Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 物理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8222
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張寶棣(Pao-Ti Chang)
dc.contributor.authorYen-Ting Chinen
dc.contributor.author金彥廷zh_TW
dc.date.accessioned2021-05-20T00:50:19Z-
dc.date.available2021-02-20
dc.date.available2021-05-20T00:50:19Z-
dc.date.copyright2021-02-20
dc.date.issued2021
dc.date.submitted2021-02-08
dc.identifier.citation[1] MissMJ. “Standard Model of Elementary Particles”. From Wikipedia: https:// en.wikipedia.org/wiki/Standard_Model.
[2] S. Stone. “The discovery of the B mesons.” AIP Conference Proceedings, 424(1):75– 84, 1998.
[3] I. Heredia de la Cruz. “The Belle II experiment: fundamental physics at the flavor frontier.” Journal of Physics: Conference Series, 761:012017, 2016.
[4] B. Shwartz et al. “Electromagnetic calorimeter of the Belle II detector.” Journal of Physics: Conference Series, 928:012021, 2017.
[5] T. Abe et al. “Belle II Technical Design Report,” 2010. arXiv:1011.0352.
[6] U. Tamponi. “The TOP counter of Belle II: Status and first results.” Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 952:162208, 2020.
[7] D. Weyland. “Continuum Suppression with Deep Learning techniques for the Belle II Experiment.” Master’s thesis, KIT, Karlsruhe, ETP, 2017.
[8] K. Akai, K. Furukawa, and H. Koiso. “SuperKEKB collider.” Nuclear Instruments and 74 Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 907:188 – 199, 2018.
[9] M. Tanabashi et al. “Review of Particle Physics.” Phys. Rev. D, 98(3):030001, 2018. [10] A. Bharucha, D. Straub, and R. Zwicky. “B → V l+l − in the Standard Model from light¬-cone sum rules.” Journal of High Energy Physics, 2016:98, 2016.
[11] Jon. A. Bailey et al. “|Vub| from B → πℓν decays and (2 + 1)¬ flavor lattice QCD.” Phys. Rev. D, 92(1):014024, 2015.
[12] T. Aushev et al. “Physics at Super B Factory,” 2010. arXiv:1002.5012.
[13] C. MacQueen and on behalf of the Belle II collaboration. “Dark Sector Physics at Belle II.” Journal of Physics: Conference Series, 1468:012047, 2020.
[14] Y. Ohnishi et al. “Accelerator design at SuperKEKB.” Progress of Theoretical and Experimental Physics, 2013(3):03A011, 2013.
[15] A. Abashian et al. “The Belle detector.” Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 479(1):117–232, 2002.
[16] S. Takeda et al. “Development of double¬-sided silicon strip detectors (DSSD) for a Compton telescope. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 579(2):859 – 865, 2007.
[17] V. Bertacchi et al. “Track finding at Belle II.” Computer Physics Communications, 259:107610, 2021. 75
[18] M. Thomson. “Modern Particle Physics.” Cambridge University Press, 2013.
[19] T. Keck et al. “The Full Event Interpretation: An Exclusive Tagging Algorithm for the Belle II Experiment.” Comput. Softw. Big Sci., 3(1):6, 2019.
[20] M. T. Prim, F. U. Bernlochner, P. Goldenzweig, et al. “Search for B+ → µ +ν and B+ → µ +N with inclusive tagging.” Phys. Rev. D, 101(3), 2020.
[21] E. Kou et al. “The Belle II Physics Book.” Progress of Theoretical and Experimental Physics, 2019(12):123C01, 2019.
[22] W.¬S. Hou. “Enhanced charged Higgs boson effects in B− → τν, µν and b → τν+X.” Phys. Rev. D, 48(5):2342–2344, 1993.
[23] W.¬S. Hou, M. Kohda, T. Modak, and G.¬G. Wong. “Enhanced B → µν decay at tree level as probe of extra Yukawa couplings.” Physics Letters B, 800:135105, 2020.
[24] W.¬S. Hou, T. Modak, and G.¬G. Wong. “Scalar leptoquark effects on B → µν¯ decay.” Eur. Phys. J. C, 79(11):964, 2019. arXiv:1909.00403.
[25] D. J. Lange. “The EvtGen particle decay simulation package.” Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 462(1):152 – 155, 2001.
[26] S. Jadach, B.F.L. Ward, and Z. Was. “The Precision Monte Carlo event generator KK for two fermion final states in e +e − collisions.” Comput. Phys. Commun., 130:260– 325, 2000.
[27] B. O. Lange, M. Neubert, and G. Paz. “Theory of charmless inclusive B decays and the extraction of Vub.” Phys. Rev. D, 72:073006, 2005. 76
[28] C. Bourrely, L. Lellouch, and I. Caprini. “Model ¬independent description of B → πlν decays and a determination of |Vub|.” Phys. Rev. D, 79:013008, 2009.
[29] T Keck. “FastBDT: A Speed ¬Optimized Multivariate Classification Algorithm for the Belle II Experiment.” Comput. Softw. Big Sci., 1(1):2, 2017.
[30] A. J. Bevan, B. Golob, Th. Mannel, S. Prell, B. D. Yabsley, H. Aihara, F. Anulli, N. Arnaud, T. Aushev, M. Beneke, and et al. “The physics of the B factories.” The European Physical Journal C, 74(11), 2014.
[31] D. Ferlewicz, M. Milesi, and P. Urquijo. “Lepton identification and pion fake rates using J/ψ→ℓ+ℓ− and K0_S→π+π− events.” 2020. https://confluence.desy.de/ display/BI/Recommendations+for+LeptonID+¬+ICHEP+2020.
[32] S. S. Wilks. “The large ¬sample distribution of the likelihood ratio for testing composite hypotheses.” Ann. Math. Statist., 9(1):60–62, 1938.
[33] F. De Fazio and M. Neubert. “B → Xulν¯l decay distributions to order αs.” Journal of High Energy Physics, 1999(06):017–017, 1999.
[34] A. Glazov, P. Rados, A. Rostomyan, E. Paoloni, and L. Zani. “Measurement of the tracking efficiency in phase 3 data using tau¬pair events.” 2020. https://confluence.desy.de/display/BI/Tracking+and+Vertexing+Performance.
[35] C.Cecchi, G. De Nardo, E. Manoni, and M. Merola. “Study of R2 distribution and B counting in early phase 3 data.” 2019. https://confluence.desy.de/display/BI/Accelerator+performance+subgroup.
[36] F. U. Bernlochner. “B → πτντ decay in the context of type II 2HDM.” Phys. Rev. D, 92(11):115019, 2015. 77
[37] M. T. Prim, F. U. Bernlochner, and D. J. Robinson. “Precision predictions for B → ρτντ and B → ωτντ in the SM and beyond,” 2020. arXiv:2001.06170.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8222-
dc.description.abstract本研究旨在預測「假設標準模型對於B+→µ+ν之分支分數預測正確,則在不同 Belle II資料量下,B+→µ+ν之統計顯著性分別為何」。本研究使用蒙地卡羅方法產生大量資料樣本以模擬e+e−在SuperKEKB加速器中以10.58 GeV質心能量對撞所產生之各種物理事件。這些物理事件包含了e+e−→qq、e+e−→τ+τ−以及e+e−→Υ(4S)→ B0B0bar/B+B−之過程。我們也模擬了Belle II探測器對這些物理事件之反應。本研究使用多變量分析以區隔B+→µ+ν事件及背景事件。我們為不同物理過程建立機率密度函數並產生艾西莫夫資料,並使用其剖面概似函數預測不同Belle II資料量下B+→µ+ν之統計顯著性。根據預測,我們需要多於7 ab−1之資料量以超越5σ之顯著性以宣稱發現B+→µ+ν衰變。zh_TW
dc.description.abstractIn this study, we intend to estimate the statistical significance of B+→µ+ν when various amounts of Belle II data are available in the future, assuming that the Standard Model estimation of the branching fraction of B+→µ+ν is correct. The Monte-Carlo method is applied to generate a large amount of data samples to simulate the physics events produced by e+e− collision on the center­-of-­mass energy of 10.58 GeV in the SuperKEKB accelerator. These physics events include the e+e−→qq, the e+e−→τ+τ−, and the e+e−→Υ(4S)→B0B0bar/B+B− processes. The Belle II detector responses to these physics events are also simulated. In this study, we use multivariate analysis to distinguish the B+→μ+ν events from the background events. We establish probability density functions for different physics processes and generate Asimov data sets. We then use the profile likelihood function of the Asimov data sets to estimate the statistical significance of B+→μ+ν when different amounts of Belle II data are available. According to the estimation, we will need to collect more than 7ab−1 of data in order to surpass the significance of 5σ in order to claim the discovery of B+→μ+νen
dc.description.provenanceMade available in DSpace on 2021-05-20T00:50:19Z (GMT). No. of bitstreams: 1
U0001-0602202123553200.pdf: 13485608 bytes, checksum: eed8d78374fd9f18a0d4567e6c615b97 (MD5)
Previous issue date: 2021
en
dc.description.tableofcontentsVerification Letter from the Oral Examination Committee i
Acknowledgements ii
摘要iv
Abstract v
Contents vii
List of Figures xi
List of Tables xiii
1 Introduction 1
1.1 Standard Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 B physics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Introduction to the Belle II Experiment . . . . . . . . . . . . . . . . 3
1.4 SuberKEKB Accelerator . . . . . . . . . . . . . . . . . . . . . . . . 4
1.5 Belle II Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.5.1 Tracking System . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.5.1.1 Pixel Detector (PXD) . . . . . . . . . . . . . . . . . . 9
1.5.1.2 Silicon Vertex Detector (SVD) . . . . . . . . . . . . . 10
1.5.1.3 Central Drift Chamber (CDC) . . . . . . . . . . . . . . 12
1.5.2 Particle Identification (PID) System . . . . . . . . . . . . . . . . . 13
1.5.2.1 Time of Propagation Detector (TOP)) . . . . . . . . . . 13
1.5.2.2 Aerogel Ring Imaging Cherenkov Detector (ARICH) . 15
1.5.3 Electromagnetic Calorimeter (ECL) . . . . . . . . . . . . . . . . . 16
1.5.4 K0_L and μ+ Detector (KLM) . . . . . . . . . . . . . . . . . . . . . 17
1.5.5 Trigger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.6 Final State Particles Reconstruction and Identification in Belle II . . . 20
1.6.1 Charged Particle Reconstruction . . . . . . . . . . . . . . . . . . . 20
1.6.2 Charged Particle Identification . . . . . . . . . . . . . . . . . . . . 21
1.6.2.1 Matching Between ECL (KLM) and CDC . . . . . . . 22
1.6.3 Global PID of Charged Particles . . . . . . . . . . . . . . . . . . . 22
1.6.4 Photon Identification . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.6.5 K0_L Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.7 Reconstruction of Intermediate States and the B Meson in Belle II . . 23
2 Motivation 25
3 Data Samples 28
3.1 Monte-Carlo Samples . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2 B → Xulν MC Samples and the Hybrid Model . . . . . . . . . . . . 30
3.3 Real Data Samples . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4 Analysis Strategy and Event Selection 32
4.1 Analysis Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.2 Event Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.2.1 Skim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.2.2 Rest of Event . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.2.2.1 Derivation of pB_μ . . . . . . . . . . . . . . . . . . . . . 35
4.2.3 Pre-Selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.2.4 Continuum Suppression . . . . . . . . . . . . . . . . . . . . . . . . 36
4.2.5 B → Xulν Suppression . . . . . . . . . . . . . . . . . . . . . . . . 39
4.2.5.1 Reconstruction . . . . . . . . . . . . . . . . . . . . . . 39
4.2.5.2 B → Xulν MVA . . . . . . . . . . . . . . . . . . . . 39
4.2.6 Combined Background Suppression MVA . . . . . . . . . . . . . . 45
4.3 Calibration of Muon Identification Efficiency . . . . . . . . . . . . . 47
4.4 Side-Band Plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5 Signal Extraction 50
5.1 Fit to Asimov Data . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.2 Toy MC Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.3 Significance Estimation . . . . . . . . . . . . . . . . . . . . . . . . 55
6 Control Channel Study 58
6.1 MC Samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
6.2 Pre-Selection on Signal Side . . . . . . . . . . . . . . . . . . . . . . 59
6.3 Pre-Selection on the ROE Side and the Event NTracks Selection . . . 60
6.4 MVA Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
7 Systematic Uncertainty 66
7.1 Hybrid Model of B → Xulν . . . . . . . . . . . . . . . . . . . . . . 66
7.1.1 Form Factors for B → πlν, B → ρlν and B → ωlν . . . . . . . . . 66
7.1.2 Inclusive and Resonant B → Xulν Branching Fractions . . . . . . . 67
7.1.3 Various Inclusive B → Xulν Decay Models . . . . . . . . . . . . . 68
7.2 Lepton Identification . . . . . . . . . . . . . . . . . . . . . . . . . . 68
7.3 MVA Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
7.4 Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
7.5 Number of BB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
8 Results and Conclusion 72
References 74
Appendix A — Special cases for maximum likelihood estimator 79
A.1 Simultaneous fit . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Appendix B — Differential decay rates for the resonant B → Xulν modes 82
B.1 SM prediction of B → πlν . . . . . . . . . . . . . . . . . . . . . . . 82
B.2 SM prediction of B → ρ/ωlν . . . . . . . . . . . . . . . . . . . . . 83
Appendix C — Plots 84
C.1 Continuum Suppression Variables . . . . . . . . . . . . . . . . . . . 84
C.2 B → Xulν Suppression Variables for B0 → π0π−μ+ν . . . . . . . . 86
C.3 Toy results and fit to Asimov’s data . . . . . . . . . . . . . . . . . . 87
dc.language.isoen
dc.title在Belle II實驗中對B+介子衰變至µ+ν之敏感度分析zh_TW
dc.titleSensitivity Study of B+→µ+ν in the Belle II Experimenten
dc.typeThesis
dc.date.schoolyear109-1
dc.description.degree碩士
dc.contributor.oralexamcommittee王名儒(Min-Zu Wang),張敏娟(Ming-Chuan Chang),徐靜戈(Jing-Ge Shiu)
dc.subject.keywordB介子,稀有B衰變,Belle II實驗,SuperKEKB,渺子,zh_TW
dc.subject.keywordB meson,rare B decay,Belle II experiment,SuperKEKB,muon,en
dc.relation.page89
dc.identifier.doi10.6342/NTU202100639
dc.rights.note同意授權(全球公開)
dc.date.accepted2021-02-14
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept物理學研究所zh_TW
顯示於系所單位:物理學系

文件中的檔案:
檔案 大小格式 
U0001-0602202123553200.pdf13.17 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved