Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 工程科學及海洋工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82251
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李岳聯(Yueh-Lien Lee)
dc.contributor.authorChang-Yang Hsiehen
dc.contributor.author謝鎮洋zh_TW
dc.date.accessioned2022-11-25T06:34:23Z-
dc.date.copyright2022-02-21
dc.date.issued2022
dc.date.submitted2022-02-14
dc.identifier.citation參考文獻 [1] Schulz, R. B., Plantz, V., Brush, D. (1988). Shielding theory and practice. IEEE Transactions on Electromagnetic Compatibility, 30(3), 187-201. [2] Polmear, I. (1995). Light alloys 3rd ed. Metallurgy of the Light Metals,(Edward Arnold, London, 1995) pp, 231-232. [3] Zhou, X., Huang, Y., Wei, Z., Chen, Q., Gan, F. (2006). Improvement of corrosion resistance of AZ91D magnesium alloy by holmium addition. Corrosion Science, 48(12), 4223-4233. doi:10.1016/j.corsci.2006.03.017 [4] Bamberger, M., Dehm, G. (2008). Trends in the Development of New Mg Alloys. Annual Review of Materials Research, 38(1), 505-533. doi:10.1146/annurev.matsci.020408.133717 [5] Shih, T.-S., Liu, J.-B., Wei, P.-S. (2007). Oxide films on magnesium and magnesium alloys. Materials Chemistry and Physics, 104(2-3), 497-504. doi:10.1016/j.matchemphys.2007.04.010 [6] Houska, C. (1988). BERYLLIUM IN ALUMINIUM AND MAGNESIUM ALLOYS. Metals and materials Bury St Edmunds, 4(2), 100. Retrieved from https://www.scopus.com/inward/record.uri?eid=2-s2.0-0023964718 partnerID=40 md5=0a39de5d1e4846967e711eb497bb6ab9 [7] J.F. FAN, G. C. Y., S.L. CHENG, H. XIE, W.X. HAO, M. WANG, and Y.H. ZHOU. (2005). <Surface Oxidation Behavior of Mg-Y-Ce Alloys at High Temperature.pdf>. [8] Marker, T. (2013). maker-0313-mgtask. pdf. In: FAA. [9] Song, G., Johannesson, B., Hapugoda, S., StJohn, D. (2004). Galvanic corrosion of magnesium alloy AZ91D in contact with an aluminium alloy, steel and zinc. Corrosion Science, 46(4), 955-977. doi:10.1016/s0010-938x(03)00190-2 [10] Coy, A. E., Viejo, F., Skeldon, P., Thompson, G. E. (2010). Susceptibility of rare-earth-magnesium alloys to micro-galvanic corrosion. Corrosion Science, 52(12), 3896-3906. doi:10.1016/j.corsci.2010.08.006 [11] Kao, V. (2008). 鎂鋰合金添加微量元素之微弧陽極處理研究. National Central University, [12] J.E.Gray, B. L. (2002). <Protective coatings on magnesium and its alloys — a critical review.pdf>. [13] Thompson, G., Shimizu, K., Wood, G. (1980). Observation of flaws in anodic films on aluminium. Nature, 286(5772), 471-472. [14] Shi, Z., Liu, M., Atrens, A. (2010). Measurement of the corrosion rate of magnesium alloys using Tafel extrapolation. Corrosion Science, 52(2), 579-588. doi:10.1016/j.corsci.2009.10.016 [15] Guangling Song. Andrej Atrens, D. S. (2001). AN HYDROGEN EVOLUTION METHOD FOR THE ESTIMATION OF THE CORROSION RATE OF MAGNESIUM ALLOYS.pdf. [16] Kulekci, M. K. (2007). Magnesium and its alloys applications in automotive industry. The International Journal of Advanced Manufacturing Technology, 39(9-10), 851-865. doi:10.1007/s00170-007-1279-2 [17] Heinz Haferkamp, R. B., Uwe Holzkamp, Christian Jaschik,, Niemeyer, V. K. a. M. (2001). <Alloy development,processing and applications in magnesium lithium alloys.pdf>. The Japan Institute of Metals overview, 1160 to 1166. [18] Kojima, Y. (2001). Project of platform science and technology for advanced magnesium alloys. Materials Transactions, 42(7), 1154-1159. [19] Hornberger, H., Virtanen, S., Boccaccini, A. R. (2012). Biomedical coatings on magnesium alloys - a review. Acta Biomater, 8(7), 2442-2455. doi:10.1016/j.actbio.2012.04.012 [20] B.L. Mordike, T. E. (2001). Magnesium- Properties — applications — potential.pdf. [21] Yang, Z., J.P. Li, Robson, G. W. L. a. J. (2008). REVIEW ON RESEARCH AND DEVELOPMENT OF MAGNESIUM ALLOYS.pdf. [22] OHARA, H. (2016). 難燃性マグネシウム合金や 耐熱マグネシウム合金の開発と応用. [23] OHARA, H. (2016). 難燃性マグネシウム合金や耐熱マグネシウム合金の開発と応用. [24] 能人, 河. (2015). 航空機実装化を目指した KUMADAIマグネシウム合金の研究開発.pdf. [25] Kawamura, Y. (2015). Material Characteristics and Future Perspective on LPSO-type Magnesium Alloys. Materia Japan, 54(2), 44-49. doi:10.2320/materia.54.44 [26] Inoue, A., Kawamura, Y., Matsushita, M., Hayashi, K., Koike, J. (2011). Novel hexagonal structure and ultrahigh strength of magnesium solid solution in the Mg–Zn–Y system. Journal of Materials Research, 16(7), 1894-1900. doi:10.1557/jmr.2001.0260 [27] Luo, Z. P., Zhang, S. Q. (2000). High-resolution electron microscopy on the X-Mg12ZnY phase in a high strength Mg-Zn-Zr-Y magnesium alloy. Journal of Materials Science Letters, 19(9), 813-815. doi:10.1023/a:1006793411506 [28] Zhu, Y. M., Morton, A. J., Nie, J. F. (2010). The 18R and 14H long-period stacking ordered structures in Mg–Y–Zn alloys. Acta Materialia, 58(8), 2936-2947. doi:10.1016/j.actamat.2010.01.022 [29] Kannan, M. B., Raman, R. K. (2008). In vitro degradation and mechanical integrity of calcium-containing magnesium alloys in modified-simulated body fluid. Biomaterials, 29(15), 2306-2314. doi:10.1016/j.biomaterials.2008.02.003 [30] Suzuki, A., Saddock, N., Jones, J., Pollock, T. (2004). Structure and transition of eutectic (Mg,Al)Ca Laves phase in a die-cast Mg?Al?Ca base alloy. Scripta Materialia, 51(10), 1005-1010. doi:10.1016/j.scriptamat.2004.07.011 [31] Rokhlin, L. L., Nikitina, N. I., Volchenkova, V. A. (2006). Magnesium-rich Mg-Al2Ca alloys. Russian Metallurgy (Metally), 2006(2), 185-188. doi:10.1134/s0036029506020157 [32] Janz, A., Grobner, J., Cao, H., Zhu, J., Chang, Y., Schmidfetzer, R. (2009). Thermodynamic modeling of the Mg–Al–Ca system. Acta Materialia, 57(3), 682-694. doi:10.1016/j.actamat.2008.10.037 [33] R. NINOMIYA, T. O. a. K. K. (1995). Improved heat resistance of Mg-Al alloys by the Ca addition. [34] Koray Ozturk, Y. Z., Alan A. Luo, and Zi-Kui Liu. (2003). Creep Resistant Mg-Al-Ca Alloys- Computational Thermodynamics and Experimental Investigation. [35] Koray Ozturk, Y. Z., Alan A. (2003). Creep Resistant Mg-Al-Ca Alloys- Computational Thermodynamics and Experimental Investigation.pdf. [36] Watarai, H. (2006). Trend of Research and Development for Magnesium Alloys-Reducing the Weight of Structural Materialsin Motor Vehicles (1349-3663). Retrieved from [37] Mezbahul-Islam, M., Mostafa, A. O., Medraj, M. (2014). Essential Magnesium Alloys Binary Phase Diagrams and Their Thermochemical Data. Journal of Materials, 2014, 1-33. doi:10.1155/2014/704283 [38] Nie, J., Xiao, X.-L., Luo, C., Muddle, B. C. (2001). Characterisation of precipitate phases in magnesium alloys using electron microdiffraction. Micron, 32(8), 857-863. [39] Song, G. L., Atrens, A. (1999). Corrosion mechanisms of magnesium alloys. Advanced engineering materials, 1(1), 11-33. [40] Ambat, R., Aung, N. N., Zhou, W. (2000). Evaluation of microstructural effects on corrosion behaviour of AZ91D magnesium alloy. Corrosion Science, 42(8), 1433-1455. [41] Südholz, A. D., Kirkland, N. T., Buchheit, R. G., Birbilis, N. (2011). Electrochemical Properties of Intermetallic Phases and Common Impurity Elements in Magnesium Alloys. Electrochemical and Solid-State Letters, 14(2). doi:10.1149/1.3523229 [42] B.-S. You, W.-W. P. a. I.-S. C. (2000). THE EFFECT OF CALCIUM ADDITIONS ON THE OXIDATION BEHAVIOR IN MAGNESIUM ALLOYS.pdf>. [43] M. SAKAMOTO, S. A. (1997). Suppression of ignition and burning of molten Mg alloys by Ca bearing stable oxide film.pdf. [44] Homma, T., Nakawaki, S., Kamado, S. (2010). Improvement in creep property of a cast Mg–6Al–3Ca alloy by Mn addition. Scripta Materialia, 63(12), 1173-1176. doi:10.1016/j.scriptamat.2010.08.033 [45] Diqing, W., Jincheng, W., Gaifang, W., Xianyi, C., Linlin, Zhigang, F., Gencang, Y. (2008). Effect of Mn on damping capacities, mechanical properties, and corrosion behaviour of high damping Mg–3wt.%Ni based alloy. Materials Science and Engineering: A, 494(1-2), 139-142. doi:10.1016/j.msea.2008.04.011 [46] Allen J. Bard, L. R. (2001). Electrochemical methods fundamentals and applications. [47] Lindström, R., Johansson, L.-G., Thompson, G. E., Skeldon, P., Svensson, J.-E. (2004). Corrosion of magnesium in humid air. Corrosion Science, 46(5), 1141-1158. [48] Pourbaix, M. (1974). Atlas of Electrochemical Equilibria in Aqueous Solutions, Houston. TX: NACE In. [49] Nordlien, J., Ono, S., Masuko, N., Nisancioglu, K. (1997). A TEM investigation of naturally formed oxide films on pure magnesium. Corrosion Science, 39(8), 1397-1414. [50] Yuwono, J. A., Birbilis, N., Taylor, C. D., Williams, K. S., Samin, A. J., Medhekar, N. V. (2019). Aqueous electrochemistry of the magnesium surface: Thermodynamic and kinetic profiles. Corrosion Science, 147, 53-68. [51] Baril, G., Galicia, G., Deslouis, C., Pébère, N., Tribollet, B., Vivier, V. (2006). An impedance investigation of the mechanism of pure magnesium corrosion in sodium sulfate solutions. Journal of The Electrochemical Society, 154(2), C108. [52] Song, G.-L., Shi, Z. (2014). Corrosion mechanism and evaluation of anodized magnesium alloys. Corrosion Science, 85, 126-140. [53] Taheri, M., Phillips, R. C., Kish, J. R., Botton, G. A. (2012). Analysis of the surface film formed on Mg by exposure to water using a FIB cross-section and STEM–EDS. Corrosion Science, 59, 222-228. doi:10.1016/j.corsci.2012.03.001 [54] Taheri, M., Danaie, M., Kish, J. R. (2013). TEM Examination of the Film Formed on Corroding Mg Prior to Breakdown. Journal of The Electrochemical Society, 161(3), C89-C94. doi:10.1149/2.017403jes [55] Brady, M. P., Rother, G., Anovitz, L. M., Littrell, K. C., Unocic, K. A., Elsentriecy, H. H., . . . Davis, B. (2015). Film Breakdown and Nano-Porous Mg(OH)2Formation from Corrosion of Magnesium Alloys in Salt Solutions. Journal of The Electrochemical Society, 162(4), C140-C149. doi:10.1149/2.0171504jes [56] Taheri, M., Kish, J. R., Birbilis, N., Danaie, M., McNally, E. A., McDermid, J. R. (2014). Towards a Physical Description for the Origin of Enhanced Catalytic Activity of Corroding Magnesium Surfaces. Electrochimica Acta, 116, 396-403. doi:10.1016/j.electacta.2013.11.086 [57] J. H. NORDLIEN, S. O., N . MASUKO. (1997). A TEM INVESTIGATION OF NATURALLY FORMED OXIDE FILMS ON PURE MAGNESIUM [58] Baril, G., Pebere, N. (2001). The corrosion of pure magnesium in aerated and deaerated sodium sulphate solutions. Corrosion Science, 43(3), 471-484. [59] Beetz, W. (1866). XXXIV. On the development of hydrogen from the anode. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 32(216), 269-278. [60] Curioni, M., Scenini, F. (2015). The mechanism of hydrogen evolution during anodic polarization of aluminium. Electrochimica Acta, 180, 712-721. [61] Petty, R. L., Davidson, A. W., Kleinberg, J. (1954). The anodic oxidation of magnesium metal: evidence for the existence of unipositive magnesium1, 2. Journal of the American Chemical Society, 76(2), 363-366. [62] Atrens, A., Dietzel, W. (2007). The negative difference effect and unipositive Mg+. Advanced engineering materials, 9(4), 292-297. [63] Song, G., StJohn, D. (2004). Corrosion behaviour of magnesium in ethylene glycol. Corrosion Science, 46(6), 1381-1399. [64] Samaniego, A., Hurley, B., Frankel, G. (2015). On the evidence for univalent Mg. Journal of Electroanalytical Chemistry, 737, 123-128. [65] Frankel, G. S., Samaniego, A., Birbilis, N. (2013). Evolution of hydrogen at dissolving magnesium surfaces. Corrosion Science, 70, 104-111. doi:10.1016/j.corsci.2013.01.017 [66] Bastos, A. C., Quevedo, M. C., Karavai, O. V., Ferreira, M. G. S. (2017). Review—On the Application of the Scanning Vibrating Electrode Technique (SVET) to Corrosion Research. Journal of The Electrochemical Society, 164(14), C973-C990. doi:10.1149/2.0431714jes [67] Williams, G., Birbilis, N., McMurray, H. N. (2013). The source of hydrogen evolved from a magnesium anode. Electrochemistry Communications, 36, 1-5. [68] Huang, J., Song, G.-L., Zhu, Y., Zheng, D., Wang, Z. (2021). The anodically polarized Mg surface products and accelerated hydrogen evolution. Journal of Magnesium and Alloys. doi:10.1016/j.jma.2021.05.008 [69] Salleh, S., Thomas, S., Yuwono, J., Venkatesan, K., Birbilis, N. (2015). Enhanced hydrogen evolution on Mg (OH) 2 covered Mg surfaces. Electrochimica Acta, 161, 144-152. [70] Fajardo, S., Glover, C., Williams, G., Frankel, G. (2016). The source of anodic hydrogen evolution on ultra high purity magnesium. Electrochimica Acta, 212, 510-521. [71] Cain, T., Gonzalez-Afanador, I., Birbilis, N., Scully, J. (2017). The role of surface films and dissolution products on the negative difference effect for magnesium: comparison of Cl− versus Cl− free solutions. Journal of The Electrochemical Society, 164(6), C300. [72] Fajardo, S., Frankel, G. (2015). Effect of impurities on the enhanced catalytic activity for hydrogen evolution in high purity magnesium. Electrochimica Acta, 165, 255-267. [73] Yang, Y., Scenini, F., Curioni, M. (2016). A study on magnesium corrosion by real-time imaging and electrochemical methods: relationship between local processes and hydrogen evolution. Electrochimica Acta, 198, 174-184. doi:10.1016/j.electacta.2016.03.043 [74] Curioni, M., Salamone, L., Scenini, F., Santamaria, M., Di Natale, M. (2018). A mathematical description accounting for the superfluous hydrogen evolution and the inductive behaviour observed during electrochemical measurements on magnesium. Electrochimica Acta, 274, 343-352. doi:10.1016/j.electacta.2018.04.116 [75] Liu, Y., Curioni, M., Liu, Z. (2018). Correlation between electrochemical impedance measurements and corrosion rates of Mg-1Ca alloy in simulated body fluid. Electrochimica Acta, 264, 101-108. doi:10.1016/j.electacta.2018.01.121 [76] Seyeux, A., Liu, M., Schmutz, P., Song, G., Atrens, A., Marcus, P. (2009). ToF-SIMS depth profile of the surface film on pure magnesium formed by immersion in pure water and the identification of magnesium hydride. Corrosion Science, 51(9), 1883-1886. doi:10.1016/j.corsci.2009.06.002 [77] REIDARTUNOLD, H. H., MAY-BRITTH,HAGG BERGE,AXELLASSON. (1997). The corrosion of magnesium in aqueous solution containing chloride ions. [78] Liu, Y., Skeldon, P., Thompson, G., Habazaki, H., Shimizu, K. (2004). Chromate conversion coatings on aluminium: influences of alloying. Corrosion Science, 46(2), 297-312. [79] Magalhaes, A., Tribollet, B., Mattos, O., Margarit, I. C. P., Barcia, O. (2002). Chromate conversion coatings formation on zinc studied by electrochemical and electrohydrodynamical impedances. Journal of The Electrochemical Society, 150(1), B16. [80] Simaranov, A., Marshakov, A., Mikhailovskii, Y. (1992). The Composition and Protective Properties of Chromated Conversion Coatings on Magnesium[[Previously Titled: A Correlation Between the Composition and Protective Action of the Chromated Conversion Coatings on Magnesium.]]. Protection of Metals(Russia)(USA), 28(5), 576-580. [81] Ono, S., Asami, K., Masuko, N. (2001). Mechanism of chemical conversion coating film growth on magnesium and magnesium alloys. Materials Transactions, 42(7), 1225-1231. [82] Zhao, J., Xia, L., Sehgal, A., Lu, D., McCreery, R., Frankel, G. S. (2001). Effects of chromate and chromate conversion coatings on corrosion of aluminum alloy 2024-T3. Surface and Coatings Technology, 140(1), 51-57. [83] Lunder, O., Walmsley, J., Mack, P., Nisancioglu, K. (2005). Formation and characterisation of a chromate conversion coating on AA6060 aluminium. Corrosion Science, 47(7), 1604-1624. [84] Umehara, H., Takaya, M., Kojima, Y. (2001). An investigation of the structure and corrosion resistance of permanganate conversion coatings on AZ91D magnesium alloy. Materials Transactions, 42(8), 1691-1699. [85] Tompkins, F. (1942). The kinetics of the reaction between manganous and permanganate ions. Transactions of the Faraday Society, 38, 131-139. [86] Lee, Y., Chu, Y., Li, W., Lin, C. (2013). Effect of permanganate concentration on the formation and properties of phosphate/permanganate conversion coating on AZ31 magnesium alloy. Corrosion Science, 70, 74-81. [87] Happe, J. A., Martin Jr, D. S. (1955). Isotopic Exchange of Manganese during the Reaction between Manganese (II) and Permanganate1, 2. Journal of the American Chemical Society, 77(16), 4212-4217. [88] Jian, S.-Y., Chu, Y.-R., Lin, C.-S. (2015). Permanganate conversion coating on AZ31 magnesium alloys with enhanced corrosion resistance. Corrosion Science, 93, 301-309. doi:10.1016/j.corsci.2015.01.040 [89] Rudd, A. L., Breslin, C. B., Mansfeld, F. (2000). The corrosion protection afforded by rare earth conversion coatings applied to magnesium. Corrosion Science, 42(2), 275-288. [90] Takenaka, T., Ono, T., Narazaki, Y., Naka, Y., Kawakami, M. (2007). Improvement of corrosion resistance of magnesium metal by rare earth elements. Electrochimica Acta, 53(1), 117-121. [91] Lin, C., Fang, S. (2004). Formation of cerium conversion coatings on AZ31 magnesium alloys. Journal of The Electrochemical Society, 152(2), B54. [92] Su, H., Li, W., Lin, C. (2012). Effect of acid pickling pretreatment on the properties of cerium conversion coating on AZ31 magnesium alloy. Journal of The Electrochemical Society, 159(5), C219. [93] Ha, J. H., Cho, J., Kim, J. H., Cho, B. W., Ham, H. C., Oh, S. H. (2018). Synthesis of magnesium chloride complex electrolyte: Galvanic couple assisted catalytic dissolution of magnesium in ethereal solution. Journal of Power Sources, 398, 120-127. doi:10.1016/j.jpowsour.2018.07.058 [94] Xu, C., Wang, J., Chen, C., Wang, C., Sun, Y., Zhu, S., Guan, S. (2021). Initial micro-galvanic corrosion behavior between Mg2Ca and α-Mg via quasi-in situ SEM approach and first-principles calculation. Journal of Magnesium and Alloys. doi:10.1016/j.jma.2021.06.017 [95] Wang, F., Xu, J., Xu, Y., Jiang, L., Ma, G. (2020). A comparative investigation on cathodic protections of three sacrificial anodes on chloride-contaminated reinforced concrete. Construction and Building Materials, 246. doi:10.1016/j.conbuildmat.2020.118476
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82251-
dc.description.abstract本研究於不燃型鎂合金Mg-8Al-4Ca 進行表面化成處理與腐蝕,該鎂合金添加金屬元素後析出二次相成為雙相合金,浸泡於水溶液時易產生伽凡尼腐蝕。透過 SKPFM量測表面電位,發現二次相鋁二鈣有較低的表面電位,並可能扮演微陽極加速腐蝕。同時透過 TEM 表面分析,發現在水溶液環境時二次相鋁二鈣確實有較快的腐蝕速率,且當進行硝酸鈰化成反應時,二次相的存在也會影響鎂底材的析氫速率,使 α-Mg 有較快的析氫速率。此外,進行化成處理前,將試片浸泡於去離子水將表面的二次相溶解,會產生氫氧化鋁(〖Al(OH)〗_3)的腐蝕產物,由於該層的存在使得硝酸鈰化成處理無需透過底材溶解,僅透過置換反應便可使化成皮膜沈積於試片表面達到保護試片的作用。同時 〖Al(OH)〗_3 層的存在也使試片得到進一步保護,透過電化學與析氫實驗量測試片的抗蝕能力時,優先浸泡去離子水產生並化成後的試片都有最優異的表現。zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-25T06:34:23Z (GMT). No. of bitstreams: 1
U0001-1002202216254400.pdf: 42567305 bytes, checksum: 409b14817e7cb2c5c092a9b127a453a4 (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents總目錄 致謝 i 中文摘要 ii Abstract iii 總目錄 iv 圖目錄 vii 表目錄 xi 第1章 前言 1 第2章 文獻回顧 2 2.1不燃型鎂合金與元素添加 3 2.1.1鋁 3 2.1.2鈣 5 2.1.3錳 6 2.2鎂合金的腐蝕 7 2.2.1鎂合金腐蝕產物及微結構 7 2.2.2負差值效應 12 2.3鎂合金化成處理 22 2.3.1鉻酸鹽化成處理 23 2.3.2錳酸鹽化成處理 24 2.3.3鈰酸鹽化成處理 25 第3章 實驗方法 28 3.1鎂合金試片前處理 29 3.1.1試片之命名 29 3.1.2 浸泡去離子水 30 3.1.3化成溶液配置與浸泡 30 3.2微結構分析 31 3.2.1 SEM 表面形貌分析 31 3.2.2 TEM 橫截面結構觀察 31 3.3 EDS 成分分析 33 3.4電化學性質分析 33 3.4.1動電位極化曲線 33 3.4.2析氫實驗 34 3.5 AFM 原子力顯微鏡 35 第4章 實驗結果 36 4.1浸泡水溶液之腐蝕行為 36 4.1.1浸泡前底材之表面形貌 36 4.1.2浸泡氯化鈉溶液 38 4.1.3 Mg_DI之SEM表面影像 39 4.1.4 Mg_DI之TEM橫截面影像 40 4.2短時間化成處理 45 4.2.1浸泡60秒OCP監測 45 4.2.2 Ce初期 SEM 表面形貌 46 4.2.3 Ce初期 TEM 橫截面形貌 49 4.2.4 Ce_DI初期 SEM 表面形貌 52 4.2.5 Ce_DI初期 TEM 橫截面影像 54 4.3長時間化成處理 61 4.3.1 Ce、Ce-DI浸泡 60 秒 SEM 影像 61 4.3.2 Ce浸泡60秒 TEM 橫截面影像 64 4.3.3 Ce-DI 浸泡 60 秒 TEM 橫截面影像 66 4.4 化成皮膜電化學及抗蝕性分析 70 4.4.1開路電位量測 70 4.4.2動電位極化量測 71 4.4.3析氫速率量測 73 第5章 討論 76 5.1 二次相組成 76 5.2 水溶液之腐蝕行為 79 5.3化成反應機制 83 5.4兩相對化成反應之影響 85 5.5試片化成60秒OCP監測 88 5.6二次相對抗蝕性之影響 90 第6章 結論 91 第7章 未來展望 92 參考文獻 93 圖目錄 圖2 1鎂鋁平衡相圖[37] 4 圖2-2高溫中氧化膜之厚度比較[42] 5 圖2 3鎂鈣平衡相圖[37] 6 圖2 4鎂錳平衡相圖[37] 6 圖2 5鎂的 Pourbaix Diagram [48] 7 圖2-6鎂在 0.1M 、 0.01M 硫酸鈉溶液中浸泡 21 小時後對腐蝕產物的電化學交流阻抗分析結果[51] 8 圖2 7 純鎂浸泡於純水 1 分鐘的 XPS 縱深分析圖 O1s 光譜[53] 9 圖2-8 表面氫氧化鎂層與氧化鎂層厚度隨浸泡時間變化關係圖[55] 10 圖 2-9 對腐蝕產物 (a) 外層與 (b) 內層的選區繞射圖 (c) 腐蝕產物與底材界面處擇區繞射影像,圈選氧化鎂多晶環上 (200) 繞射點形成[56]。 11 圖 2-10 純鎂浸泡於純水 48 小時的雙層結構示意圖[53] 11 圖2-11 (a)浸泡24 小時 5 wt.% NaCl溶液 STEM -HAADF 影像, 12 圖2-12 (a) SVET 裝置架設 (b) 鎂在腐蝕發生處、腐蝕產物上與腐蝕前緣等區域陰陽極的分佈與電流大小[66]。 15 圖2-13 (a)鎂腐蝕過程電流分佈示意圖(b)假設一價鎂貢獻之電流分佈示意圖[66] 15 圖2-14 鎂電極在不同陽極電流密度下表面形貌[68] 16 圖2-15 (a) 腐蝕過程中鎂溶解反應的示意圖,(b)Mg 上暗區中間物種與腐蝕產物的混合物示意圖[68] 17 圖2 16惰性金屬沈積後產生陰極活性區之示意圖[56] 18 圖2-17 (a)為腐蝕產物 SEM 表面形貌(b)為試樣橫截面 STEM HAADF 影像[56] 19 圖2 18 陽極溶解 ultra-high purity Mg 與 high purity Mg 析氫活性變化量[72] 19 圖2-19析氫反應的即時攝影圖與示意圖[74] 21 圖2-20 ToF-SIMS 對鎂試樣浸泡於純水 2 分鐘之縱深分析結果[76] 22 圖2 21 AZ31B 鎂合金浸泡於錳酸鹽化成液中 90 秒的 TEM 橫截面微結構圖[88] 25 圖2 22 (a) 未經酸洗前處理AZ31試片浸泡硝酸鈰之 SEM 表面形貌(b) 經過HF酸洗前處理後之鈰酸鹽皮膜之 SEM 表面形貌[92] 27 圖2 23研磨完的 AZ31 浸泡於鈰酸鹽化成溶液中的 TEM 橫截面圖[92] 27 圖2 24 經 HF 酸洗前處理之 AZ31 浸泡鈰酸鹽化成溶液中 TEM 橫截面圖[92] 27 圖3-1實驗流程圖 28 圖3-2 (a) Mg 試片 (b) Mg_DI試片 30 圖3-3 (a) Ce 試片(b) Ce-DI 試片 30 圖3-4 析氫試驗裝置示意圖 34 圖3-5 AFM 儀器圖 35 圖4-1 不燃型鎂合金試片浸泡水溶液前形貌,圖 (a) SEM影像,圖 (b) BSE 影像 37 圖4-2 不燃型鎂合金試片浸泡水溶液前各元素 Mapping 結果。圖 (a) 為 SEM 影像;圖 (b)、(c)、(d)、(e)、(f) 為對應元素分佈。 38 圖4-3 不燃型鎂合金試片浸泡 NaCl 溶液1小時之表面影像,圖 (a) 腐蝕產物之表面形貌;(b) BSE 影像之表面形貌;(c)、(d) 腐蝕產物之高倍率影像。 39 圖4-4 浸泡 1 小時去離子水之 Mg_DI 試片表面影像,圖 (a) 腐蝕產物表面形貌;(b) BSE 影像之表面形貌;(c)、(d) 缺口處之高倍率影像。 40 圖4-5 Mg_DI 試片之橫截面影像組圖 41 圖4-6 Mg_DI 試片二次相與腐蝕產物之橫截面影像組圖 41 圖4-7 Mg_DI 試片元素Mapping結果,(a) 為 BF 影像;(b)、(c)、(d)、(e)、(f)、(g) 為對應元素分佈 42 圖4-8 Mg_DI 二次相腐蝕產物之橫向 line scan 元素分析結果 43 圖4-9 Mg_DI 試片之二次相腐蝕產物縱向line scan 元素分析結果 44 圖4-10 二次相腐蝕產物之diffraction pattern影像 44 圖4-11 Ce、Ce_DI 兩試片化成 60 秒之 OCP 圖 46 圖4-12 (a) Ce 試片化成 10 秒 SEM 影像;(c) 高倍率影像;(b)、(d) BSE影像 47 圖4-13 (a) Ce 試片化成 30 秒 SEM 影像;(c) 高倍率影像;(b)、(d) BSE 影像 48 圖 4-14 Ce 試片化成1秒之橫截面影像組圖 49 圖4-15 Ce 試片化成1秒之元素 Mapping結果,(a) STEM 影像;(b)、(c)、(d)、(e)、(f)、(g)、(h) 為對應元素分佈 50 圖4-16 Ce試片化成 1 秒之point元素分析位置圖 51 圖4-17 (a) Ce_DI 試片化成 5 秒SEM影像;(c) 高倍率影像;(b)、(d)BSE影像 52 圖4-18 (a) Ce_DI試片化成 10 秒 SEM 影像;(c) 高倍率影像;(b)、(d)BSE影像 53 圖4-19 (a) Ce_DI 試片化成 30 秒SEM影像;(c) 高倍率影像;(b)、(d)BSE影像 54 圖4-20 Ce_DI 試片化成 5 秒之橫截面影像組圖 55 圖4-21 Ce_DI 試片化成5秒之元素 Mapping結果,(a) 為STEM 影像;(b)、(c)、(d)、(e)、(f)、(g)、(h) 為對應元素分佈 56 圖4-22 Ce_DI 試片缺口處化成 5 秒之橫截面影像組圖 57 圖4-23 Ce_DI 試片化成 5 秒之缺口處元素Mapping結果,(a) 為 STEM 影像;(b)、(c)、(d)、(e)、(f)、(g)、(h) 為對應元素分佈 58 圖4-24 Ce_DI 試片化成 10 秒之橫截面影像組圖 59 圖4-25 Ce_DI 試片化成 10 秒之元素Mapping結果,(a) 為 STEM 影像;(b)、(c)、(d)、(e)、(f)、(g)、(h) 為對應元素分佈 60 圖4-26 (a) Ce 試片化成60秒 SEM 影像;(b) 為高倍率影像。 62 圖4-27 (a) Ce_DI 試片化成 60 秒 SEM 影像;(b) 為高倍率影像。 63 圖4-28 Ce試片化成 60 秒之橫截面影像組圖 64 圖4-29 (a) α-Mg 之皮膜結構;(b) 二次相之皮膜結構 65 圖4-30 Ce_DI 試片化成 60 秒之橫截面影像組圖 66 圖 4-31 (a) 二次相皮膜結構;(b) α-Mg 皮膜結構 67 圖4-32 Ce_DI 試片化成 60 秒元素Mapping結果,(a) 為 STEM 影像;(b)、(c)、(d)、(e)、(f)、(g)、(h) 為對應元素分佈 68 圖4-33 Ce_DI 試片化成 60 秒之橫向line scan 元素分析結果 69 圖4-34 二次相腐蝕產物之縱向 line scan 元素分析結果 69 圖4-35 Mg、Mg_DI、Ce、Ce_DI 試片之OCP監控 71 圖4-36 Mg、Mg_DI、Ce、Ce_DI 試片之極化曲線 72 圖4-37 Mg、Mg_DI、Ce、Ce_DI試片析氫體積圖 (a) 5 小時(b) 1 小時 74 圖4-38 Mg、Mg_DI、Ce、Ce_DI 試片之腐蝕速率比較圖 75 圖 5-1 使用 EPMA 內的 SEM 得到表面的影像 77 圖5-2不燃型鎂合金二次相之TEM繞射影像 78 圖5-3 不燃型鎂合金試片之 BSE 影像 80 圖 5-4 不燃型鎂合金試片之 SKPFM 量測結果 (a) 表面粗糙度 (b) Volta-potential 80 圖 5-5 SKPFM 量測 AB 線段上的Volta-potential 值 80 圖 5-6 Mg試片浸泡於水溶液溶解示意圖 82 圖5-7 Ce 表面之化成反應機制示意圖 83 圖5-8 Ce_DI 表面化成反應機制示意圖 84 圖5-9 Ce、Ce_DI 試片於 α-Mg 總膜層厚度 86 圖5-10 Ce、Ce_DI 試片於二次相上 CeO2 皮膜厚度比較 87 圖 5-11 Ce、Ce_DI 試片化成 60 秒開路電位監測圖 89   表目錄 表2 1鎂、鋁及鐵之物理性質[16] 2 表 3 1 不燃型鎂合金成分組成 29 表3-2不燃型鎂合金試片之命名 29 表4-1 Mg_DI 試片腐蝕產物厚度量測表 41 表4-2各位置元素分析結果 51 表4-3 Ce試片化成 60 秒各膜層平均厚度表 65 表4-4 Ce_DI 試片化成 60 秒後各膜層平均厚度表 67 表4-5 各試片之腐蝕速率數值表 75 表5-1對 A、B 兩位置的元素分析結果 77 表5-2Ce、Ce_DI 試片 α-Mg 之總膜層厚度 86 表5-3 Ce、Ce_DI 試片於二次相上 CeO2 皮膜厚度 87
dc.language.isozh-TW
dc.subject表面分析zh_TW
dc.subject化成處理zh_TW
dc.subject不燃型鎂合金zh_TW
dc.subject伽凡尼腐蝕zh_TW
dc.subject電化學zh_TW
dc.subjectSurface analysisen
dc.subjectMg-Al-Ca-Mn alloysen
dc.subjectMicro-galvanic Corrosionen
dc.subjectCerium conversion coatingen
dc.subjectElectrochemistryen
dc.title不燃型鎂合金腐蝕及表面處理性質之研究zh_TW
dc.titleCorrosion and Surface Treatment Properties of Non-flammable Magnesium Alloysen
dc.date.schoolyear110-1
dc.description.degree碩士
dc.contributor.oralexamcommittee林招松(Hui-Lin Lin),楊舜涵(Hsien-Feng Lee),林新智 ,朱鵬維
dc.subject.keyword不燃型鎂合金,表面分析,化成處理,伽凡尼腐蝕,電化學,zh_TW
dc.subject.keywordMg-Al-Ca-Mn alloys,Micro-galvanic Corrosion,Cerium conversion coating,Electrochemistry,Surface analysis,en
dc.relation.page100
dc.identifier.doi10.6342/NTU202200536
dc.rights.note未授權
dc.date.accepted2022-02-14
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept工程科學及海洋工程學研究所zh_TW
dc.date.embargo-lift2024-02-28-
顯示於系所單位:工程科學及海洋工程學系

文件中的檔案:
檔案 大小格式 
U0001-1002202216254400.pdf
  未授權公開取用
41.57 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved