請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82293完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李瑞庭(Anthony J.T. Lee) | |
| dc.contributor.author | Yen-Chu Lin | en |
| dc.contributor.author | 林晏竹 | zh_TW |
| dc.date.accessioned | 2022-11-25T06:35:10Z | - |
| dc.date.copyright | 2021-11-10 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-09-15 | |
| dc.identifier.citation | Berger J, Sorensen AT, Rasmussen SJ (2010) Positive effects of negative publicity: When negative reviews increase sales. Marketing Science 29(5):815–827. Bird S, Klein E, Loper E (2009) Natural language processing with Python, 1st ed. O’Reilly, Beijing, Cambridge. Bishop C (2006) Pattern Recognition and Machine Learning. Springer-Verlag, New York. Blei DM, Ng AY, Jordan MI (2003) Latent Dirichlet allocation. Journal of Machine Learning Research 3:993–1022. Cambria E, Livingstone A, Hussain A (2012) The hourglass of emotions. Proceedings of the International Conference on Cognitive Behavioural Systems, 144–157. Cambria E, Poria S, Hazarika D, Kwok K (2018) SenticNet 5: Discovering conceptual primitives for sentiment analysis by means of context embeddings. Proceedings of the AAAI Conference on Artificial Intelligence, 1795–1802. Cambria E, Speer R, Havasi C, Hussain A (2010) SenticNet: A publicly available semantic resource for opinion mining. Proceedings of the Association for the Advancement of Artificial Intelligence Fall Symposium, 14–18. Cheng Y, Jiang L, Macherey W (2019) Robust neural machine translation with doubly adversarial inputs. Proceedings of the Annual Meeting of the Association for Computational Linguistics, 4324–4333. Chintagunta PK, Gopinath S, Venkataraman S (2010) The effects of online user reviews on movie box office performance: Accounting for sequential rollout and aggregation across local markets. Marketing Science 29(5):944–957. Chu E, Liu P (2019) MeanSum: A neural model for unsupervised multi-document abstractive summarization. Proceedings of the International Conference on Machine Learning, 1223–1232. Dai N, Liang J, Qiu X, Huang X (2019) Style transformer: Unpaired text style transfer without disentangled latent representation. Proceedings of the Annual Meeting of the Association for Computational Linguistics, 5997–6007. Dang HT (2005) Overview of DUC 2005. Proceedings of the document understanding conference, 1–12. Dellarocas C, Zhang X (Michael), Awad NF (2007) Exploring the value of online product reviews in forecasting sales: The case of motion pictures. Journal of Interactive Marketing 21(4):23–45. Devlin J, Chang MW, Lee K, Toutanova K (2018) BERT: Pre-training of deep bidirectional transformers for language understanding. arXiv:1810.04805 [cs]. Dong H, Yu S, Wu C, Guo Y (2017a) Semantic image synthesis via adversarial learning. Proceedings of the IEEE International Conference on Computer Vision, 5707–5715. Dong L, Huang S, Wei F, Lapata M, Zhou M, Xu K (2017b) Learning to generate product reviews from attributes. Proceedings of the International Conference of the European Chapter of the Association for Computational Linguistics: Volume 1, 623–632. Duan W, Gu B, Whinston AB (2008) Do online reviews matter? — An empirical investigation of panel data. Decision Support Systems 45(4):1007–1016. Duchi J, Hazan E, Singer Y (2011) Adaptive subgradient methods for online learning and stochastic optimization. Journal of Machine Learning Research 12(61):2121–2159. Forman C, Ghose A, Wiesenfeld B (2008) Examining the relationship between reviews and sales: The role of reviewer identity disclosure in electronic markets. Information Systems Research 19(3):291–313. Garg S, Vu T, Moschitti A (2020) TANDA: Transfer and adapt pre-trained transformer models for answer sentence selection. Proceedings of the AAAI International Conference on Artificial Intelligence, 7780–7788. Gerani S, Carenini G, Ng RT (2019) Modeling content and structure for abstractive review summarization. Computer Speech Language 53:302–331. Gerani S, Mehdad Y, Carenini G, Ng RT, Nejat B (2014) Abstractive summarization of product reviews using discourse structure. Proceedings of the International Conference on Empirical Methods in Natural Language Processing, 1602–1613. Goodfellow I, Bengio Y, Courville A (2016) Deep learning, The MIT Press, Cambridge, Massachusetts. Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y (2014) Generative adversarial nets. Proceedings of the International Conference on Neural Information Processing Systems - Volume 2, 2672–2680. Hu YH, Chen YL, Chou HL (2017) Opinion mining from online hotel reviews - A text summarization approach. Information Processing and Management 53(2):436–449. Huang W, Huang M, Zhang Y (2018) Detection of traffic signs based on combination of GAN and Faster-RCNN. Journal of Physics 1069:012159. Isonuma M, Mori J, Sakata I (2019) Unsupervised neural single-document summarization of reviews via learning latent discourse structure and its ranking. Proceedings of the Annual Meeting of the Association for Computational Linguistics, 2142–2152. Johnson SC (1967) Hierarchical clustering schemes. Psychometrika 32(3):241–254. Kang WC, McAuley J (2018) Self-attentive sequential recommendation. Proceedings of the IEEE International Conference on Data Mining, 197–206. Lan Z, Chen M, Goodman S, Gimpel K, Sharma P, Soricut R (2019) ALBERT: A lite BERT for self-supervised learning of language representations. Proceedings of International Conference on Learning Representations, 1–17 Lewis M, Liu Y, Goyal N, Ghazvininejad M, Mohamed A, Levy O, Stoyanov V, Zettlemoyer L (2020) BART: Denoising sequence-to-sequence pre-training for natural language generation, translation, and comprehension. Proceedings of the Annual Meeting of the Association for Computational Linguistics, 7871–7880. Li J, Monroe W, Shi T, Jean S, Ritter A, Jurafsky D (2017) Adversarial learning for neural dialogue generation. Proceedings of the Conference on Empirical Methods in Natural Language Processing, 2157–2169. Li J, Li H, Zong C (2019a) Towards personalized review summarization via user-aware sequence network. Proceedings of the AAAI International Conference on Artificial Intelligence, 6690–6697. Li J, Wang X, Yin D, Zong C (2019b) Attribute-aware sequence network for review summarization. Proceedings of the International Conference on Empirical Methods in Natural Language Processing and the International Joint Conference on Natural Language Processing, 2991–3001. Li X, Hitt LM (2008) Self-selection and information role of online product reviews. Information Systems Research 19(4):456–474. Lin CY (2004) ROUGE: A package for automatic evaluation of summaries. Text Summarization Branches Out. 74–81. Lipton ZC, Vikram S, McAuley J (2016) Generative concatenative nets jointly learn to write and classify reviews. arXiv:1511.03683 [cs]. Liu F, Flanigan J, Thomson S, Sadeh NM, Smith NA (2015) Toward abstractive summarization using semantic representations. Proceedings of the International Conference of the North American Chapter of the Association for Computational Linguistics, 1077–1086. Liu PJ, Saleh M, Pot E, Goodrich B, Sepassi R, Kaiser L, Shazeer N (2018) Generating Wikipedia by summarizing long sequences. arXiv:1801.10198 [cs]. Liu Y (2006) Word-of-mouth for movies: Its dynamics and impact on box office revenue. Journal of Marketing 70:70–89. Miao Y, Blunsom P (2016) Language as a latent variable: Discrete generative models for sentence compression. Proceedings of the International Conference on Empirical Methods in Natural Language Processing, 319–328. Mikolov T, Sutskever I, Chen K, Corrado G, Dean J (2013) Distributed representations of words and phrases and their compositionality. Proceedings of the International Conference on Neural Information Processing Systems - Volume 2, 3111–3119. Nallapati R, Zhou B, Santos CN dos, Gülçehre Ç, Xiang B (2016) Abstractive text summarization using sequence-to-sequence RNNs and beyond. Proceedings of the SIGNLL International Conference on Computational Natural Language Learning, 280–290. Nenkova A, Vanderwende L (2005) The impact of frequency on summarization. Microsoft Research, Redmond, Washington, Tech. Rep. MSR-TR-2005 101:9. Ni J, Li J, McAuley J (2019) Justifying recommendations using distantly-labeled reviews and fine-grained aspects. Proceedings of the International Conference on Empirical Methods in Natural Language Processing and the International Joint Conference on Natural Language Processing, 188–197. Olabiyi O, Salimov A, Khazane A, Mueller ET (2019) Multi-turn dialogue response generation in an adversarial learning framework. arXiv:1805.11752 [cs]. Park DH, Lee J, Han I (2007) The effect of on-line consumer reviews on consumer purchasing intention: The moderating role of involvement. International Journal of Electronic Commerce 11(4):125–148. Paulus R, Xiong C, Socher R (2017) A deep reinforced model for abstractive summarization. arXiv:1705.04304 [cs]. Qiu Z, Pan Y, Yao T, Mei T (2017) Deep semantic hashing with generative adversarial networks. Proceedings of the ACM SIGIR International Conference on Research and Development in Information Retrieval, 225–234. Radev DR, Jing H, Sty M, Tam D (2004) Centroid-based summarization of multiple documents. Information Processing and Management 40(6):919–938. Radford A, Narasimhan K, Salimans T, Sutskever I (2018) Improving Language Understanding by Generative Pre-Training. https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf, 1–12. Radford A, Wu J, Child R, Luan D, Amodei D, Sutskever I (2019) Language models are unsupervised multitask learners. https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf, 1–24. Raffel C, Shazeer N, Roberts A, Lee K, Narang S, Matena M, Zhou Y, Li W, Liu PJ (2019) Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv:1910.10683 [cs]. Ranzato M, Chopra S, Auli M, Zaremba W (2016) Sequence level training with recurrent neural networks. arXiv:1511.06732 [cs]. Rossiello G, Basile P, Semeraro G (2017) Centroid-based text summarization through compositionality of word embeddings. Proceedings of the Workshop on Summarization and Summary Evaluation Across Source Types and Genres, 12–21. Rush AM, Chopra S, Weston J (2015) A neural attention model for abstractive sentence summarization. Proceedings of the International Conference on Empirical Methods in Natural Language Processing, 379–389. Schuster M, Paliwal KK (1997) Bidirectional recurrent neural networks. IEEE Transactions on Signal Processing 45(11):2673–2681. See A, Liu PJ, Manning CD (2017) Get to the point: Summarization with pointer-generator networks. Proceedings of the Annual Meeting of the Association for Computational Linguistics, 1073–1083. Souly N, Spampinato C, Shah M (2017) Semi supervised semantic segmentation using generative adversarial network. Proceedings of the IEEE International Conference on Computer Vision, 5689–5697. Sun M (2012) How does the variance of product ratings matter? Management Science 58(4):696–707. Sutskever I, Vinyals O, Le QV (2014) Sequence to sequence learning with neural networks. Proceedings of the International Conference on Neural Information Processing Systems - Volume 2, 3104–3112. Tutte WT (1984) Graph theory, Addison-Wesley, Boston. Tyng CM, Amin HU, Saad MNM, Malik AS (2017) The influences of emotion on learning and memory. Frontiers in Psychology 8:1454. Wang L, Ling W (2016) Neural network-based abstract generation for opinions and arguments. Proceedings of the International Conference of the North American Chapter of the Association for Computational Linguistics, 47–57. Wang X, Man Z, You M, Shen C (2017) Adversarial generation of training examples: Applications to moving vehicle license plate recognition. arXiv:1707.03124 [cs]. Wu H, Gu Y, Sun S, Gu X (2016) Aspect-based opinion summarization with convolutional neural networks. Proceedings of the International Joint Conference on Neural Networks, 3157–3163. Wu L, Xia Y, Tian F, Zhao L, Qin T, Lai J, Liu TY (2018) Adversarial neural machine translation. Proceedings of Machine Learning Research, 534–549. Xu J, Ren X, Lin J, Sun X (2018) Diversity-promoting GAN: A cross-entropy based generative adversarial network for diversified text generation. Proceedings of the Conference on Empirical Methods in Natural Language Processing, 3940–3949. Yang M, Qu Q, Shen Y, Liu Q, Zhao W, Zhu J (2018a) Aspect and sentiment aware abstractive review summarization. Proceedings of the International Conference on Computational Linguistics, 1110–1120. Yang Z, Chen W, Wang F, Xu B (2018b) Improving neural machine translation with conditional sequence generative adversarial nets. Proceedings of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. 1346–1355. Yauris K, Khodra ML (2017) Aspect-based summarization for game review using double propagation. Proceedings of the International Conference on Advanced Informatics, Concepts, Theory, and Applications, 1–6. Yu L, Zhang W, Wang J, Yu Y (2017) SeqGAN: Sequence generative adversarial nets with policy gradient. Proceedings of the AAAI International Conference on Artificial Intelligence, 2852–2858. Yu N, Huang M, Shi Y, Zhu X (2016) Product review summarization by exploiting phrase properties. Proceedings of the International Conference on Computational Linguistics, 1113–1124. Zang H, Wan X (2017) Towards automatic generation of product reviews from aspect-sentiment scores. Proceedings of the International Conference on Natural Language Generation, 168–177. Zhang R, Yu W, Sha C, He X, Zhou A (2015) Product-oriented review summarization and scoring. Frontiers of Computer Science 9(2):210–223. Zhang Z, Wu Y, Zhao H, Li Z, Zhang S, Zhou X, Zhou X (2020) Semantics-aware BERT for language understanding. Proceedings of the AAAI Conference on Artificial Intelligence, 9628–9635. Zhu F, Zhang X (Michael) (2010) Impact of online consumer reviews on sales: The moderating role of product and consumer characteristics. Journal of Marketing 74(2):133–148. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82293 | - |
| dc.description.abstract | 網路上的產品評論對於消費者的購買行為,以及他們對品牌的認知有顯著的影響。由於,產品評論的數量快速增加,使得企業與消費者難以全面掌握所有評論的內容。因此,開發自動產生產品評論摘要的方法是不可獲缺的,它可以幫助企業與消費者,無需看過所有評論,就能快速掌握消費者的意見。在本研究中,我們提出了一個研究架構,從產品評論集中自動生成每個產品特徵的摘要。我們的研究架構包含三個階段。首先,我們對產品評論集進行處理,並從處理後的產品評論集中,找出每個產品特徵的特徵序列。接著,我們從處理後的產品評論集中,找出情感特徵序列。最後,根據前兩個階段所找出的產品和情感特徵序列,我們設計了一個稱為RS-GAN的生成對抗網路模型,從處理後的產品評論集中,生成每個產品特徵的摘要。實驗結果顯示,我們的方法優於比較方法,並可生成有組織、流暢且語法正確的摘要。本研究可以幫助企業和消費者取得具洞察力的資訊,並幫助他們快速了解用戶的回饋。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-25T06:35:10Z (GMT). No. of bitstreams: 1 U0001-1509202112435600.pdf: 3040404 bytes, checksum: f5f5460568f280ea74877b03df5d4d84 (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | Table of Contents i List of Figures ii List of Tables iii Chapter 1 Introduction 1 Chapter 2 Related Work 4 Chapter 3 The Proposed Framework 8 3.1. Aspect Feature Vectors 8 3.2. Sentiment Feature Vectors 10 3.3. Generative Adversarial Network 11 Chapter 4 Experimental Results 18 4.1. Dataset 18 4.2. Experimental Settings 19 4.3. Performance Evaluation 21 4.3.1. Automatic Evaluation 22 4.3.2. Human Evaluation 24 4.3.3. Generated Examples 28 Chapter 5 Conclusions and Future Work 31 References 34 | |
| dc.language.iso | en | |
| dc.subject | 注意力機制 | zh_TW |
| dc.subject | 產品評論摘要 | zh_TW |
| dc.subject | 生成對抗網路 | zh_TW |
| dc.subject | 序列到序列模型 | zh_TW |
| dc.subject | product review summarization | en |
| dc.subject | attention mechanism | en |
| dc.subject | generative adversarial network | en |
| dc.subject | sequence to sequence model | en |
| dc.title | 運用生成對抗網路產生產品評論摘要 | zh_TW |
| dc.title | Product Review Summarization by Generative Adversarial Networks | en |
| dc.date.schoolyear | 109-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 劉敦仁(Hsin-Tsai Liu),柯士文(Chih-Yang Tseng) | |
| dc.subject.keyword | 產品評論摘要,生成對抗網路,注意力機制,序列到序列模型, | zh_TW |
| dc.subject.keyword | product review summarization,generative adversarial network,attention mechanism,sequence to sequence model, | en |
| dc.relation.page | 41 | |
| dc.identifier.doi | 10.6342/NTU202103190 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2021-09-16 | |
| dc.contributor.author-college | 管理學院 | zh_TW |
| dc.contributor.author-dept | 資訊管理學研究所 | zh_TW |
| dc.date.embargo-lift | 2026-09-16 | - |
| 顯示於系所單位: | 資訊管理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1509202112435600.pdf 未授權公開取用 | 2.97 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
