Yu J, Costinean S, Kutay H, Yu L, Bai S, La Perle K, Chivukula RR, Mao H, Wei M, Clark KR, Mendell JR, Caligiuri MA, Jacob ST, Mendell JT, Ghoshal K. Essential metabolic, anti-inflammatory, and anti-tumorigenic functions of miR-122 in liver. J Clin Invest. 2012 Aug;122(8):2871-83. doi: 10.1172/JCI63539. 13. Ji J, Zhang J, Huang G, Qian J, Wang X, Mei S. Over-expressed microRNA-27a and 27b influence fat accumulation and cell proliferation during rat hepatic stellate cell activation. FEBS Lett. 2009 Feb 18;583(4):759-66. doi: 10.1016/j.febslet.2009.01.034. 14. Meng Z, Fu X, Chen X, Zeng S, Tian Y, Jove R, Xu R, Huang W. miR-194 is a marker of hepatic epithelial cells and suppresses metastasis of liver cancer cells in mice. Hepatology. 2010 Dec;52(6):2148-57. doi: 10.1002/hep.23915. 15. Jenkins RH, Martin J, Phillips AO, Bowen T, Fraser DJ. Transforming growth factor β1 represses proximal tubular cell microRNA-192 expression through decreased hepatocyte nuclear factor DNA binding. Biochem J. 2012 Apr 15;443(2):407-16. doi: 10.1042/BJ20111861. 16. Hino K, Tsuchiya K, Fukao T, Kiga K, Okamoto R, Kanai T, Watanabe M. Inducible expression of microRNA-194 is regulated by HNF-1alpha during intestinal epithelial cell differentiation. RNA. 2008 Jul;14(7):1433-42. doi: 10.1261/rna.810208. 17. Krützfeldt J, Rösch N, Hausser J, Manoharan M, Zavolan M, Stoffel M. MicroRNA-194 is a target of transcription factor 1 (Tcf1, HNF1α) in adult liver and controls expression of frizzled-6. Hepatology. 2012 Jan;55(1):98-107. doi: 10.1002/hep.24658. 18. Morimoto A, Kannari M, Tsuchida Y, Sasaki S, Saito C, Matsuta T, Maeda T, Akiyama M, Nakamura T, Sakaguchi M, Nameki N, Gonzalez FJ, Inoue Y. An HNF4α-microRNA-194/192 signaling axis maintains hepatic cell function. J Biol Chem. 2017 Jun 23;292(25):10574-10585. doi: 10.1074/jbc.M117.785592. 19. Nie H, Song C, Wang D, Cui S, Ren T, Cao Z, Liu Q, Chen Z, Chen X, Zhou Y. MicroRNA-194 inhibition improves dietary-induced non-alcoholic fatty liver disease in mice through targeting on FXR. Biochim Biophys Acta Mol Basis Dis. 2017 Dec;1863(12):3087-3094. doi: 10.1016/j.bbadis.2017.09.020. 20. Howell LS, Ireland L, Park BK, Goldring CE. MiR-122 and other microRNAs as potential circulating biomarkers of drug-induced liver injury. Expert Rev Mol Diagn. 2018 Jan;18(1):47-54. doi: 10.1080/14737159.2018.1415145. 21. Nagano T, Higashisaka K, Kunieda A, Iwahara Y, Tanaka K, Nagano K, Abe Y, Kamada H, Tsunoda S, Nabeshi H, Yoshikawa T, Yoshioka Y, Tsutsumi Y. Liver-specific microRNAs as biomarkers of nanomaterial-induced liver damage. Nanotechnology. 2013 Oct 11;24(40):405102. doi: 10.1088/0957-4484/24/40/405102. 22. Wang B, Shen ZL, Gao ZD, Zhao G, Wang CY, Yang Y, Zhang JZ, Yan YC, Shen C, Jiang KW, Ye YJ, Wang S. MiR-194, commonly repressed in colorectal cancer, suppresses tumor growth by regulating the MAP4K4/c-Jun/MDM2 signaling pathway. Cell Cycle. 2015;14(7):1046-58. doi: 10.1080/15384101.2015.1007767. 23. Khella HW, Bakhet M, Allo G, Jewett MA, Girgis AH, Latif A, Girgis H, Von Both I, Bjarnason GA, Yousef GM. miR-192, miR-194 and miR-215: a convergent microRNA network suppressing tumor progression in renal cell carcinoma. Carcinogenesis. 2013 Oct;34(10):2231-9. doi: 10.1093/carcin/bgt184. 24. de Souza CO, Teixeira AAS, Biondo LA, Lima Junior EA, Batatinha HAP, Rosa Neto JC. Palmitoleic Acid Improves Metabolic Functions in Fatty Liver by PPARα-Dependent AMPK Activation. J Cell Physiol. 2017 Aug;232(8):2168-2177. doi: 10.1002/jcp.25715. 25. Patsouris D, Reddy JK, Müller M, Kersten S. Peroxisome proliferator-activated receptor alpha mediates the effects of high-fat diet on hepatic gene expression. Endocrinology. 2006 Mar;147(3):1508-16. doi: 10.1210/en.2005-1132. 26. Abdelmegeed MA, Yoo SH, Henderson LE, Gonzalez FJ, Woodcroft KJ, Song BJ. PPARalpha expression protects male mice from high fat-induced nonalcoholic fatty liver. J Nutr. 2011 Apr 1;141(4):603-10. doi: 10.3945/jn.110.135210. 27. Tanaka T, Yamamoto J, Iwasaki S, Asaba H, Hamura H, Ikeda Y, Watanabe M, Magoori K, Ioka RX, Tachibana K, Watanabe Y, Uchiyama Y, Sumi K, Iguchi H, Ito S, Doi T, Hamakubo T, Naito M, Auwerx J, Yanagisawa M, Kodama T, Sakai J. Activation of peroxisome proliferator-activated receptor delta induces fatty acid beta-oxidation in skeletal muscle and attenuates metabolic syndrome. Proc Natl Acad Sci U S A. 2003 Dec 23;100(26):15924-9. doi: 10.1073/pnas.0306981100. 28. Zhu Y, Alvares K, Huang Q, Rao MS, Reddy JK. Cloning of a new member of the peroxisome proliferator-activated receptor gene family from mouse liver. J Biol Chem. 1993 Dec 25;268(36):26817-20. 29. Matsusue K, Haluzik M, Lambert G, Yim SH, Gavrilova O, Ward JM, Brewer B Jr, Reitman ML, Gonzalez FJ. Liver-specific disruption of PPARgamma in leptin-deficient mice improves fatty liver but aggravates diabetic phenotypes. J Clin Invest. 2003 Mar;111(5):737-47. doi: 10.1172/JCI17223. 30. Puigserver P, Wu Z, Park CW, Graves R, Wright M, Spiegelman BM. A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell. 1998 Mar 20;92(6):829-39. doi: 10.1016/s0092-8674(00)81410-5. 31. Hashidume T, Sasaki T, Inoue J, Sato R. Consumption of soy protein isolate reduces hepatic SREBP-1c and lipogenic gene expression in wild-type mice, but not in FXR-deficient mice. Biosci Biotechnol Biochem. 2011;75(9):1702-7. doi: 10.1271/bbb.110224. 32. Wu H, Deng X, Shi Y, Su Y, Wei J, Duan H. PGC-1α, glucose metabolism and type 2 diabetes mellitus. J Endocrinol. 2016 Jun;229(3):R99-R115. doi: 10.1530/JOE-16-0021. 33. Tang H, Zhao H, Yu ZY, Feng X, Fu BS, Qiu CH, Zhang JW. MicroRNA-194 inhibits cell invasion and migration in hepatocellular carcinoma through PRC1-mediated inhibition of Wnt/β-catenin signaling pathway. Dig Liver Dis. 2019 Sep;51(9):1314-1322. doi: 10.1016/j.dld.2019.02.012. 34. Zhao HJ, Ren LL, Wang ZH, Sun TT, Yu YN, Wang YC, Yan TT, Zou W, He J, Zhang Y, Hong J, Fang JY. MiR-194 deregulation contributes to colorectal carcinogenesis via targeting AKT2 pathway. Theranostics. 2014 Sep 19;4(12):1193-208. doi: 10.7150/thno.8712. 35. Cai HK, Chen X, Tang YH, Deng YC. MicroRNA-194 modulates epithelial-mesenchymal transition in human colorectal cancer metastasis. Onco Targets Ther. 2017 Feb 28;10:1269-1278. doi: 10.2147/OTT.S125172. 36. Zhao H, Chen J, Chen J, Kong X, Zhu H, Zhang Y, Dong H, Wang J, Ren Q, Wang Q, Chen S, Deng Z, Chen Z, Cui Q, Zheng J, Lu J, Wang S, Tan J. miR-192/215-5p act as tumor suppressors and link Crohn's disease and colorectal cancer by targeting common metabolic pathways: An integrated informatics analysis and experimental study. J Cell Physiol. 2019 Nov;234(11):21060-21075. doi: 10.1002/jcp.28709. 37. Krupa A, Jenkins R, Luo DD, Lewis A, Phillips A, Fraser D. Loss of MicroRNA-192 promotes fibrogenesis in diabetic nephropathy. J Am Soc Nephrol. 2010 Mar;21(3):438-47. doi: 10.1681/ASN.2009050530. 38. Moravcová A, Červinková Z, Kučera O, Mezera V, Rychtrmoc D, Lotková H. The effect of oleic and palmitic acid on induction of steatosis and cytotoxicity on rat hepatocytes in primary culture. Physiol Res. 2015;64(Suppl 5):S627-36. doi: 10.33549/physiolres.933224. 39. Chiang JYL, Ferrell JM. Bile acid receptors FXR and TGR5 signaling in fatty liver diseases and therapy. Am J Physiol Gastrointest Liver Physiol. 2020 Mar 1;318(3):G554-G573. doi: 10.1152/ajpgi.00223.2019. E 40. Preidis GA, Kim KH, Moore DD. Nutrient-sensing nuclear receptors PPARα and FXR control liver energy balance. J Clin Invest. 2017 Apr 3;127(4):1193-1201. doi: 10.1172/JCI88893. 41. Chen X, Li L, Liu X, Luo R, Liao G, Li L, Liu J, Cheng J, Lu Y, Chen Y. Oleic acid protects saturated fatty acid mediated lipotoxicity in hepatocytes and rat of non-alcoholic steatohepatitis. Life Sci. 2018 Jun 15;203:291-304. doi: 10.1016/j.lfs.2018.04.022. 42. Huang F, Chen J, Wang J, Zhu P, Lin W. Palmitic Acid Induces MicroRNA-221 Expression to Decrease Glucose Uptake in HepG2 Cells via the PI3K/AKT/GLUT4 Pathway. Biomed Res Int. 2019 Nov 11;2019:8171989. doi: 10.1155/2019/8171989. 43. Ricchi M, Odoardi MR, Carulli L, Anzivino C, Ballestri S, Pinetti A, Fantoni LI, Marra F, Bertolotti M, Banni S, Lonardo A, Carulli N, Loria P. Differential effect of oleic and palmitic acid on lipid accumulation and apoptosis in cultured hepatocytes. J Gastroenterol Hepatol. 2009 May;24(5):830-40. doi: 10.1111/j.1440-1746.2008.05733.x. 44. Kong JY, Rabkin SW. Lovastatin does not accentuate but is rather additive to palmitate-induced apoptosis in cardiomyocytes. Prostaglandins Leukot Essent Fatty Acids. 2002 Nov;67(5):293-302. doi: 10.1054/plef.2002.0432. 45. Sparagna GC, Hickson-Bick DL, Buja LM, McMillin JB. Fatty acid-induced apoptosis in neonatal cardiomyocytes: redox signaling. Antioxid Redox Signal. 2001 Feb;3(1):71-9. doi: 10.1089/152308601750100524. 46. Mei S, Ni HM, Manley S, Bockus A, Kassel KM, Luyendyk JP, Copple BL, Ding WX. Differential roles of unsaturated and saturated fatty acids on autophagy and apoptosis in hepatocytes. J Pharmacol Exp Ther. 2011 Nov;339(2):487-98. doi: 10.1124/jpet.111.184341. 47. Malhi H, Bronk SF, Werneburg NW, Gores GJ. Free fatty acids induce JNK-dependent hepatocyte lipoapoptosis. J Biol Chem. 2006 Apr 28;281(17):12093-101. doi: 10.1074/jbc.M510660200. 48. Torres LF, Cogliati B, Otton R. Green Tea Prevents NAFLD by Modulation of miR-34a and miR-194 Expression in a High-Fat Diet Mouse Model. Oxid Med Cell Longev. 2019 Dec 4;2019:4168380. doi: 10.1155/2019/4168380. 49. Thau N, Knippenberg S, Körner S, Rath KJ, Dengler R, Petri S. Decreased mRNA expression of PGC-1α and PGC-1α-regulated factors in the SOD1G93A ALS mouse model and in human sporadic ALS. J Neuropathol Exp Neurol. 2012 Dec;71(12):1064-74. doi: 10.1097/NEN.0b013e318275df4b. 50. Miao L, St Clair DK. Regulation of superoxide dismutase genes: implications in disease. Free Radic Biol Med. 2009 Aug 15;47(4):344-56. doi: 10.1016/j.freeradbiomed.2009.05.018. 51. Evans MD, Dizdaroglu M, Cooke MS. Oxidative DNA damage and disease: induction, repair and significance. Mutat Res. 2004 Sep;567(1):1-61. doi: 10.1016/j.mrrev.2003.11.001. 52. Chen AF, Davies CM, De Lin M, Fermor B. Oxidative DNA damage in osteoarthritic porcine articular cartilage. J Cell Physiol. 2008 Dec;217(3):828-33. doi: 10.1002/jcp.21562. 53. Sun Y, Oberley LW. Redox regulation of transcriptional activators. Free Radic Biol Med. 1996;21(3):335-48. doi: 10.1016/0891-5849(96)00109-8. 54. Levanon D, Lieman-Hurwitz J, Dafni N, Wigderson M, Sherman L, Bernstein Y, Laver-Rudich Z, Danciger E, Stein O, Groner Y. Architecture and anatomy of the chromosomal locus in human chromosome 21 encoding the Cu/Zn superoxide dismutase. EMBO J. 1985 Jan;4(1):77-84. 55. Sun L, Trajkovski M. MiR-27 orchestrates the transcriptional regulation of brown adipogenesis. Metabolism. 2014 Feb;63(2):272-82. doi: 10.1016/j.metabol.2013.10.004. 56. Lemecha M, Morino K, Imamura T, Iwasaki H, Ohashi N, Ida S, Sato D, Sekine O, Ugi S, Maegawa H. MiR-494-3p regulates mitochondrial biogenesis and thermogenesis through PGC1-α signalling in beige adipocytes. Sci Rep. 2018 Oct 10;8(1):15096. doi: 10.1038/s41598-018-33438-3. 57. Zhang S, Liu X, Liu J, Guo H, Xu H, Zhang G. PGC-1 alpha interacts with microRNA-217 to functionally regulate breast cancer cell proliferation. Biomed Pharmacother. 2017 Jan;85:541-548. doi: 10.1016/j.biopha.2016.11.062. 58. Aoi W, Naito Y, Mizushima K, Takanami Y, Kawai Y, Ichikawa H, Yoshikawa T. The microRNA miR-696 regulates PGC-1{alpha} in mouse skeletal muscle in response to physical activity. Am J Physiol Endocrinol Metab. 2010 Apr;298(4):E799-806. doi: 10.1152/ajpendo.00448.2009. 59. Gong J, Yang F, Yang Q, Tang X, Shu F, Xu L, Wang Z, Yang L. Sweroside ameliorated carbon tetrachloride (CCl4)-induced liver fibrosis through FXR-miR-29a signaling pathway. J Nat Med. 2020 Jan;74(1):17-25. doi: 10.1007/s11418-019-01334-3. 60. Adorini L, Pruzanski M, Shapiro D. Farnesoid X receptor targeting to treat nonalcoholic steatohepatitis. Drug Discov Today. 2012 Sep;17(17-18):988-97. doi: 10.1016/j.drudis.2012.05.012.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82304-
dc.description.abstract肥胖誘導的脂肪肝是非酒精性脂肪肝的一種,是由於肝細胞對於脂質代謝異常與脂肪滴堆積的結果。短期的脂肪肝堆積其實是可逆的,只要做好飲食控制與適當運動都可以治癒。然而,當脂肪肝變成慢性且反覆發炎與纖維化,就會導致肝臟受損,過度嚴重時,無法有效治療。 研究顯示在肝臟中miR-192和miR-194高度表現而且和肝的疾病有密切關係。然而,miR-192/194缺失是否導致肝代謝異常仍有待研究,所以本研究的目標是探討miR-192/194的缺失如何影響飲食所導致的脂肪肝。 首先,我們分析餵食正常飼料的miR-192/194缺失組(後稱突變組),發現與控制組相比,不論在肝臟的型態、血清各項生化指標均相差無幾。接著,我們以高脂飼料餵食六週大(簡稱年輕組)和三個月大(簡稱成年組)的小鼠。每一週測量體重變化,並於第12週犧牲動物,並收取血清做總膽固醇、血糖與三酸甘油脂肪酸的測量、肝組織做蛋白質與RNA表現量測試和H E染色和Trichrome染色。 在餵食12週高脂飼料後,年輕控制組的體重是明顯比年輕突變組高。形態學上的觀察可以發現,不論是年輕組或成年組中,突變組的小鼠肝臟脂肪滴堆積與纖維化比控制組少。血清生化分析結果也可以得知在成年突變組小鼠中,總膽固醇也顯著低於控制組。更進一步分析基因表現量,利用q-PCR與西方墨點法可以得知PPARα、PPARγ、PGC1α和PGC1β在突變組的小鼠中表現量高於控制組。文獻上已知這些基因的上調可以增加肝臟分解脂質與避免形成脂肪堆積。為證實miR-192/194是否直接調控PGC1α,我們利用轉染的方式上調或抑制AML12細胞中的miR-192/194。結果發現PGC1α以及其他PPAR 訊息傳遞的基因均為miR-194所抑制,而非miR-192。 同時,miR-194的過度表現會導致細胞在棕櫚酸的誘導後產生較多的脂肪。最後,我們利用冷光酶報告蛋白確認了miR-194可直接抑制帶有PGC1α 3’-UTR的質體表現。且此抑制的效果在突變miR-194結合位點後消失。綜上,我們確認miR-194可直接調控PGC1α。 總結來說,我們認為miR-192/194的缺失會保護肝臟免於飲食所誘導的脂肪肝,且可能是透過上調PGC1α以及其他PPAR 訊息傳遞來控制。後續會需要再做更多實驗來證實miR-192/194對於非酒精性脂肪肝的潛在治療性。zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-25T06:35:22Z (GMT). No. of bitstreams: 1
U0001-3008202118152700.pdf: 10330453 bytes, checksum: 6aa782b2ccd88902b2716331cbac40cc (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents"致謝………………………………………………………………………………………i 中文摘要………………………………………………………………………………...ii 英文摘要………………………………………………………………………………..iii 縮寫表……………………………………………………………………………….......v 目錄……………………………………………………………………………………..vi 第一章 緒論…………………………………………………………………………...1 1. 引言…………………………………………………………………………...1 2. 微小核醣核酸在肝臟的功能……………………….......................................1 3. MiR-192/194在肝臟及其他器官中的功能…………………………………2 4. PPAR與肝臟之關係….……………………………………………………...3 5. PPARγ co-activator 1(PGC1) 與肝臟之關係………………………………..3 6. 目前學界對於miR調控PGC1α的研究……………………………………4 7. 研究動機……………………………………………………………………...5 第二章 實驗方法……………………………………………………………………...7 1. 實驗動物均來自本院實驗動物中心………………………………………...7 2. 核醣核酸萃取(RNA)…………………………………………………............7 3. 反轉錄聚合酶連鎖反應(Reverse Transcription-Polymerase Chain Reaction, RT-PCR)…………………………………………….…………………………8 4. 即時定量聚合酶連鎖反應(Real-time Quantitative PCR, RT-qPCR)..............9 5. 西方墨點法(Western blot assay)……………………………………….……..9 6. 組織固定……………………………………………….……………………10 7. 蘇木精-伊紅染色(Hematoxylin and Eosin stain, H E stain)………………11 8. 去氧核醣核酸萃取(DNA)及測定基因型………………………….……….11 9. DNA製備…………..………………………………………………………..13 10. 勝任細胞轉型……………………………………………………………….14 11. 確認勝任細胞轉型成功與否……………………………………………….15 12. 質體純化…………………………………………………………………….16 13. Inverse PCR………………………………………………………………….16 14. 細胞轉染實驗…...…………………………………………………………..18 15. 冷光酵素報導表現測試…………………………………………………….18 16. 組織ORO染色……………………………………………………………...19 17. 脂肪肝形成分數評比……………………………………………………….19 第三章 實驗結果…………………………………………………………..………...20 1. miR-192/194突變小鼠之產生………………………………………………20 2. miR-194-2突變小鼠的形態學上定位………………………………………20 3. miR-192/194的基因缺失後抑制肝臟脂肪堆積……………………………21 4. miR-192/194之缺失降低血液總膽固醇……………………………………22 5. 脂肪代謝與發炎訊息傳遞之相關基因在miR-192/194基因突變的高脂飲食小鼠肝臟表達較高………………………………………………………..22 6. 利用外源基因轉染細胞可發現miR-192/194表達上升與下降…………...22 7. 轉染之後經過棕櫚酸處理的小鼠肝細胞脂肪代謝基因表現量相對於不處理組較高……………………………………………………………………..23 8. 轉染合併棕櫚酸處理的小鼠肝細胞的脂肪合成基因表現量比不處理組別較低…………………………………………………………………………..23 9. 小鼠肝細胞的粒線體氧化壓力代謝反應miR-192/194抑制組表現較高...24 10. MiR-194會直接抑制HEK-293T細胞的PGC1α 3’-UTR表現量……..….24 11. 小鼠肝細胞處理PA後控制組脂肪滴生成比較多……….………………..24 第四章 討論…………………………………………………………………………...25 1. 年輕小鼠與成鼠之間的代謝情況…………………………………………..25 2. MiR-192/194突變小鼠抵抗肝臟脂肪合成的能力...………………………25 3. MiR-194抑制後會促進PGC1α的表現………...…………………………..26 4. MiR-194與代謝基因關係……...…………………………………………...26 5. PA與OA對於細胞毒殺性與脂肪合成的關係……………………………27 6. 動物模型與細胞模型的發炎基因探討……………………………………..27 7. PGC1α會促進粒線體的生化代謝反應…………………………………….28 8. MiR-192/194未來治療策略...………………………………………………29 第五章 結論…………………………………………………………………………...30 第六章 附圖…………………………………………………………………………...31 參考文獻……………………………………………………………………………….61 表1抗體表…………………………………………………………………………….67 表2本篇實驗所使用之引子………………………………………………………….68 附錄一 實驗溶液配製………………………………………………………………...69 1. 反轉錄聚合酶連鎖反應(Reverse Transcription-Polymerase Chain Reaction, RT-PCR)………………………………..…………………………………….69 2. 十二烷基硫酸鈉聚丙烯安凝膠體電泳配置………………………………..69 3. 西方墨點法(Western blot assay)……………………………………………..69 4. 組織固定……………………………………………………………………..70 5. 去氧核醣核酸萃取(DNA)及測定基因型…………………………………...70 6. 細胞培養液…………………………………………………………………..71 7. 棕櫚酸配製…………………………………………………………………..71 8. 細胞螢光染色………………………………………………………………..71 9. 組織脂肪染色………………………………………………………………..71 10. LB agar製備…………………………………………………………………71 11. 冷光酵素報導測試…………………………………………………………..72 12. 葡萄糖溶液配製……………………………………………………………..72"
dc.language.isozh-TW
dc.subjectPPARzh_TW
dc.subjectmiR-192/194zh_TW
dc.subject高脂飼料zh_TW
dc.subjectPGC1zh_TW
dc.subject非酒精性脂肪肝zh_TW
dc.subjectHigh-fat diet(HFD)en
dc.subjectmiR-192/194en
dc.subjectNonalcoholic Fatty Liver Disease(NAFLD)en
dc.subjectPPARen
dc.subjectPGC1en
dc.titleMiR-192/194的缺失如何影響飲食誘導的脂肪肝zh_TW
dc.titleEffect of MiR-192/194 Deficiency on Dietary Induced Fatty Liveren
dc.date.schoolyear109-2
dc.description.degree碩士
dc.contributor.oralexamcommittee許弘明​(Hsin-Tsai Liu),蔡欣祐(Chih-Yang Tseng)
dc.subject.keywordmiR-192/194,非酒精性脂肪肝,PPAR,PGC1,高脂飼料,zh_TW
dc.subject.keywordmiR-192/194,Nonalcoholic Fatty Liver Disease(NAFLD),PPAR,PGC1,High-fat diet(HFD),en
dc.relation.page72
dc.identifier.doi10.6342/NTU202102860
dc.rights.note未授權
dc.date.accepted2021-09-23
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept解剖學暨細胞生物學研究所zh_TW
dc.date.embargo-lift2023-09-01-
顯示於系所單位:解剖學暨細胞生物學科所

文件中的檔案:
檔案 大小格式 
U0001-3008202118152700.pdf
  未授權公開取用
10.09 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved