請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82276完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李士傑(Shyh-Jye Lee) | |
| dc.contributor.author | Tien-Heng Han | en |
| dc.contributor.author | 韓天恒 | zh_TW |
| dc.date.accessioned | 2022-11-25T06:34:50Z | - |
| dc.date.copyright | 2021-11-09 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-10-21 | |
| dc.identifier.citation | Bakkers, J. (2011). Zebrafish as a model to study cardiac development and human cardiac disease. Cardiovasc Res 91, 279-288. Bartel, D. P. (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281-297. ---- (2009). MicroRNAs: target recognition and regulatory functions. Cell 136, 215-233. Beis, D., Bartman, T., Jin, S. W., Scott, I. C., D'Amico, L. A., Ober, E. A., Verkade, H., Frantsve, J., Field, H. A., Wehman, A., et al. (2005). Genetic and cellular analyses of zebrafish atrioventricular cushion and valve development. Development 132, 4193-4204. Benz, A., Kossack, M., Auth, D., Seyler, C., Zitron, E., Juergensen, L., Katus, H. A. and Hassel, D. (2016). miR-19b Regulates Ventricular Action Potential Duration in Zebrafish. Sci Rep 6, 36033. Buckingham, M., Meilhac, S. and Zaffran, S. (2005). Building the mammalian heart from two sources of myocardial cells. Nat Rev Genet 6, 826-835. Carney, S. A., Chen, J., Burns, C. G., Xiong, K. M., Peterson, R. E. and Heideman, W. (2006). Aryl hydrocarbon receptor activation produces heart-specific transcriptional and toxic responses in developing zebrafish. Mol Pharmacol 70, 549-561. Chiavacci, E., D'Aurizio, R., Guzzolino, E., Russo, F., Baumgart, M., Groth, M., Mariani, L., D'Onofrio, M., Arisi, I., Pellegrini, M., et al. (2015). MicroRNA 19a replacement partially rescues fin and cardiac defects in zebrafish model of Holt Oram syndrome. Sci Rep 5, 18240. Danielson, L. S., Park, D. S., Rotllan, N., Chamorro-Jorganes, A., Guijarro, M. V., Fernandez-Hernando, C., Fishman, G. I., Phoon, C. K. and Hernando, E. (2013). Cardiovascular dysregulation of miR-17-92 causes a lethal hypertrophic cardiomyopathy and arrhythmogenesis. FASEB J 27, 1460-1467. Fishman, M. C. and Chien, K. R. (1997). Fashioning the vertebrate heart: earliest embryonic decisions. Development 124, 2099-2117. Gantier, M. P., Stunden, H. J., McCoy, C. E., Behlke, M. A., Wang, D., Kaparakis-Liaskos, M., Sarvestani, S. T., Yang, Y. H., Xu, D., Corr, S. C., et al. (2012). A miR-19 regulon that controls NF-kappaB signaling. Nucleic Acids Res 40, 8048-8058. Gawdzik, J. C., Yue, M. S., Martin, N. R., Elemans, L. M. H., Lanham, K. A., Heideman, W., Rezendes, R., Baker, T. R., Taylor, M. R. and Plavicki, J. S. (2018). sox9b is required in cardiomyocytes for cardiac morphogenesis and function. Sci Rep 8, 13906. Gunawan, F., Priya, R. and Stainier, D. Y. R. (2021). Sculpting the heart: Cellular mechanisms shaping valves and trabeculae. Current Opinion in Cell Biology 73, 26-34. Haendchen, R. V., Wyatt, H. L., Maurer, G., Zwehl, W., Bear, M., Meerbaum, S. and Corday, E. (1983). Quantitation of regional cardiac function by two-dimensional echocardiography. I. Patterns of contraction in the normal left ventricle. Circulation 67, 1234-1245. Hinits, Y., Pan, L., Walker, C., Dowd, J., Moens, C. B. and Hughes, S. M. (2012). Zebrafish Mef2ca and Mef2cb are essential for both first and second heart field cardiomyocyte differentiation. Dev Biol 369, 199-210. Huang, J., Peng, W., Zheng, Y., Hao, H., Li, S., Yao, Y., Ding, Y., Zhang, J., Lyu, J. and Zeng, Q. (2019). Upregulation of UCP2 Expression Protects against LPS-Induced Oxidative Stress and Apoptosis in Cardiomyocytes. Oxid Med Cell Longev 2019, 2758262. Ikeda, S., Kong, S. W., Lu, J., Bisping, E., Zhang, H., Allen, P. D., Golub, T. R., Pieske, B. and Pu, W. T. (2007). Altered microRNA expression in human heart disease. Physiol Genomics 31, 367-373. Khuu, C., Utheim, T. P. and Sehic, A. (2016). The Three Paralogous MicroRNA Clusters in Development and Disease, miR-17-92, miR-106a-363, and miR-106b-25. Scientifica (Cairo) 2016, 1379643. Kim, K. H., Antkiewicz, D. S., Yan, L., Eliceiri, K. W., Heideman, W., Peterson, R. E. and Lee, Y. (2007). Lrrc10 is required for early heart development and function in zebrafish. Dev Biol 308, 494-506. Kimmel, C. B. (1989). Genetics and early development of zebrafish. Trends Genet 5, 283-288. Lee, Y., Ahn, C., Han, J., Choi, H., Kim, J., Yim, J., Lee, J., Provost, P., Radmark, O., Kim, S., et al. (2003). The nuclear RNase III Drosha initiates microRNA processing. Nature 425, 415-419. Lewis, B. P., Shih, I. H., Jones-Rhoades, M. W., Bartel, D. P. and Burge, C. B. (2003). Prediction of mammalian microRNA targets. Cell 115, 787-798. Li, M., Hu, X., Zhu, J., Zhu, C., Zhu, S., Liu, X., Xu, J., Han, S. and Yu, Z. (2014). Overexpression of miR-19b impairs cardiac development in zebrafish by targeting ctnnb1. Cell Physiol Biochem 33, 1988-2002. Li, X., Teng, C., Ma, J., Fu, N., Wang, L., Wen, J. and Wang, T. Y. (2019). miR-19 family: A promising biomarker and therapeutic target in heart, vessels and neurons. Life Sci 232, 116651. Liu, J. and Stainier, D. Y. (2012). Zebrafish in the study of early cardiac development. Circ Res 110, 870-874. Lombardo, V. A., Heise, M., Moghtadaei, M., Bornhorst, D., Manner, J. and Abdelilah-Seyfried, S. (2019). Morphogenetic control of zebrafish cardiac looping by Bmp signaling. Development 146. Lopez-Unzu, M. A., Duran, A. C., Soto-Navarrete, M. T., Sans-Coma, V. and Fernandez, B. (2019). Differential expression of myosin heavy chain isoforms in cardiac segments of gnathostome vertebrates and its evolutionary implications. Front Zool 16, 18. Martin, K. E. and Waxman, J. S. (2021). Atrial and Sinoatrial Node Development in the Zebrafish Heart. J Cardiovasc Dev Dis 8. Ni, J., Wang, H., Wei, X., Shen, K., Sha, Y., Dong, Y., Shu, Y., Wan, X., Cheng, J., Wang, F., et al. (2020). Isoniazid causes heart looping disorder in zebrafish embryos by the induction of oxidative stress. BMC Pharmacol Toxicol 21, 22. O'Brien, J., Hayder, H., Zayed, Y. and Peng, C. (2018). Overview of MicroRNA Biogenesis, Mechanisms of Actions, and Circulation. Front Endocrinol (Lausanne) 9, 402. Olive, V., Bennett, M. J., Walker, J. C., Ma, C., Jiang, I., Cordon-Cardo, C., Li, Q. J., Lowe, S. W., Hannon, G. J. and He, L. (2009). miR-19 is a key oncogenic component of mir-17-92. Genes Dev 23, 2839-2849. Patra, C., Diehl, F., Ferrazzi, F., van Amerongen, M. J., Novoyatleva, T., Schaefer, L., Muhlfeld, C., Jungblut, B. and Engel, F. B. (2011). Nephronectin regulates atrioventricular canal differentiation via Bmp4-Has2 signaling in zebrafish. Development 138, 4499-4509. Reischauer, S., Arnaout, R., Ramadass, R. and Stainier, D. Y. (2014). Actin binding GFP allows 4D in vivo imaging of myofilament dynamics in the zebrafish heart and the identification of Erbb2 signaling as a remodeling factor of myofibril architecture. Circ Res 115, 845-856. Rottbauer, W., Saurin, A. J., Lickert, H., Shen, X., Burns, C., Wo, Z. G., Kemler, R., Kingston, R. E., Wu, C. and Fishman, M. C. (2002). Reptin and Pontin Antagonistically Regulate Heart Growth in Zebrafish Embryos. Cell 111, 661-672. Sethupathy, P., Megraw, M. and Hatzigeorgiou, A. G. (2006). A guide through present computational approaches for the identification of mammalian microRNA targets. Nat Methods 3, 881-886. Stainier, D. Y. (2001). Zebrafish genetics and vertebrate heart formation. Nat Rev Genet 2, 39-48. Stainier, D. Y. and Fishman, M. C. (1992). Patterning the zebrafish heart tube: acquisition of anteroposterior polarity. Dev Biol 153, 91-101. Stainier, D. Y., Lee, R. K. and Fishman, M. C. (1993). Cardiovascular development in the zebrafish. I. Myocardial fate map and heart tube formation. Development 119, 31-40. Staudt, D. and Stainier, D. (2012). Uncovering the molecular and cellular mechanisms of heart development using the zebrafish. Annu Rev Genet 46, 397-418. Tanzer, A. and Stadler, P. F. (2004). Molecular evolution of a microRNA cluster. J Mol Biol 339, 327-335. Tessadori, F., Tsingos, E., Colizzi, E. S., Kruse, F., van den Brink, S. C., van den Boogaard, M., Christoffels, V. M., Merks, R. M. and Bakkers, J. (2021). Twisting of the zebrafish heart tube during cardiac looping is a tbx5-dependent and tissue-intrinsic process. Elife 10. Thisse, C. and Thisse, B. (2008). High-resolution in situ hybridization to whole-mount zebrafish embryos. Nat Protoc 3, 59-69. Thum, T., Catalucci, D. and Bauersachs, J. (2008). MicroRNAs: novel regulators in cardiac development and disease. Cardiovascular Research 79, 562-570. Tian, X. Y., Ma, S., Tse, G., Wong, W. T. and Huang, Y. (2018). Uncoupling Protein 2 in Cardiovascular Health and Disease. Front Physiol 9, 1060. van Almen, G. C., Verhesen, W., van Leeuwen, R. E., van de Vrie, M., Eurlings, C., Schellings, M. W., Swinnen, M., Cleutjens, J. P., van Zandvoort, M. A., Heymans, S., et al. (2011). MicroRNA-18 and microRNA-19 regulate CTGF and TSP-1 expression in age-related heart failure. Aging Cell 10, 769-779. Ventura, A., Young, A. G., Winslow, M. M., Lintault, L., Meissner, A., Erkeland, S. J., Newman, J., Bronson, R. T., Crowley, D., Stone, J. R., et al. (2008). Targeted deletion reveals essential and overlapping functions of the miR-17 through 92 family of miRNA clusters. Cell 132, 875-886. Wang, Y., Luo, J., Zhang, H. and Lu, J. (2016). microRNAs in the Same Clusters Evolve to Coordinately Regulate Functionally Related Genes. Mol Biol Evol 33, 2232-2247. Weinstein, B. M. and Fishman, M. C. (1996). Cardiovascular morphogenesis in zebrafish. Cardiovasc Res 31 Spec No, E17-24. Yalcin, H. C., Amindari, A., Butcher, J. T., Althani, A. and Yacoub, M. (2017). Heart function and hemodynamic analysis for zebrafish embryos. Dev Dyn 246, 868-880. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82276 | - |
| dc.description.abstract | 發育的過程需要多種因子調節並且受到高度調控,其中微核糖核酸(microRNA)調控著轉錄後的基因靜默。過去研究顯示,miR-19a和miR-19b高度表現在心臟,而其過度表達在斑馬魚中會引起心臟發育缺陷,在大鼠新生心肌細胞誘發心臟肥大,並在心臟特異性miR-17-92轉基因小鼠中造成心臟肥大和心律不整。而其他miR-19家族成員包括miR-19d的功能及其所參與的調控仍然未知。在本論文中,我發現miR-19d可在全身包括心臟表現,而在腦表現量較高。經顯微注射miR-19d mimic以過度表現miR-19d則導致胚胎心臟缺陷,伴有心臟水腫和發育型態異常。在心臟功能分析中,miR-19d的過度表現使心臟搏動減緩、心房和心室收縮力降低以及心輸出量降低。為了研究miR-19d可能影響的基因,透過TargetScanFish的預測篩選,進一步發現過度表現miR-19d的胚胎其可能目標基因RNF122、mef2ca、has2、ucp2和myh7bb的表現量會輕微下降,表示miR-19d可能調節其轉錄或降解。透過單一RNF122 mRNA的注射發現並不能拯救過度表現miR-19d所造成的發育缺陷,其顯示miR-19d可能調控多個心臟發育相關基因。總結來說,miR-19d可能參與調節心臟早期發育相關基因及其功能,而其確切目標基因或基因群仍待探究。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-25T06:34:50Z (GMT). No. of bitstreams: 1 U0001-0410202115574400.pdf: 6750039 bytes, checksum: 4f667511d9e88ee12a0d3582df170594 (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | "口試委員會審定書 i 致謝 ii 中文摘要 iii Abstract iv Table of Contents vi List of Tables viii List of Figures ix Introduction 1 Materials and methods 7 Zebrafish maintenance and embryos collection 7 MiRNA in situ hybridization 7 Microinjection 10 Observation, imaging and parameters analyzed of heart development 10 RNA extraction, reverse transcription, and quantitative polymerase chain reaction 13 In vitro RNF122 mRNA synthesis for rescue experiments 14 Statistical analysis 15 Results 16 Phylogenetic analysis of miR-19 family genes 16 Expression pattern of zebrafish miR-19d 16 Overexpressing miR-19d affects early cardiac development 17 Overexpressing miR-19d affects RNF122, mef2ca, has2, ucp2 and myh7bb transcript levels 21 Discussion 22 References 26" | |
| dc.language.iso | en | |
| dc.subject | 發育 | zh_TW |
| dc.subject | 斑馬魚 | zh_TW |
| dc.subject | 微核糖核酸 | zh_TW |
| dc.subject | 心臟 | zh_TW |
| dc.subject | development | en |
| dc.subject | miRNA | en |
| dc.subject | heart | en |
| dc.subject | zebrafish | en |
| dc.title | 異位性表達微核糖核酸miR-19d影響斑馬魚早期心臟發育 | zh_TW |
| dc.title | Ectopic expression of miR-19d affects early heart development in zebrafish | en |
| dc.date.schoolyear | 109-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 蔡素宜(Hsin-Tsai Liu),周銘翊(Chih-Yang Tseng) | |
| dc.subject.keyword | 微核糖核酸,發育,心臟,斑馬魚, | zh_TW |
| dc.subject.keyword | miRNA,development,heart,zebrafish, | en |
| dc.relation.page | 43 | |
| dc.identifier.doi | 10.6342/NTU202103537 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2021-10-22 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 生命科學系 | zh_TW |
| dc.date.embargo-lift | 2026-10-20 | - |
| 顯示於系所單位: | 生命科學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-0410202115574400.pdf 未授權公開取用 | 6.59 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
