Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生化科技學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82286
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor林甫容(Fu-Jung Lin)
dc.contributor.authorYu-Hsuan Tsaoen
dc.contributor.author曹瑜軒zh_TW
dc.date.accessioned2022-11-25T06:35:01Z-
dc.date.copyright2021-10-21
dc.date.issued2021
dc.date.submitted2021-10-02
dc.identifier.citation衛生福利部國民健康署 (2019). 108年國人十大死因統計 行政院衛生署國民健康局 (2011). 2007年台灣地區高血壓、高血糖、高血脂之追蹤調查研究 潘文涵 (2019). 國民營養健康狀況變遷調查2013-2016年成果報告 李依靜 (2020). ApoE 基因缺乏母鼠施打 DNA 甲基轉移酶抑制劑對子代小鼠動脈粥狀硬化進程之影響:巨噬細胞極化分化之角色, 國立臺灣大學 分子與細胞生物學研究所, p.1-182. 洪廷芸 (2020). 母親處理DNA甲基轉移酶抑制劑對ApoE-/-小鼠子代動脈粥狀硬化發展和脂質代謝之研究, 國立臺灣大學 生化科技學系, p.1-163. 黃巧虹 (2020). 初探母體5-aza對子代動脈粥狀硬化病程之影響, 國立臺灣大學 生化科技學系, p.1-143. A-González, N., Castrillo, A. (2011). Liver X receptors as regulators of macrophage inflammatory and metabolic pathways. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 1812(8), 982-994. Aagaard-Tillery, K. M., Grove, K., Bishop, J., Ke, X., Fu, Q., McKnight, R., Lane, R. H. (2008). Developmental origins of disease and determinants of chromatin structure: maternal diet modifies the primate fetal epigenome. J Mol Endocrinol, 41(2), 91-102. Adaikalakoteswari, A., Finer, S., Voyias, P. D., McCarthy, C. M., Vatish, M., Moore, J., . . . Tripathi, G. (2015). Vitamin B12 insufficiency induces cholesterol biosynthesis by limiting s-adenosylmethionine and modulating the methylation of SREBF1 and LDLR genes. Clinical Epigenetics, 7(1), 14. Adeegbe, D. O., Nishikawa, H. (2013). Natural and induced T regulatory cells in cancer. Front Immunol, 4, 190. Al Aboud, N. M., Tupper, C., Jialal, I. (2021). Genetics, Epigenetic Mechanism. In StatPearls. Alberti, K. G., Zimmet, P. Z. (1998). Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus provisional report of a WHO consultation. Diabet Med, 15(7), 539-553. Alejandro, E. U., Gregg, B., Wallen, T., Kumusoglu, D., Meister, D., Chen, A., . . . Bernal-Mizrachi, E. (2014). Maternal diet-induced microRNAs and mTOR underlie β cell dysfunction in offspring. J Clin Invest, 124(10), 4395-4410. Amengual-Cladera, E., Llado, I., Gianotti, M., Proenza, A. M. (2012). Sex differences in the effect of high-fat diet feeding on rat white adipose tissue mitochondrial function and insulin sensitivity. Metabolism, 61(8), 1108-1117. Amento, E. P., Ehsani, N., Palmer, H., Libby, P. (1991). Cytokines and growth factors positively and negatively regulate interstitial collagen gene expression in human vascular smooth muscle cells. Arterioscler Thromb, 11(5), 1223-1230. Auffray, C., Fogg, D., Garfa, M., Elain, G., Join-Lambert, O., Kayal, S., . . . Geissmann, F. (2007). Monitoring of blood vessels and tissues by a population of monocytes with patrolling behavior. Science, 317(5838), 666-670. Auffray, C., Sieweke, M. H., Geissmann, F. (2009). Blood monocytes: development, heterogeneity, and relationship with dendritic cells. Annu Rev Immunol, 27, 669-692. Bäck, M., Hansson, G. K. (2015). Anti-inflammatory therapies for atherosclerosis. Nat Rev Cardiol, 12(4), 199-211. Bannister, A. J., Kouzarides, T. (2011). Regulation of chromatin by histone modifications. Cell Research, 21(3), 381-395. Barker, D. J. (1990). The fetal and infant origins of adult disease. BMJ, 301(6761), 1111. Barrett, T. J. (2020). Macrophages in Atherosclerosis Regression. Arterioscler Thromb Vasc Biol, 40(1), 20-33. Baumgarth, N. (2011). The double life of a B-1 cell: self-reactivity selects for protective effector functions. Nat Rev Immunol, 11(1), 34-46. Bellinger, D. L., Lorton, D., Felten, S. Y., Felten, D. L. (1992). Innervation of lymphoid organs and implications in development, aging, and autoimmunity. Int J Immunopharmacol, 14(3), 329-344. Binder, C. J., Hartvigsen, K., Chang, M. K., Miller, M., Broide, D., Palinski, W., . . . Witztum, J. L. (2004). IL-5 links adaptive and natural immunity specific for epitopes of oxidized LDL and protects from atherosclerosis. J Clin Invest, 114(3), 427-437. Bouhlel, M. A., Derudas, B., Rigamonti, E., Dievart, R., Brozek, J., Haulon, S., . . . Chinetti-Gbaguidi, G. (2007). PPARgamma activation primes human monocytes into alternative M2 macrophages with anti-inflammatory properties. Cell Metab, 6(2), 137-143. Branch, S., Francis, B. M., Brownie, C. F., Chernoff, N. (1996). Teratogenic effects of the demethylating agent 5-aza-2'-deoxycytidine in the Swiss Webster mouse. Toxicology, 112(1), 37-43. Bulgarelli, A., Martins Dias, A. A., Caramelli, B., Maranhão, R. C. (2012). Treatment with methotrexate inhibits atherogenesis in cholesterol-fed rabbits. J Cardiovasc Pharmacol, 59(4), 308-314. Caligiuri, G., Nicoletti, A., Poirier, B., Hansson, G. K. (2002). Protective immunity against atherosclerosis carried by B cells of hypercholesterolemic mice. The Journal of clinical investigation, 109(6), 745-753. Caligiuri, G., Nicoletti, A., Zhou, X., Tornberg, I., Hansson, G. K. (1999). Effects of sex and age on atherosclerosis and autoimmunity in apoE-deficient mice. Atherosclerosis, 145(2), 301-308. Caligiuri, G., Rudling, M., Ollivier, V., Jacob, M. P., Michel, J. B., Hansson, G. K., Nicoletti, A. (2003). Interleukin-10 deficiency increases atherosclerosis, thrombosis, and low-density lipoproteins in apolipoprotein E knockout mice. Mol Med, 9(1-2), 10-17. Cao, Q., Wang, X., Jia, L., Mondal, A. K., Diallo, A., Hawkins, G. A., . . . Xue, B. (2014). Inhibiting DNA Methylation by 5-Aza-2'-deoxycytidine ameliorates atherosclerosis through suppressing macrophage inflammation. Endocrinology, 155(12), 4925-4938. Cardilo-Reis, L., Gruber, S., Schreier, S. M., Drechsler, M., Papac-Milicevic, N., Weber, C., . . . Binder, C. J. (2012). Interleukin-13 protects from atherosclerosis and modulates plaque composition by skewing the macrophage phenotype. EMBO Mol Med, 4(10), 1072-1086. Cashen, A. F., Shah, A. K., Todt, L., Fisher, N., DiPersio, J. (2008). Pharmacokinetics of decitabine administered as a 3-h infusion to patients with acute myeloid leukemia (AML) or myelodysplastic syndrome (MDS). Cancer Chemother Pharmacol, 61(5), 759-766. Chabot, G. G., Bouchard, J., Momparler, R. L. (1983). Kinetics of deamination of 5-aza-2'-deoxycytidine and cytosine arabinoside by human liver cytidine deaminase and its inhibition by 3-deazauridine, thymidine or uracil arabinoside. Biochem Pharmacol, 32(7), 1327-1328. Chabot, G. G., Rivard, G. E., Momparler, R. L. (1983). Plasma and cerebrospinal fluid pharmacokinetics of 5-Aza-2'-deoxycytidine in rabbits and dogs. Cancer Res, 43(2), 592-597. Chen, S.-Y., Chen, Y.-Z., Lee, Y.-J., Jiang, C.-L., Lu, S.-C., Lin, F.-J. (2021). Maternal hypercholesterolemia exacerbates atherosclerosis lesions in female offspring through potentiating macrophage polarization toward an inflammatory M1 phenotype. The Journal of Nutritional Biochemistry, 90, 108575. Christman, J. K. (2002). 5-Azacytidine and 5-aza-2'-deoxycytidine as inhibitors of DNA methylation: mechanistic studies and their implications for cancer therapy. Oncogene, 21(35), 5483-5495. Ciriza, J., Thompson, H., Petrosian, R., Manilay, J. O., García-Ojeda, M. E. (2013). The migration of hematopoietic progenitors from the fetal liver to the fetal bone marrow: Lessons learned and possible clinical applications. Experimental Hematology, 41(5), 411-423. Coşkun, S., Chao, H., Vasavada, H., Heydari, K., Gonzales, N., Zhou, X., . . . Hirschi, Karen K. (2014). Development of the Fetal Bone Marrow Niche and Regulation of HSC Quiescence and Homing Ability by Emerging Osteolineage Cells. Cell Reports, 9(2), 581-590. Davenport, P., Tipping, P. G. (2003). The role of interleukin-4 and interleukin-12 in the progression of atherosclerosis in apolipoprotein E-deficient mice. Am J Pathol, 163(3), 1117-1125. DeSimone, J., Koshy, M., Dorn, L., Lavelle, D., Bressler, L., Molokie, R., Talischy, N. (2002). Maintenance of elevated fetal hemoglobin levels by decitabine during dose interval treatment of sickle cell anemia. Blood, 99(11), 3905-3908. Devries-Seimon, T., Li, Y., Yao, P. M., Stone, E., Wang, Y., Davis, R. J., . . . Tabas, I. (2005). Cholesterol-induced macrophage apoptosis requires ER stress pathways and engagement of the type A scavenger receptor. J Cell Biol, 171(1), 61-73. Ding, Y. B., Long, C. L., Liu, X. Q., Chen, X. M., Guo, L. R., Xia, Y. Y., . . . Wang, Y. X. (2012). 5-aza-2'-deoxycytidine leads to reduced embryo implantation and reduced expression of DNA methyltransferases and essential endometrial genes. PLoS One, 7(9), e45364. Doran, A. C., Meller, N., McNamara, C. A. (2008). Role of smooth muscle cells in the initiation and early progression of atherosclerosis. Arterioscler Thromb Vasc Biol, 28(5), 812-819. Dunn, J., Qiu, H., Kim, S., Jjingo, D., Hoffman, R., Kim, C. W., . . . Jo, H. (2014). Flow-dependent epigenetic DNA methylation regulates endothelial gene expression and atherosclerosis. J Clin Invest, 124(7), 3187-3199. Elhage, R., Jawien, J., Rudling, M., Ljunggren, H. G., Takeda, K., Akira, S., . . . Hansson, G. K. (2003). Reduced atherosclerosis in interleukin-18 deficient apolipoprotein E-knockout mice. Cardiovasc Res, 59(1), 234-240. Fernàndez-Roig, S., Lai, S. C., Murphy, M. M., Fernandez-Ballart, J., Quadros, E. V. (2012). Vitamin B12 deficiency in the brain leads to DNA hypomethylation in the TCblR/CD320 knockout mouse. Nutr Metab (Lond), 9, 41. Finn, A. V., Nakano, M., Narula, J., Kolodgie, F. D., Virmani, R. (2010). Concept of vulnerable/unstable plaque. Arterioscler Thromb Vasc Biol, 30(7), 1282-1292. Fleit, H. B. (2014). Chronic Inflammation. In L. M. McManus R. N. Mitchell (Eds.), Pathobiology of Human Disease (pp. 300-314). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-12-386456-7.01808-6 Geissmann, F., Jung, S., Littman, D. R. (2003). Blood monocytes consist of two principal subsets with distinct migratory properties. Immunity, 19(1), 71-82. Getz, G. S., Reardon, C. A. (2012). Animal models of atherosclerosis. Arterioscler Thromb Vasc Biol, 32(5), 1104-1115. Getz, G. S., Reardon, C. A. (2015). Use of Mouse Models in Atherosclerosis Research. Methods Mol Biol, 1339, 1-16. Gimbrone, M. A., Jr., Garcia-Cardena, G. (2016). Endothelial Cell Dysfunction and the Pathobiology of Atherosclerosis. Circ Res, 118(4), 620-636. Godfrey, K. M. (2002). The Role of the Placenta in Fetal Programming—A Review. Placenta, 23, S20-S27. Goharkhay, N., Sbrana, E., Gamble, P. K., Tamayo, E. H., Betancourt, A., Villarreal, K., . . . Longo, M. (2007). Characterization of a murine model of fetal programming of atherosclerosis. Am J Obstet Gynecol, 197(4), 416 e411-415. Goldstein, J. L., Brown, M. S. (2015). A century of cholesterol and coronaries: from plaques to genes to statins. Cell, 161(1), 161-172. Gordon, S. (2003). Alternative activation of macrophages. Nat Rev Immunol, 3(1), 23-35. Grainger, D. J., Mosedale, D. E., Metcalfe, J. C., Bottinger, E. P. (2000). Dietary fat and reduced levels of TGFbeta1 act synergistically to promote activation of the vascular endothelium and formation of lipid lesions. J Cell Sci, 113 ( Pt 13), 2355-2361. Gregersen, I., Halvorsen, B. (2018). Inflammatory Mechanisms in Atherosclerosis. In. InTech. https://doi.org/10.5772/intechopen.72222 Gronberg, C., Nilsson, J., Wigren, M. (2017). Recent advances on CD4(+) T cells in atherosclerosis and its implications for therapy. Eur J Pharmacol, 816, 58-66. Hamze, M., Desmetz, C., Berthe, M. L., Roger, P., Boulle, N., Brancherau, P., . . . Guglielmi, P. (2013). Characterization of resident B cells of vascular walls in human atherosclerotic patients. J Immunol, 191(6), 3006-3016. Han, S. F., Liu, P., Zhang, W., Bu, L., Shen, M., Li, H., . . . Jia, G. L. (2007). The opposite-direction modulation of CD4+CD25+ Tregs and T helper 1 cells in acute coronary syndromes. Clin Immunol, 124(1), 90-97. Handgraaf, S., Riant, E., Fabre, A., Waget, A., Burcelin, R., Lière, P., . . . Gourdy, P. (2013). Prevention of obesity and insulin resistance by estrogens requires ERα activation function-2 (ERαAF-2), whereas ERαAF-1 is dispensable. Diabetes, 62(12), 4098-4108. Hannon, G. J. (2002). RNA interference. Nature, 418(6894), 244-251. Hansson, G. K., Hermansson, A. (2011). The immune system in atherosclerosis. Nat Immunol, 12(3), 204-212. Hauer, A. D., Uyttenhove, C., De Vos, P., Stroobant, V., Renauld, J. C., Van Berkel, T. J. C., . . . Kuiper, J. (2005). Blockade of Interleukin-12 Function by Protein Vaccination Attenuates Atherosclerosis. Circulation, 112(7), 1054-1062. Hilgendorf, I., Swirski, F. K., Robbins, C. S. (2015). Monocyte fate in atherosclerosis. Arterioscler Thromb Vasc Biol, 35(2), 272-279. Ho, V. W., Sly, L. M. (2009). Derivation and characterization of murine alternatively activated (M2) macrophages. Methods Mol Biol, 531, 173-185. Hobbs, H. H., Russell, D. W., Brown, M. S., Goldstein, J. L. (1990). The LDL receptor locus in familial hypercholesterolemia: mutational analysis of a membrane protein. Annu Rev Genet, 24, 133-170. Holmqvist, M. E., Wedrén, S., Jacobsson, L. T., Klareskog, L., Nyberg, F., Rantapää-Dahlqvist, S., . . . Askling, J. (2010). Rapid increase in myocardial infarction risk following diagnosis of rheumatoid arthritis amongst patients diagnosed between 1995 and 2006. J Intern Med, 268(6), 578-585. Huang, K., Li, S. Q., Wang, W. J., Liu, L. S., Jiang, Y. G., Feng, P. N., . . . Wang, S. M. (2012). Oral FTY720 administration induces immune tolerance and inhibits early development of atherosclerosis in apolipoprotein E-deficient mice. Int J Immunopathol Pharmacol, 25(2), 397-406. Huang, P. L. (2009). A comprehensive definition for metabolic syndrome. Dis Model Mech, 2(5-6), 231-237. Ishibashi, S., Goldstein, J. L., Brown, M. S., Herz, J., Burns, D. K. (1994). Massive xanthomatosis and atherosclerosis in cholesterol-fed low density lipoprotein receptor-negative mice. J Clin Invest, 93(5), 1885-1893. Issa, J. P., Garcia-Manero, G., Giles, F. J., Mannari, R., Thomas, D., Faderl, S., . . . Kantarjian, H. M. (2004). Phase 1 study of low-dose prolonged exposure schedules of the hypomethylating agent 5-aza-2'-deoxycytidine (decitabine) in hematopoietic malignancies. Blood, 103(5), 1635-1640. Iwasaki, H., Akashi, K. (2007). Myeloid lineage commitment from the hematopoietic stem cell. Immunity, 26(6), 726-740. Jacobsson, L. T., Turesson, C., Gülfe, A., Kapetanovic, M. C., Petersson, I. F., Saxne, T., Geborek, P. (2005). Treatment with tumor necrosis factor blockers is associated with a lower incidence of first cardiovascular events in patients with rheumatoid arthritis. J Rheumatol, 32(7), 1213-1218. Juttermann, R., Li, E., Jaenisch, R. (1994). Toxicity of 5-aza-2'-deoxycytidine to mammalian cells is mediated primarily by covalent trapping of DNA methyltransferase rather than DNA demethylation. Proc Natl Acad Sci U S A, 91(25), 11797-11801. Kadl, A., Meher, A. K., Sharma, P. R., Lee, M. Y., Doran, A. C., Johnstone, S. R., . . . Leitinger, N. (2010). Identification of a novel macrophage phenotype that develops in response to atherogenic phospholipids via Nrf2. Circ Res, 107(6), 737-746. Karahoca, M., Momparler, R. L. (2013). Pharmacokinetic and pharmacodynamic analysis of 5-aza-2'-deoxycytidine (decitabine) in the design of its dose-schedule for cancer therapy. Clin Epigenetics, 5(1), 3. Karper, J. C., Ewing, M. M., Habets, K. L., de Vries, M. R., Peters, E. A., van Oeveren-Rietdijk, A. M., . . . Quax, P. H. (2012). Blocking toll-like receptors 7 and 9 reduces postinterventional remodeling via reduced macrophage activation, foam cell formation, and migration. Arterioscler Thromb Vasc Biol, 32(8), e72-80. Kattoor, A. J., Pothineni, N. V. K., Palagiri, D., Mehta, J. L. (2017). Oxidative Stress in Atherosclerosis. Curr Atheroscler Rep, 19(11), 42. Khallou-Laschet, J., Varthaman, A., Fornasa, G., Compain, C., Gaston, A. T., Clement, M., . . . Caligiuri, G. (2010). Macrophage plasticity in experimental atherosclerosis. PLoS One, 5(1), e8852. Khesht, F. A., Hassanabadi, A. (2012). Effects of sterol regulatory element-binding protein (SREBP) in chickens. Lipids Health Dis, 11, 20. King, V. L., Cassis, L. A., Daugherty, A. (2007). Interleukin-4 does not influence development of hypercholesterolemia or angiotensin II-induced atherosclerotic lesions in mice. The American journal of pathology, 171(6), 2040-2047. Kirii, H., Niwa, T., Yamada, Y., Wada, H., Saito, K., Iwakura, Y., . . . Seishima, M. (2003). Lack of interleukin-1beta decreases the severity of atherosclerosis in ApoE-deficient mice. Arterioscler Thromb Vasc Biol, 23(4), 656-660. Kumaran Satyanarayanan, S., El Kebir, D., Soboh, S., Butenko, S., Sekheri, M., Saadi, J., . . . Ariel, A. (2019). IFN-beta is a macrophage-derived effector cytokine facilitating the resolution of bacterial inflammation. Nat Commun, 10(1), 3471. Kyaw, T., Tay, C., Khan, A., Dumouchel, V., Cao, A., To, K., . . . Toh, B. H. (2010). Conventional B2 B cell depletion ameliorates whereas its adoptive transfer aggravates atherosclerosis. J Immunol, 185(7), 4410-4419. Kyaw, T., Tay, C., Krishnamurthi, S., Kanellakis, P., Agrotis, A., Tipping, P., . . . Toh, B. H. (2011). B1a B lymphocytes are atheroprotective by secreting natural IgM that increases IgM deposits and reduces necrotic cores in atherosclerotic lesions. Circ Res, 109(8), 830-840. Kzhyshkowska, J., Neyen, C., Gordon, S. (2012). Role of macrophage scavenger receptors in atherosclerosis. Immunobiology, 217(5), 492-502. Lawrence, M., Daujat, S., Schneider, R. (2016). Lateral Thinking: How Histone Modifications Regulate Gene Expression. Trends Genet, 32(1), 42-56. Lee, Y. T., Lin, H. Y., Chan, Y. W., Li, K. H., To, O. T., Yan, B. P., . . . Tse, G. (2017). Mouse models of atherosclerosis: a historical perspective and recent advances. Lipids Health Dis, 16(1), 12. Li, J., McArdle, S., Gholami, A., Kimura, T., Wolf, D., Gerhardt, T., . . . Ley, K. (2016). CCR5+T-bet+FoxP3+ Effector CD4 T Cells Drive Atherosclerosis. Circ Res, 118(10), 1540-1552. Liao, X., Sluimer, J. C., Wang, Y., Subramanian, M., Brown, K., Pattison, J. S., . . . Tabas, I. (2012). Macrophage autophagy plays a protective role in advanced atherosclerosis. Cell Metab, 15(4), 545-553. Libby, P. (2002). Inflammation in atherosclerosis. Nature, 420(6917), 868-874. Libby, P., Buring, J. E., Badimon, L., Hansson, G. K., Deanfield, J., Bittencourt, M. S., . . . Lewis, E. F. (2019). Atherosclerosis. Nat Rev Dis Primers, 5(1), 56. Lin, K.-T., Momparlerm, R. L., Rivard, G. E. (1981). High-performance Liquid Chromatographic Analysis of Chemical Stability of 5-aza-2′-Deoxycytidine. Journal of Pharmaceutical Sciences, 70(11), 1228-1232. Liu, T., Zhang, L., Joo, D., Sun, S. C. (2017). NF-kappaB signaling in inflammation. Signal Transduct Target Ther, 2. Ludewig, B., Freigang, S., Jaggi, M., Kurrer, M. O., Pei, Y. C., Vlk, L., . . . Hengartner, H. (2000). Linking immune-mediated arterial inflammation and cholesterol-induced atherosclerosis in a transgenic mouse model. Proc Natl Acad Sci U S A, 97(23), 12752-12757. Lund, G., Andersson, L., Lauria, M., Lindholm, M., Fraga, M. F., Villar-Garea, A., . . . Zaina, S. (2004). DNA methylation polymorphisms precede any histological sign of atherosclerosis in mice lacking apolipoprotein E. J Biol Chem, 279(28), 29147-29154. Lutgens, E., Gijbels, M., Smook, M., Heeringa, P., Gotwals, P., Koteliansky, V. E., Daemen, M. J. (2002). Transforming growth factor-beta mediates balance between inflammation and fibrosis during plaque progression. Arterioscler Thromb Vasc Biol, 22(6), 975-982. Mahley, R. W., Ji, Z. S. (1999). Remnant lipoprotein metabolism: key pathways involving cell-surface heparan sulfate proteoglycans and apolipoprotein E. J Lipid Res, 40(1), 1-16. Mahony, C. B., Bertrand, J. Y. (2019). How HSCs Colonize and Expand in the Fetal Niche of the Vertebrate Embryo: An Evolutionary Perspective [Review]. Frontiers in Cell and Developmental Biology, 7(34). Major, A. S., Fazio, S., Linton, M. F. (2002). B-lymphocyte deficiency increases atherosclerosis in LDL receptor-null mice. Arterioscler Thromb Vasc Biol, 22(11), 1892-1898. Mallat, Z., Taleb, S., Ait-Oufella, H., Tedgui, A. (2009). The role of adaptive T cell immunity in atherosclerosis. J Lipid Res, 50 Suppl, S364-369. Marciniak, A., Patro-Malysza, J., Kimber-Trojnar, Z., Marciniak, B., Oleszczuk, J., Leszczynska-Gorzelak, B. (2017). Fetal programming of the metabolic syndrome. Taiwan J Obstet Gynecol, 56(2), 133-138. Marco, A., Kisliouk, T., Tabachnik, T., Meiri, N., Weller, A. (2014). Overweight and CpG methylation of the Pomc promoter in offspring of high-fat-diet-fed dams are not 'reprogrammed' by regular chow diet in rats. FASEB J, 28(9), 4148-4157. Martinez, F. O., Helming, L., Gordon, S. (2009). Alternative activation of macrophages: an immunologic functional perspective. Annu Rev Immunol, 27, 451-483. Maxfield, F. R., Tabas, I. (2005). Role of cholesterol and lipid organization in disease. Nature, 438(7068), 612-621. McCabe, M. T., Low, J. A., Daignault, S., Imperiale, M. J., Wojno, K. J., Day, M. L. (2006). Inhibition of DNA methyltransferase activity prevents tumorigenesis in a mouse model of prostate cancer. Cancer Res, 66(1), 385-392. Medzhitov, R. (2008). Origin and physiological roles of inflammation. Nature, 454(7203), 428-435. Miller, Y. I., Choi, S. H., Wiesner, P., Fang, L., Harkewicz, R., Hartvigsen, K., . . . Witztum, J. L. (2011). Oxidation-specific epitopes are danger-associated molecular patterns recognized by pattern recognition receptors of innate immunity. Circ Res, 108(2), 235-248. Mills, C. D. (2012). M1 and M2 Macrophages: Oracles of Health and Disease. Crit Rev Immunol, 32(6), 463-488. Monte, M. J., Marin, J. J., Antelo, A., Vazquez-Tato, J. (2009). Bile acids: chemistry, physiology, and pathophysiology. World J Gastroenterol, 15(7), 804-816. Moore, K. J., Freeman, M. W. (2006). Scavenger receptors in atherosclerosis: beyond lipid uptake. Arterioscler Thromb Vasc Biol, 26(8), 1702-1711. Moore, K. J., Sheedy, F. J., Fisher, E. A. (2013). Macrophages in atherosclerosis: a dynamic balance. Nat Rev Immunol, 13(10), 709-721. Moore, K. J., Tabas, I. (2011). Macrophages in the pathogenesis of atherosclerosis. Cell, 145(3), 341-355. Morrison, S. J., Scadden, D. T. (2014). The bone marrow niche for haematopoietic stem cells. Nature, 505(7483), 327-334. Mortusewicz, O., Schermelleh, L., Walter, J., Cardoso, M. C., Leonhardt, H. (2005). Recruitment of DNA methyltransferase I to DNA repair sites. Proc Natl Acad Sci U S A, 102(25), 8905-8909. Mosser, D. M., Zhang, X. (2008). Interleukin-10: new perspectives on an old cytokine. Immunol Rev, 226, 205-218. Murphy, A. J., Akhtari, M., Tolani, S., Pagler, T., Bijl, N., Kuo, C. L., . . . Tall, A. R. (2011). ApoE regulates hematopoietic stem cell proliferation, monocytosis, and monocyte accumulation in atherosclerotic lesions in mice. J Clin Invest, 121(10), 4138-4149. Nakashima, Y., Plump, A. S., Raines, E. W., Breslow, J. L., Ross, R. (1994). ApoE-deficient mice develop lesions of all phases of atherosclerosis throughout the arterial tree. Arterioscler Thromb, 14(1), 133-140. Napoli, C., de Nigris, F., Welch, J. S., Calara, F. B., Stuart, R. O., Glass, C. K., Palinski, W. (2002). Maternal hypercholesterolemia during pregnancy promotes early atherogenesis in LDL receptor-deficient mice and alters aortic gene expression determined by microarray. Circulation, 105(11), 1360-1367. Navab, M., Ananthramaiah, G. M., Reddy, S. T., Van Lenten, B. J., Ansell, B. J., Fonarow, G. C., . . . Fogelman, A. M. (2004). The oxidation hypothesis of atherogenesis: the role of oxidized phospholipids and HDL. J Lipid Res, 45(6), 993-1007. Needham, B. L., Smith, J. A., Zhao, W., Wang, X., Mukherjee, B., Kardia, S. L., . . . Diez Roux, A. V. (2015). Life course socioeconomic status and DNA methylation in genes related to stress reactivity and inflammation: The multi-ethnic study of atherosclerosis. Epigenetics, 10(10), 958-969. Newby, A. C., Zaltsman, A. B. (1999). Fibrous cap formation or destruction--the critical importance of vascular smooth muscle cell proliferation, migration and matrix formation. Cardiovasc Res, 41(2), 345-360. Okano, M., Bell, D. W., Haber, D. A., Li, E. (1999). DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell, 99(3), 247-257. Orekhov, A. N., Sobenin, I. A. (2019). Modified and Dysfunctional Lipoproteins in Atherosclerosis: Effectors or Biomarkers? Curr Med Chem, 26(9), 1512-1524. Paigen, B., Morrow, A., Brandon, C., Mitchell, D., Holmes, P. (1985). Variation in susceptibility to atherosclerosis among inbred strains of mice. Atherosclerosis, 57(1), 65-73. Paine, A., Eiz-Vesper, B., Blasczyk, R., Immenschuh, S. (2010). Signaling to heme oxygenase-1 and its anti-inflammatory therapeutic potential. Biochem Pharmacol, 80(12), 1895-1903. Palii, S. S., Van Emburgh, B. O., Sankpal, U. T., Brown, K. D., Robertson, K. D. (2008). DNA methylation inhibitor 5-Aza-2'-deoxycytidine induces reversible genome-wide DNA damage that is distinctly influenced by DNA methyltransferases 1 and 3B. Mol Cell Biol, 28(2), 752-771. Palinski, W., Nicolaides, E., Liguori, A., Napoli, C. (2009). Influence of maternal dysmetabolic conditions during pregnancy on cardiovascular disease. J Cardiovasc Transl Res, 2(3), 277-285. Pendse, A. A., Arbones-Mainar, J. M., Johnson, L. A., Altenburg, M. K., Maeda, N. (2009). Apolipoprotein E knock-out and knock-in mice: atherosclerosis, metabolic syndrome, and beyond. J Lipid Res, 50 Suppl, S178-182. Pinderski, L. J., Fischbein, M. P., Subbanagounder, G., Fishbein, M. C., Kubo, N., Cheroutre, H., . . . Boisvert, W. A. (2002). Overexpression of interleukin-10 by activated T lymphocytes inhibits atherosclerosis in LDL receptor-deficient Mice by altering lymphocyte and macrophage phenotypes. Circ Res, 90(10), 1064-1071. Plump, A. S., Smith, J. D., Hayek, T., Aalto-Setala, K., Walsh, A., Verstuyft, J. G., . . . Breslow, J. L. (1992). Severe hypercholesterolemia and atherosclerosis in apolipoprotein E-deficient mice created by homologous recombination in ES cells. Cell, 71(2), 343-353. Potteaux, S., Gautier, E. L., Hutchison, S. B., van Rooijen, N., Rader, D. J., Thomas, M. J., . . . Randolph, G. J. (2011). Suppressed monocyte recruitment drives macrophage removal from atherosclerotic plaques of Apoe-/- mice during disease regression. J Clin Invest, 121(5), 2025-2036. Poznyak, A. V., Silaeva, Y. Y., Orekhov, A. N., Deykin, A. V. (2020). Animal models of human atherosclerosis: current progress. Braz J Med Biol Res, 53(6), e9557. Probst, A. V., Dunleavy, E., Almouzni, G. (2009). Epigenetic inheritance during the cell cycle. Nat Rev Mol Cell Biol, 10(3), 192-206. Que, X., Hung, M.-Y., Yeang, C., Gonen, A., Prohaska, T. A., Sun, X., . . . Witztum, J. L. (2018). Oxidized phospholipids are proinflammatory and proatherogenic in hypercholesterolaemic mice. Nature, 558(7709), 301-306. Razani, B., Feng, C., Coleman, T., Emanuel, R., Wen, H., Hwang, S., . . . Semenkovich, C. F. (2012). Autophagy links inflammasomes to atherosclerotic progression. Cell Metab, 15(4), 534-544. Reeves, P. G., Nielsen, F. H., Fahey, G. C., Jr. (1993). AIN-93 purified diets for laboratory rodents: final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet. J Nutr, 123(11), 1939-1951. Richel, D. J., Colly, L. P., Lurvink, E., Willemze, R. (1988). Comparison of the antileukaemic activity of 5 aza-2-deoxycytidine and arabinofuranosyl-cytosine in rats with myelocytic leukaemia. Br J Cancer, 58(6), 730-733. Ricote, M., Li, A. C., Willson, T. M., Kelly, C. J., Glass, C. K. (1998). The peroxisome proliferator-activated receptor-gamma is a negative regulator of macrophage activation. Nature, 391(6662), 79-82. Ridker, P. M., Libby, P., Macfadyen, J. G., Thuren, T., Ballantyne, C., Fonseca, F., . . . Glynn, R. J. (2018). Modulation of the interleukin-6 signalling pathway and incidence rates of atherosclerotic events and all-cause mortality: analyses from the Canakinumab Anti-Inflammatory Thrombosis Outcomes Study (CANTOS). European Heart Journal, 39(38), 3499-3507. Robbins, C. S., Hilgendorf, I., Weber, G. F., Theurl, I., Iwamoto, Y., Figueiredo, J. L., . . . Swirski, F. K. (2013). Local proliferation dominates lesional macrophage accumulation in atherosclerosis. Nat Med, 19(9), 1166-1172. Robertson, A. K., Hansson, G. K. (2006). T cells in atherogenesis: for better or for worse? Arterioscler Thromb Vasc Biol, 26(11), 2421-2432. Rocha, V. Z., Folco, E. J., Sukhova, G., Shimizu, K., Gotsman, I., Vernon, A. H., Libby, P. (2008). Interferon-gamma, a Th1 cytokine, regulates fat inflammation: a role for adaptive immunity in obesity. Circ Res, 103(5), 467-476. Rogers, J. M., Francis, B. M., Sulik, K. K., Alles, A. J., Massaro, E. J., Zucker, R. M., . . . Chernoff, N. (1994). Cell death and cell cycle perturbation in the developmental toxicity of the demethylating agent, 5-aza-2'-deoxycytidine. Teratology, 50(5), 332-339. Roselaar, S. E., Kakkanathu, P. X., Daugherty, A. (1996). Lymphocyte populations in atherosclerotic lesions of apoE -/- and LDL receptor -/- mice. Decreasing density with disease progression. Arterioscler Thromb Vasc Biol, 16(8), 1013-1018. Sage, A. P., Tsiantoulas, D., Binder, C. J., Mallat, Z. (2019). The role of B cells in atherosclerosis. Nat Rev Cardiol, 16(3), 180-196. Saklayen, M. G. (2018). The Global Epidemic of the Metabolic Syndrome. Curr Hypertens Rep, 20(2), 12. Sánchez-Abarca, L. I., Gutierrez-Cosio, S., Santamaría, C., Caballero-Velazquez, T., Blanco, B., Herrero-Sánchez, C., . . . Pérez-Simon, J. A. (2010). Immunomodulatory effect of 5-azacytidine (5-azaC): potential role in the transplantation setting. Blood, 115(1), 107-121. Sawai, C. M., Babovic, S., Upadhaya, S., Knapp, D., Lavin, Y., Lau, C. M., . . . Reizis, B. (2016). Hematopoietic Stem Cells Are the Major Source of Multilineage Hematopoiesis in Adult Animals. Immunity, 45(3), 597-609. Saxonov, S., Berg, P., Brutlag, D. L. (2006). A genome-wide analysis of CpG dinucleotides in the human genome distinguishes two distinct classes of promoters. Proc Natl Acad Sci U S A, 103(5), 1412-1417. Schäfer, S., Zernecke, A. (2020). CD8+ T Cells in Atherosclerosis. Cells, 10(1), 37. Schatz, D. G., Ji, Y. (2011). Recombination centres and the orchestration of V(D)J recombination. Nat Rev Immunol, 11(4), 251-263. Schrijvers, D. M., De Meyer, G. R., Herman, A. G., Martinet, W. (2007). Phagocytosis in atherosclerosis: Molecular mechanisms and implications for plaque progression and stability. Cardiovasc Res, 73(3), 470-480. Schwartz, S. M., Virmani, R., Rosenfeld, M. E. (2000). The good smooth muscle cells in atherosclerosis. Curr Atheroscler Rep, 2(5), 422-429. Semenkovich, C. F. (2006). Insulin resistance and atherosclerosis. J Clin Invest, 116(7), 1813-1822. Serhan, C. N., Savill, J. (2005). Resolution of inflammation: the beginning programs the end. Nat Immunol, 6(12), 1191-1197. Sharma, N., Lu, Y., Zhou, G., Liao, X., Kapil, P., Anand, P., . . . Jain, M. K. (2012). Myeloid Krüppel-Like Factor 4 Deficiency Augments Atherogenesis in ApoE −/− Mice—Brief Report. Arteriosclerosis, Thrombosis, and Vascular Biology, 32(12), 2836-2838. Sharma, P., Garg, G., Kumar, A., Mohammad, F., Kumar, S. R., Tanwar, V. S., . . . Sengupta, S. (2014). Genome wide DNA methylation profiling for epigenetic alteration in coronary artery disease patients. Gene, 541(1), 31-40. Sharma, P., Kumar, J., Garg, G., Kumar, A., Patowary, A., Karthikeyan, G., . . . Sengupta, S. (2008). Detection of altered global DNA methylation in coronary artery disease patients. DNA Cell Biol, 27(7), 357-365. Sica, A., Mantovani, A. (2012). Macrophage plasticity and polarization: in vivo veritas. J Clin Invest, 122(3), 787-795. Skalen, K., Gustafsson, M., Rydberg, E. K., Hulten, L. M., Wiklund, O., Innerarity, T. L., Boren, J. (2002). Subendothelial retention of atherogenic lipoproteins in early atherosclerosis. Nature, 417(6890), 750-754. Stebegg, M., Kumar, S. D., Silva-Cayetano, A., Fonseca, V. R.,………
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82286-
dc.description.abstract心臟疾病高居國人的十大死因之一,其中冠狀動脈心臟病則是動脈粥狀硬化變性最容易引起的一個疾病。動脈粥狀硬化一般認為是脂質代謝失調引起的慢性發炎疾病,除了後天飲食攝取的因素外,基因遺傳和表觀遺傳修飾皆與動脈粥狀硬化的成因有關。發展規劃 (Developmental programming)提出在胚胎或胎兒的發育關鍵時期會受到母體環境影響,從而決定成年後的生理功能和代謝反應。實驗室的先前研究得知,母鼠暴露於西方飲食誘導高膽固醇血症的情況下所生出的子代較易發展動脈粥狀硬化,且其中的機制與改變DNA甲基化修飾有關。故本實驗藉由在親代母鼠施打 DNA 甲基轉移酶抑制劑 5-Aza-2’- deoxycytidine (5-Aza-dC),探討是否能透過胎兒規劃調控 DNA 甲基化的程度而改變子代動脈粥狀硬化。 本實驗動物模式使用ApoE-/- 小鼠,親代母鼠餵食Control diet (CD)且隨機分組,在孕前以及哺乳期階段分別施打PBS 或5-Aza-dC至子代離乳總計七週,而後生下的子代統一餵食 Western diet (WD)誘導高血脂加速動脈粥狀硬化形成,子代小鼠根據母鼠飲食和施打藥物分成 (1) PBS+ CW 及 (2) 5-Aza-dC + CW兩組。我們發現與 PBS+ CW 組相比,5-Aza-dC + CW 組子代雄鼠動脈粥狀硬化的程度有減緩的情況,且主動脈中有較低巨噬細胞相關基因表達,並在周邊血免疫細胞發現促發炎單核球和巨噬細胞比例顯著下降。此外,在骨髓衍生巨噬細胞中發現,親代母鼠施打 5-Aza-dC 會減緩子代雄鼠M1巨噬細胞分泌促發炎細胞因子TNF-α,另外M1以及M2 巨噬細胞相關基因表達也皆較低。 總結,我們發現親代母鼠處理 5-Aza-dC,會使子代雄鼠罹患動脈粥狀硬化病症的風險下降,其中可能的機制之一為透過減少巨噬細胞的分化和/或活化路徑。zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-25T06:35:01Z (GMT). No. of bitstreams: 1
U0001-2709202106394700.pdf: 3294452 bytes, checksum: b34d5f4075bf00c4bd05f38c82ee15a1 (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents" 摘要 I Abstract II 代號與縮寫對照表 IV 總目錄 VII 圖目錄 XI 表目錄 XIII 第一章 緒論 1 第一節 前言 1 第二節 文獻回顧 3 一、 代謝症候群 3 二、 心血管疾病與動脈粥狀硬化 4 三、動脈粥狀硬化病變進程 4 四、動脈粥狀硬化小鼠模式 8 五、發炎反應與動脈粥狀硬化 9 六、免疫細胞與動脈粥狀硬化的關係 11 七、DNA甲基化與動脈粥狀硬化 21 八、發展規劃與表觀遺傳學 24 第二章 實驗假說與材料方法 28 第一節 實驗假說與設計架構 28 一、實驗假說 28 二、實驗設計架構 28 第二節 材料與方法 30 一、實驗動物 30 二、藥物配製及給予方式 30 三、子代小鼠飼養 31 四、飼料配製 31 五、禁食血清樣本收集及分析 33 六、腹腔注射葡萄糖耐受性測試 (Intraperitoneal glucose tolerance test, IPGTT) 35 七、腹腔注射胰島素耐受性測試 (Intraperitoneal Insulin tolerance test, IPITT) 35 八、動物犧牲及組織樣品收集 36 九、粥狀硬化斑塊分析 (Atherosclerotic lesion analysis) 37 十、主動脈RNA抽取及表現量測定 37 十一、肝臟脂質分析 40 十二、血清脂蛋白譜 (Lipoprotein profile)分析 42 十三、脾臟細胞免疫細胞比例分析 43 十四、周邊血液單核細胞 (Peripheral blood mononuclear cells, PBMCs) 分析 45 十五、骨髓衍生巨噬細胞 (Bone marrow-derived macrophages, BMDMs)分析 46 十六、M1/M2巨噬細胞細胞激素含量檢測 50 十七、M0/M1/M2 RNA抽取及表現量測定 52 十八、骨髓造血幹細胞 (Hematopoietic stem cells, HSCs)與骨髓前驅細胞 (Myeloid progenitor cells)分化能力分析 53 十九、細胞凋亡分析 55 二十 、統計分析 56 第三章 實驗結果 58 一、5-Aza-dC對於親代母鼠體重與血液生化指標分析 58 二、5-Aza-dC對於親代母鼠生育率之影響 58 三、5-Aza-dC對於親代母鼠肝細胞受損和免疫細胞凋亡程度分析 59 四、子代小鼠離乳後至成年期間的體重變化 60 五、子代小鼠離乳後至成年期間的血脂變化 60 六、子代小鼠腹腔注射葡萄糖耐受性試驗 (IPGTT) 60 七、子代小鼠腹腔注射胰島素耐受性試驗 61 八、子代小鼠 16 週齡犧牲體重和血脂濃度分析 61 九、子代小鼠 16 週齡犧牲組織重量 61 十、子代小鼠動脈粥狀硬化分析 62 十一、子代雄鼠主動脈巨噬細胞mRNA表現量分析 62 十二、子代小鼠脂蛋白譜 (Lipoprotein profile)分析 63 十三、子代的血液周邊單核細胞 (Peripheral blood mononuclear cells, PBMCs) 組成分析 63 十四、子代小鼠骨髓衍生巨噬細胞 (Bone marrow-derived macrophages, BMDMs)極化分化潛勢分析 64 十五、子代雄鼠骨髓衍生 M1 巨噬細胞分泌促發炎細胞因子能力之分析 65 十六、子代雄鼠骨髓衍生 M1 巨噬細胞促發炎相關基因 mRNA 表現量分析 66 十七、子代雄鼠骨髓衍生 M2 巨噬細胞促發炎相關基因 mRNA 表現量分析 66 十八、子代雄鼠骨髓衍生 M0 巨噬細胞相關基因 mRNA 表現量分析 66 表三-1 68 圖三-1 69 第四章 實驗討論與結論 101 第一節 實驗討論 101 一、5-Aza-dC對親代母鼠對骨髓、脾臟細胞凋亡和肝毒性不造成影響 101 二、親代母鼠施打 5-Aza-dC對生育率的影響 102 三、親代母鼠施打 5-Aza-dC 對子代小鼠生理影響 103 四、親代母鼠施打 5-Aza-dC 以性別差異方式影響子代小鼠罹患動脈粥狀硬化風險 105 五、親代母鼠施打 5-Aza-dC 對子代小鼠前驅免疫細胞影響之探討 107 六、親代母鼠施打 5-Aza-dC降低子代小鼠發炎反應 111 七、親代母鼠施打 5-Aza-dC影響子代小鼠動脈粥狀硬化實驗進展與未來展望 112 第二節 結論 117 附錄 Appendix 118 第五章 參考文獻 123"
dc.language.isozh-TW
dc.subject表觀遺傳zh_TW
dc.subject胎兒規劃zh_TW
dc.subject巨噬細胞極化分化zh_TW
dc.subjectDNA甲基化zh_TW
dc.subject動脈粥狀硬化zh_TW
dc.subjectMacrophage differentiation/activatioen
dc.subjectAtherosclerosisen
dc.subjectEpigeneticen
dc.subjectDNA methylationen
dc.subjectDevelopmental programmingen
dc.titleDNA甲基化在ApoE-/-小鼠動脈粥狀硬化發育程序化之角色zh_TW
dc.titleDNA Methylation in the Developmental Programming of Atherosclerosis in Apolipoprotein E Deficient Miceen
dc.date.schoolyear109-2
dc.description.degree碩士
dc.contributor.oralexamcommittee黃青真(Hsin-Tsai Liu),蘇慧敏(Chih-Yang Tseng),楊鎧鍵,林建達
dc.subject.keyword動脈粥狀硬化,表觀遺傳,DNA甲基化,胎兒規劃,巨噬細胞極化分化,zh_TW
dc.subject.keywordAtherosclerosis,Epigenetic,DNA methylation,Developmental programming,Macrophage differentiation/activatio,en
dc.relation.page135
dc.identifier.doi10.6342/NTU202103380
dc.rights.note未授權
dc.date.accepted2021-10-04
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生化科技學系zh_TW
dc.date.embargo-lift2024-10-14-
Appears in Collections:生化科技學系

Files in This Item:
File SizeFormat 
U0001-2709202106394700.pdf
  Restricted Access
3.22 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved