Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82295
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor牟中原(Chung-Yuan Mou)
dc.contributor.authorRong-Guang Wuen
dc.contributor.author吳榮光zh_TW
dc.date.accessioned2022-11-25T06:35:12Z-
dc.date.copyright2022-02-18
dc.date.issued2022
dc.date.submitted2022-02-10
dc.identifier.citation1. Xie, Z.; Wu, Z.; An, X.; Yue, X.; Wang, J.; Abudula, A.; Guan, G., Anode-free rechargeable lithium metal batteries: Progress and prospects. Energy Storage Materials 2020, 32, 386-401. 2. Chen, Y.; Kang, Y.; Zhao, Y.; Wang, L.; Liu, J.; Li, Y.; Liang, Z.; He, X.; Li, X.; Tavajohi, N.; Li, B., A review of lithium-ion battery safety concerns: The issues, strategies, and testing standards. Journal of Energy Chemistry 2021, 59, 83-99. 3. Zhao, Y.; Pohl, O.; Bhatt, A. I.; Collis, G. E.; Mahon, P. J.; Rüther, T.; Hollenkamp, A. F., A Review on Battery Market Trends, Second-Life Reuse, and Recycling. Sustainable Chemistry 2021, 2 (1), 167-205. 4. Li, P.; Kim, H.; Ming, J.; Jung, H.-G.; Belharouak, I.; Sun, Y.-K., Quasi-compensatory effect in emerging anode-free lithium batteries. eScience 2021. 5. Rahman, M. A.; Wang, X.; Wen, C., High Energy Density Metal-Air Batteries: A Review. Journal of The Electrochemical Society 2013, 160 (10), A1759-A1771. 6. Lin, D.; Liu, Y.; Cui, Y., Reviving the lithium metal anode for high-energy batteries. Nat Nanotechnol 2017, 12 (3), 194-206. 7. Rosenman, A.; Markevich, E.; Salitra, G.; Aurbach, D.; Garsuch, A.; Chesneau, F. F., Review on Li‐sulfur battery systems: An integral perspective. Advanced Energy Materials 2015, 5 (16), 1500212. 8. Su, X.; Wu, Q.; Li, J.; Xiao, X.; Lott, A.; Lu, W.; Sheldon, B. W.; Wu, J., Silicon‐based nanomaterials for lithium‐ion batteries: a review. Advanced Energy Materials 2014, 4 (1), 1300882. 9. Yuan, J.; Yu, J.-S.; Sundén, B., Review on mechanisms and continuum models of multi-phase transport phenomena in porous structures of non-aqueous Li-Air batteries. Journal of Power Sources 2015, 278, 352-369. 10. Zhang, Y.; Zuo, T.-T.; Popovic, J.; Lim, K.; Yin, Y.-X.; Maier, J.; Guo, Y.-G., Towards better Li metal anodes: Challenges and strategies. Materials Today 2020, 33, 56-74. 11. Deng, D., Li‐ion batteries: basics, progress, and challenges. Energy Science Engineering 2015, 3 (5), 385-418. 12. Qian, J.; Adams, B. D.; Zheng, J.; Xu, W.; Henderson, W. A.; Wang, J.; Bowden, M. E.; Xu, S.; Hu, J.; Zhang, J. G., Anode‐free rechargeable lithium metal batteries. Advanced Functional Materials 2016, 26 (39), 7094-7102. 13. Nanda, S.; Gupta, A.; Manthiram, A., Anode‐Free Full Cells: A Pathway to High‐Energy Density Lithium‐Metal Batteries. Advanced Energy Materials 2020, 11 (2). 14. Alvarado, J.; Schroeder, M. A.; Pollard, T. P.; Wang, X.; Lee, J. Z.; Zhang, M.; Wynn, T.; Ding, M.; Borodin, O.; Meng, Y. S.; Xu, K., Bisalt ether electrolytes: a pathway towards lithium metal batteries with Ni-rich cathodes. Energy Environmental Science 2019, 12 (2), 780-794. 15. Weber, R.; Genovese, M.; Louli, A. J.; Hames, S.; Martin, C.; Hill, I. G.; Dahn, J. R., Long cycle life and dendrite-free lithium morphology in anode-free lithium pouch cells enabled by a dual-salt liquid electrolyte. Nature Energy 2019, 4 (8), 683-689. 16. Sahalie, N. A.; Assegie, A. A.; Su, W.-N.; Wondimkun, Z. T.; Jote, B. A.; Thirumalraj, B.; Huang, C.-J.; Yang, Y.-W.; Hwang, B.-J., Effect of bifunctional additive potassium nitrate on performance of anode free lithium metal battery in carbonate electrolyte. Journal of Power Sources 2019, 437. 17. Qiao, Y.; Yang, H.; Chang, Z.; Deng, H.; Li, X.; Zhou, H., A high-energy-density and long-life initial-anode-free lithium battery enabled by a Li2O sacrificial agent. Nature Energy 2021, 6 (6), 653-662. 18. Yan, K.; Lu, Z.; Lee, H.-W.; Xiong, F.; Hsu, P.-C.; Li, Y.; Zhao, J.; Chu, S.; Cui, Y., Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth. Nature Energy 2016, 1 (3). 19. Zhang, S. S.; Fan, X.; Wang, C., A tin-plated copper substrate for efficient cycling of lithium metal in an anode-free rechargeable lithium battery. Electrochimica Acta 2017, 258, 1201-1207. 20. Wondimkun, Z. T.; Beyene, T. T.; Weret, M. A.; Sahalie, N. A.; Huang, C.-J.; Thirumalraj, B.; Jote, B. A.; Wang, D.; Su, W.-N.; Wang, C.-H., Binder-free ultra-thin graphene oxide as an artificial solid electrolyte interphase for anode-free rechargeable lithium metal batteries. Journal of Power Sources 2020, 450, 227589. 21. Assegie, A. A.; Chung, C.-C.; Tsai, M.-C.; Su, W.-N.; Chen, C.-W.; Hwang, B.-J., Multilayer-graphene-stabilized lithium deposition for anode-Free lithium-metal batteries. Nanoscale 2019, 11 (6), 2710-2720. 22. Assegie, A. A.; Cheng, J.-H.; Kuo, L.-M.; Su, W.-N.; Hwang, B.-J., Polyethylene oxide film coating enhances lithium cycling efficiency of an anode-free lithium-metal battery. Nanoscale 2018, 10 (13), 6125-6138. 23. Yang, J.; Wang, C.-Y.; Wang, C.-C.; Chen, K.-H.; Mou, C.-Y.; Wu, H.-L., Advanced nanoporous separators for stable lithium metal electrodeposition at ultra-high current densities in liquid electrolytes. Journal of Materials Chemistry A 2020, 8 (10), 5095-5104. 24. Lo, C. A.; Chang, C. C.; Tsai, Y. W.; Jiang, S. K.; Hwang, B. O. E.; Mou, C. Y.; Wu, H. L., Regulated Li Electrodeposition Behavior through Mesoporous Silica Thin Film in Anode-Free Lithium Metal Batteries. Acs Applied Energy Materials 2021, 4 (5), 5132-5142. 25. Zhong, S.; Yuan, B.; Guang, Z.; Chen, D.; Li, Q.; Dong, L.; Ji, Y.; Dong, Y.; Han, J.; He, W., Recent progress in thin separators for upgraded lithium ion batteries. Energy Storage Materials 2021, 41, 805-841. 26. Lee, H.; Yanilmaz, M.; Toprakci, O.; Fu, K.; Zhang, X., A review of recent developments in membrane separators for rechargeable lithium-ion batteries. Energy Environ. Sci. 2014, 7 (12), 3857-3886. 27. Huang, X., Separator technologies for lithium-ion batteries. Journal of Solid State Electrochemistry 2010, 15 (4), 649-662. 28. Xiang, Y.; Li, J.; Lei, J.; Liu, D.; Xie, Z.; Qu, D.; Li, K.; Deng, T.; Tang, H., Advanced Separators for Lithium-Ion and Lithium-Sulfur Batteries: A Review of Recent Progress. ChemSusChem 2016, 9 (21), 3023-3039. 29. Wu, H.; Chen, L.; Chen, Y., A mini-review of advanced separator engineering in lithium metal batteries. Sustainable Energy Fuels 2021, 5 (22), 5656-5671. 30. Yuan, M.; Liu, K., Rational design on separators and liquid electrolytes for safer lithium-ion batteries. Journal of Energy Chemistry 2020, 43, 58-70. 31. Ryou, M.-H.; Lee, D. J.; Lee, J.-N.; Lee, Y. M.; Park, J.-K.; Choi, J. W., Excellent Cycle Life of Lithium-Metal Anodes in Lithium-Ion Batteries with Mussel-Inspired Polydopamine-Coated Separators. Advanced Energy Materials 2012, 2 (6), 645-650. 32. Hao, Z.; Wu, Y.; Zhao, Q.; Tang, J.; Zhang, Q.; Ke, X.; Liu, J.; Jin, Y.; Wang, H., Functional Separators Regulating Ion Transport Enabled by Metal‐Organic Frameworks for Dendrite‐Free Lithium Metal Anodes. Advanced Functional Materials 2021, 31 (33). 33. Fan, J.; Luo, Y.; Jiang, K.; Wang, C., Protection of lithium anodes by fibrous silica nanospheres. RSC Advances 2020, 10 (6), 3145-3152. 34. Liu, Y.; Liu, Q.; Xin, L.; Liu, Y.; Yang, F.; Stach, E. A.; Xie, J., Making Li-metal electrodes rechargeable by controlling the dendrite growth direction. Nature Energy 2017, 2 (7). 35. Liu, Y.; Xiong, S.; Wang, J.; Jiao, X.; Li, S.; Zhang, C.; Song, Z.; Song, J., Dendrite-free lithium metal anode enabled by separator engineering via uniform loading of lithiophilic nucleation sites. Energy Storage Materials 2019, 19, 24-30. 36. Lee, J.-H.; Vuong, T. H. L.; Hwang, S. M.; Kim, J.-H.; Kim, Y.-J., Controlling a lithium surface with an alkyl halide nucleophile exchange. Journal of Energy Chemistry 2021, 62, 617-626. 37. Hao, X.; Zhu, J.; Jiang, X.; Wu, H.; Qiao, J.; Sun, W.; Wang, Z.; Sun, K., Ultrastrong Polyoxyzole Nanofiber Membranes for Dendrite-Proof and Heat-Resistant Battery Separators. Nano Lett 2016, 16 (5), 2981-7. 38. Pathak, R.; Chen, K.; Gurung, A.; Reza, K. M.; Bahrami, B.; Wu, F.; Chaudhary, A.; Ghimire, N.; Zhou, B.; Zhang, W. H.; Zhou, Y.; Qiao, Q., Ultrathin Bilayer of Graphite/SiO2 as Solid Interface for Reviving Li Metal Anode. Advanced Energy Materials 2019, 9 (36). 39. Kim, S.-Y.; Qi, Y., Property Evolution of Al2O3Coated and Uncoated Si Electrodes: A First Principles Investigation. Journal of The Electrochemical Society 2014, 161 (11), F3137-F3143. 40. Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H., A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys 2010, 132 (15), 154104. 41. Xia, S.; Wu, X.; Zhang, Z.; Cui, Y.; Liu, W., Practical Challenges and Future Perspectives of All-Solid-State Lithium-Metal Batteries. Chem 2019, 5 (4), 753-785. 42. Lin, D.; Yuen, P. Y.; Liu, Y.; Liu, W.; Liu, N.; Dauskardt, R. H.; Cui, Y., A Silica-Aerogel-Reinforced Composite Polymer Electrolyte with High Ionic Conductivity and High Modulus. Adv Mater 2018, 30 (32), e1802661. 43. Wu, C.; Guo, F.; Zhuang, L.; Ai, X.; Zhong, F.; Yang, H.; Qian, J., Mesoporous Silica Reinforced Hybrid Polymer Artificial Layer for High-Energy and Long-Cycling Lithium Metal Batteries. ACS Energy Letters 2020, 5 (5), 1644-1652. 44. Li, X.; Zhang, Z.; Yin, K.; Yang, L.; Tachibana, K.; Hirano, S.-i., Mesoporous silica/ionic liquid quasi-solid-state electrolytes and their application in lithium metal batteries. Journal of Power Sources 2015, 278, 128-132. 45. Zuo, T. T.; Yin, Y. X.; Wang, S. H.; Wang, P. F.; Yang, X.; Liu, J.; Yang, C. P.; Guo, Y. G., Trapping Lithium into Hollow Silica Microspheres with a Carbon Nanotube Core for Dendrite-Free Lithium Metal Anodes. Nano Lett 2018, 18 (1), 297-301. 46. Beck, J. S.; Vartuli, J. C.; Roth, W. J.; Leonowicz, M. E.; Kresge, C.; Schmitt, K.; Chu, C.; Olson, D. H.; Sheppard, E.; McCullen, S., A new family of mesoporous molecular sieves prepared with liquid crystal templates. Journal of the American Chemical Society 1992, 114 (27), 10834-10843. 47. Grün, M.; Lauer, I.; Unger, K. K., The synthesis of micrometer‐and submicrometer‐size spheres of ordered mesoporous oxide MCM‐41. Advanced Materials 1997, 9 (3), 254-257. 48. Lin, H. P.; Cheng, Y. R.; Lin, C. R.; Li, F. Y.; Chen, C. L.; Wong, S. T.; Cheng, S.; Liu, S. B.; Wan, B. Z.; Mou, C. Y., The Synthesis and Application of the Mesoporous Molecular Sieves MCM‐41—A Review. Journal of the Chinese Chemical Society 1999, 46 (3), 495-507. 49. Bhattacharyya, S.; Lelong, G.; Saboungi, M. L., Recent progress in the synthesis and selected applications of MCM-41: a short review. Journal of Experimental Nanoscience 2006, 1 (3), 375-395. 50. Zhao, D.; Feng, J.; Huo, Q.; Melosh, N.; Fredrickson, G. H.; Chmelka, B. F.; Stucky, G. D., Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. science 1998, 279 (5350), 548-552. 51. Lee, H. I.; Kim, J. H.; Stucky, G. D.; Shi, Y.; Pak, C.; Kim, J. M., Morphology-selective synthesis of mesoporous SBA-15 particles over micrometer, submicrometer and nanometer scales. Journal of Materials Chemistry 2010, 20 (39). 52. Kosuge, K.; Sato, T.; Kikukawa, N.; Takemori, M., Morphological control of rod-and fiberlike SBA-15 type mesoporous silica using water-soluble sodium silicate. Chemistry of Materials 2004, 16 (5), 899-905. 53. Sayari, A.; Han, B.-H.; Yang, Y., Simple synthesis route to monodispersed SBA-15 silica rods. Journal of the American Chemical Society 2004, 126 (44), 14348-14349. 54. Linton, P.; Hernandez-Garrido, J. C.; Midgley, P. A.; Wennerstrom, H.; Alfredsson, V., Morphology of SBA-15-directed by association processes and surface energies. Phys Chem Chem Phys 2009, 11 (46), 10973-82. 55. Yeh, Y.-Q.; Tang, C.-Y.; Mou, C.-Y., Two-dimensional crystals of mesoporous silica SBA-15 nanosheets with perpendicular and open channels. APL Materials 2014, 2 (11). 56. Chen, B. C.; Lin, H. P.; Chao, M. C.; Mou, C. Y.; Tang, C. Y., Mesoporous silica platelets with perpendicular nanochannels via a ternary surfactant system. Advanced Materials 2004, 16 (18), 1657-1661. 57. Chen, C. C.; Chen, J. H.; Chao, C. G., Post-treatment method of producing ordered array of anodic aluminum oxide using general purity commercial (99.7%) aluminum. Japanese journal of applied physics 2005, 44 (3R), 1529. 58. Thommes, M., Physical adsorption characterization of nanoporous materials. Chemie Ingenieur Technik 2010, 82 (7), 1059-1073. 59. Galarneau, A.; Villemot, F.; Rodriguez, J.; Fajula, F.; Coasne, B., Validity of the t-plot method to assess microporosity in hierarchical micro/mesoporous materials. Langmuir 2014, 30 (44), 13266-13274. 60. Zhang, C.; Jin, T.; Cheng, G.; Yuan, S.; Sun, Z.; Li, N.-W.; Yu, L.; Ding, S., Functional polymers in electrolyte optimization and interphase design for lithium metal anodes. Journal of Materials Chemistry A 2021, 9 (23), 13388-13401. 61. Beganskienė, A.; Sirutkaitis, V.; Kurtinaitienė, M.; Juškėnas, R.; Kareiva, A., FTIR, TEM and NMR investigations of Stöber silica nanoparticles. Mater Sci (Medžiagotyra) 2004, 10, 287-290. 62. Nadler, M. R.; Kempier, C., Crystallographic data 186. lithium. Analytical Chemistry 1959, 31 (12), 2109-2109. 63. Moorthy, B.; Kim, J.-H.; Lee, H.-W.; Kim, D. K., Vertically aligned carbon nanotubular structure for guiding uniform lithium deposition via capillary pressure as stable metallic lithium anodes. Energy Storage Materials 2020, 24, 602-609. 64. Kasse, R. M.; Geise, N. R.; Ko, J. S.; Nelson Weker, J.; Steinrück, H.-G.; Toney, M. F., Understanding additive controlled lithium morphology in lithium metal batteries. Journal of Materials Chemistry A 2020, 8 (33), 16960-16972. 65. Li, Y.; Li, Y.; Pei, A.; Yan, K.; Sun, Y.; Wu, C.-L.; Joubert, L.-M.; Chin, R.; Koh, A. L.; Yu, Y., Atomic structure of sensitive battery materials and interfaces revealed by cryo–electron microscopy. Science 2017, 358 (6362), 506-510. 66. Wang, X.; Zhang, M.; Alvarado, J.; Wang, S.; Sina, M.; Lu, B.; Bouwer, J.; Xu, W.; Xiao, J.; Zhang, J. G.; Liu, J.; Meng, Y. S., New Insights on the Structure of Electrochemically Deposited Lithium Metal and Its Solid Electrolyte Interphases via Cryogenic TEM. Nano Lett 2017, 17 (12), 7606-7612. 67. Zheng, X.; Jiang, R.; Qu, X.; Li, Q.; Zeng, F.; Wang, W.; Dai, Z.; Xu, Z.; Peng, J.; Xu, Z., Large-scale pattern transfer based on non-through-hole AAO self-supporting membranes. Nanotechnology 2020, 31 (19), 195301.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82295-
dc.description.abstract"近年來隨著電池應用領域的發展,人們對電池的能量密度要求越來越高,希望以更輕、更小的電池驅動手邊的電器。在此需求下,下一代的電池系統一直是被科學界廣為研究的領域。而無陽極鋰金屬電池(Anode Free Lithium Metal Battery, AFLMB),則被視為下一代的電池系統的候選者之一;其組裝時透過去除傳統鋰離子電池的陽極材料,大幅度的提升能量密度,同時降低成本並增加安全性。然而在電池充放電過程中,鋰金屬在陽極端電鍍與剝除,因著電場的的不勻性,會生成不可預測的鋰枝晶,並在循環過程生成「死鋰」,造成鋰金屬的損耗,使得無陽極鋰金屬電池面臨電池容量衰退快速的問題。 在本研究工作中,我們將具有規則垂直孔洞的中孔洞二氧化矽材料(SBA15(⊥))塗佈於銅箔上作為陽極,使鋰金屬電鍍於陽極表面時的形貌更加平整,避免鋰枝晶的生成,並使鋰金屬的可逆性顯著提升。在NMC532zh_TW
dc.description.abstractCu的系統中,透過SBA15(⊥)修飾的負極應用於無陽極鋰金屬電池,在前10圈的庫倫效率維持至95%以上的高可逆度,使電池的半衰期在0.1C的充放電環境中提高至20圈,優於單純銅箔做電極的電池性能。而為了釐清電池優化的主因,我們進行對照實驗,更換不同種類的二氧化矽奈米材料作為塗佈修飾的材料,發現只有SBA15(⊥)塗佈的電極具有優化的效果。為了進一步了解SBA15(⊥)於無陽極鋰金屬電池的貢獻,在研究過程中,我們使用掃描式電子顯微鏡及能量色散光譜進行分析,觀察鋰金屬的變化,發現SBA15(⊥)修飾的電極具有最平整且最緻密的電鍍鋰。同時我們更進一步用同步輻射中心的低銳角X光散射光譜,證實SBA15(⊥)修飾的電極具有最大的鋰單晶。 "zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-25T06:35:12Z (GMT). No. of bitstreams: 1
U0001-0802202208541500.pdf: 7666021 bytes, checksum: 1c90cd719b35b9940662e817a94a74db (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents論文口試委員審定書 i 謝誌 ii 摘要 iii Abstract iv Table of Contents vi List of Figures xi List of Tables xix Abbreviation xx Chapter 1 Introduction 1 1.1. Background 1 1.2. The Concept of Anode-free Lithium Metal Battery 3 1.2.1. Modification of the Electrolyte 4 1.2.2. Modification of the Current Collector 6 1.3. Advanced Separators for Lithium Metal Batteries 9 1.3.1. Optimizing the Performance of Polyolefin Membranes 9 1.3.2. Controlling the Dendrite Growth Direction 10 1.3.3. Developing a Novel Separator Material 11 1.4. A Brief Introduction of Mesoporous Silica Nanoparticles 13 1.4.1. MCM41 13 1.4.2. SBA15 14 1.5. Motivation 16 Chapter 2 Material and Method 19 2.1. Chemicals 19 2.2. Instruments 22 2.2.1. Scanning Electron Microscopy (SEM) 22 2.2.2. Energy-dispersive X-ray Spectroscopy (EDX) 22 2.2.3. Nitrogen Adsorption Analysis 23 2.2.4. Cyclic Voltammetry (CV) 23 2.2.5. Galvanostatic Charge/Discharge Measurements 24 2.2.6. Electrochemical Impedance Spectroscopy (EIS) 24 2.2.7. Grazing Incidence X-ray Scattering 24 2.3. Synthetic Procedures 27 2.3.1. Synthesis of Mesoporous Silica Nanosheets with Perpendicular and Open Channels (SBA15(⊥)) 27 2.3.2. Synthesis of Mesoporous Silica Film (MSTF) on Anodic Aluminum Oxide (AAO) 27 2.3.3. Synthesis of Pore-Expanded Mesoporous Silica Nanoparticles (MSNs) 29 2.4. Batteries Preparation 30 2.4.1. Anode Electrode Preparation 30 2.4.2. Preparation of Conventional Electrolyte 31 2.4.3. CR2032 Coin Cell 32 2.4.4. Pouch Cell Assemble 35 Chapter 3 Artificial Thin Film on Current Collector in Anode Free Lithium Battery 37 3.1. Characterization of Mesoporous Silica Nanoparticles 37 3.1.1. Scanning Electron Microscopy 37 3.1.2. Nitrogen Adsorption-Desorption Isotherm 39 3.1.3. Fourier-transform Infrared Spectroscopy 41 3.1.4. Grazing Incidence Small Angle X-ray Scattering 43 3.2. Characterization of Mesoporous Silica Nanoparticles Coating on Copper Foil 45 3.2.1. Scanning Electron Microscopy 45 3.2.2. Grazing Incidence Small Angle X-ray Scattering 47 3.2.3. Contact Angle Measurement 49 3.3. Performance Comparison 50 3.3.1. Anode-Free Lithium Metal Battery Measurement 50 3.4. Phenomena of Mesoporous Silica nanoparticles Coating 53 3.4.1. Cyclic Voltammetry 53 3.4.2. X-ray Photoelectron Spectroscopy 54 3.4.3. Investigation of the Lithium Morphology 55 3.4.4. Crystalline of Lithium Deposition 68 3.4.5. Electrochemical Impedance Spectroscopy 73 3.5. Summary 75 Chapter 4 Artificial Thin Film on Anodic Aluminum Oxide (AAO) as separator in Pouch Cell 77 4.1. Characterization of MSTF⊥AAO 77 4.1.1. Scanning Electron Microscopy 77 4.1.2. Grazing Incidence Small Angle X-ray Scattering 80 4.2. Performance Comparison 82 4.2.1. Lithium Metal Battery Measurement 82 4.2.2. Anode-Free Lithium Metal Battery Measurement 84 4.3. MSTF-AAO after cycling 87 4.4. Investigation of the Dead Lithium 88 4.4.1. Morphologies of Dead Lithium after Cycling in LMB 88 4.4.2. Morphologies of Dead Lithium after Cycling in AFLMB 90 4.5. Summary 92 Chapter 5 Recommendations of Future Works 95 Reference 96
dc.language.isoen
dc.subjectSBA15(⊥)zh_TW
dc.subject無陽極鋰金屬電池zh_TW
dc.subject中孔洞二氧化矽奈米材料zh_TW
dc.subjectAnode-free Li metal batteryen
dc.subjectmesoporous silica nanomaterialsen
dc.subjectSBA15(⊥)en
dc.title中孔洞奈米二氧化矽材料於無陽極鋰金屬電池的應用zh_TW
dc.titleApplication of Mesoporous Silica Nanomaterial in Anode-Free Lithium Metal Batteriesen
dc.date.schoolyear110-1
dc.description.degree碩士
dc.contributor.oralexamcommittee吳恆良(Mong-Hsun Tsai),黃炳照(Li-Han Chen),(Yuh-Pyng Sher)
dc.subject.keyword無陽極鋰金屬電池,中孔洞二氧化矽奈米材料,SBA15(⊥),zh_TW
dc.subject.keywordAnode-free Li metal battery,mesoporous silica nanomaterials,SBA15(⊥),en
dc.relation.page104
dc.identifier.doi10.6342/NTU202200359
dc.rights.note未授權
dc.date.accepted2022-02-11
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept化學研究所zh_TW
dc.date.embargo-lift2027-02-09-
顯示於系所單位:化學系

文件中的檔案:
檔案 大小格式 
U0001-0802202208541500.pdf
  未授權公開取用
7.49 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved