Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物環境系統工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82225
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor范致豪(Chihhao Fan)
dc.contributor.authorYi-Chun Chungen
dc.contributor.author鍾宜准zh_TW
dc.date.accessioned2022-11-25T06:33:58Z-
dc.date.copyright2022-02-18
dc.date.issued2022
dc.date.submitted2022-02-09
dc.identifier.citation1. 行政院環境保護署(2021年,06月30日)。全國一般廢棄物產生量。https://data.epa.gov.tw/dataset/stat_p_126/resource/293da68e-1423-46b6-a866-faa17ad98e3e。 2. 行政院環境保護署(2021年,06月30日)。102至104年度一般廢棄物最終處置前組成採樣及分析工作委託專案計畫。 3. 行政院農業委員會(2021年,07月11日)。農業統計資料查詢。https://agrstat.coa.gov.tw/sdweb/public/inquiry/InquireAdvance.aspx 4. Abouelenien, F., Kitamura, Y., Nishio, N., Nakashimada, Y. (2009). Dry anaerobic ammonia–methane production from chicken manure. Applied Microbiology and Biotechnology, 82(4), 757-764. 5. Anderson, C. R., Peterson, M. E., Frampton, R. A., Bulman, S. R., Keenan, S., Curtin, D. (2018). Rapid increases in soil pH solubilise organic matter, dramatically increase denitrification potential and strongly stimulate microorganisms from the Firmicutes phylum. PeerJ, 6, e6090. 6. Angelidaki, I., Ahring, B. (1994). Anaerobic thermophilic digestion of manure at different ammonia loads: effect of temperature. Water Research, 28(3), 727-731. 7. Arelli, V., Begum, S., Anupoju, G. R., Kuruti, K., Shailaja, S. (2018). Dry anaerobic co-digestion of food waste and cattle manure: Impact of total solids, substrate ratio and thermal pre treatment on methane yield and quality of biomanure. Bioresource Technology, 253, 273-280. 8. Astruc, T., Gatellier, P., Labas, R., Lhoutellier, V. S., Marinova, P. (2010). Microstructural changes in m. rectus abdominis bovine muscle after heating. Meat Science, 85(4), 743-751. 9. Bachate, S. P., Khapare, R. M., Kodam, K. M. (2012). Oxidation of arsenite by two β-proteobacteria isolated from soil. Applied Microbiology and Biotechnology, 93(5), 2135-2145. 10. Baghchehsaraee, B., Nakhla, G., Karamanev, D., Margaritis, A. (2010). Fermentative hydrogen production by diverse microflora. International Journal of Hydrogen Energy, 35(10), 5021-5027. 11. Bang-Andreasen, T., Nielsen, J. T., Voriskova, J., Heise, J., Rønn, R., Kjøller, R., Hansen, H. C., Jacobsen, C. S. (2017). Wood ash induced pH changes strongly affect soil bacterial numbers and community composition. Frontiers in Microbiology, 8, 1400. 12. Barns, S. M., Cain, E. C., Sommerville, L., Kuske, C. R. (2007). Acidobacteria phylum sequences in uranium-contaminated subsurface sediments greatly expand the known diversity within the phylum. Applied and Environmental Microbiology, 73(9), 3113-3116. 13. Berlemont, R., Allison, S. D., Weihe, C., Lu, Y., Brodie, E. L., Martiny, J. B., Martiny, A. C. (2014). Cellulolytic potential under environmental changes in microbial communities from grassland litter. Frontiers in Microbiology, 5, 639. 14. Bolzonella, D., Pavan, P., Battistoni, P., Cecchi, F. (2005). Mesophilic anaerobic digestion of waste activated sludge: influence of the solid retention time in the wastewater treatment process. Process Biochemistry, 40(3-4), 1453-1460. 15. Capson-Tojo, G., Rouez, M., Crest, M., Trably, E., Steyer, J.-P., Bernet, N., Delgenès, J.-P., Escudié, R. (2017). Kinetic study of dry anaerobic co-digestion of food waste and cardboard for methane production. Waste Management, 69, 470-479. 16. Chen, H., Chang, S. (2017). Impact of temperatures on microbial community structures of sewage sludge biological hydrolysis. Bioresource Technology, 245, 502-510. 17. Cheng, K.-K., Wu, J., Lin, Z.-N., Zhang, J.-A. (2014). Aerobic and sequential anaerobic fermentation to produce xylitol and ethanol using non-detoxified acid pretreated corncob. Biotechnology for Biofuels, 7(1), 1-9. 18. Climenhaga, M., Banks, C. (2008). Anaerobic digestion of catering wastes: effect of micronutrients and retention time. Water science and Technology, 57(5), 687-692. 19. De Bere, L. (2000). Anaerobic digestion of solid waste: state-of-the-art. Water Science and Technology, 41(3), 283-290. 20. De Vrieze, J., Saunders, A. M., He, Y., Fang, J., Nielsen, P. H., Verstraete, W., Boon, N. (2015). Ammonia and temperature determine potential clustering in the anaerobic digestion microbiome. Water Research, 75, 312-323. 21. Dyksma, S., Gallert, C. (2019). Candidatus Syntrophosphaera thermopropionivorans: a novel player in syntrophic propionate oxidation during anaerobic digestion. Environmental Microbiology reports, 11(4), 558-570. 22. Estrada, I., Aller, A., Aller, F., Gómez, X., Morán, A. (2004). The survival of Escherichia coli, faecal coliforms and enterobacteriaceae in general in soil treated with sludge from wastewater treatment plants. Bioresource Technology, 93(2), 191-198. 23. Falagas, M. E., McDermott, L., Snydman, D. R. (1997). Effect of pH on in vitro antimicrobial susceptibility of the Bacteroides fragilis group. Antimicrobial agents and Chemotherapy, 41(9), 2047-2049. 24. Fang, B.-Z., Salam, N., Han, M.-X., Jiao, J.-Y., Cheng, J., Wei, D.-Q., Xiao, M., Li, W.-J. (2017). Insights on the effects of heat pretreatment, pH, and calcium salts on isolation of rare Actinobacteria from karstic caves. Frontiers in Microbiology, 8, 1535. 25. Ferguson, R. M., Coulon, F., Villa, R. (2016). Organic loading rate: A promising microbial management tool in anaerobic digestion. Water Research, 100, 348-356. 26. Fernandes, T. A. R., da Silveira, W. B., Passos, F. M. L., Zucchi, T. D. (2014). Laccases from Actinobacteria—what we have and what to expect. Advances in Microbiology, 2014. 27. Ganesan, A., Chaussonnerie, S., Tarrade, A., Dauga, C., Bouchez, T., Pelletier, E., Le Paslier, D., Sghir, A. (2008). Cloacibacillus evryensis gen. nov., sp. nov., a novel asaccharolytic, mesophilic, amino-acid-degrading bacterium within the phylum ‘Synergistetes’, isolated from an anaerobic sludge digester. International Journal of Systematic and Evolutionary Microbiology, 58(9), 2003-2012. 28. Gavande, P. V., Basak, A., Sen, S., Lepcha, K., Murmu, N., Rai, V., Mazumdar, D., Saha, S. P., Das, V., Ghosh, S. (2021). Functional characterization of thermotolerant microbial consortium for lignocellulolytic enzymes with central role of Firmicutes in rice straw depolymerization. Scientific Reports, 11(1), 1-13. 29. Gray, N., Sherry, A., Grant, R., Rowan, A., Hubert, C., Callbeck, C., Aitken, C., Jones, D., Adams, J., Larter, S. (2011). The quantitative significance of Syntrophaceae and syntrophic partnerships in methanogenic degradation of crude oil alkanes. Environmental Microbiology, 13(11), 2957-2975. 30. Gryta, A., Oszust, K., Brzezińska, M., Ziemiński, K., Bilińska-Wielgus, N., Frąc, M. (2017). Methanogenic community composition in an organic waste mixture in an anaerobic bioreactor. International Agrophysics, 31(3), 327. 31. Gustavsson, J., Cederberg, C., Sonesson, U., Van Otterdijk, R., Meybeck, A. (2011). Global food losses and food waste. In: FAO Rome. 32. Hallenbeck, P. C., Abo-Hashesh, M., Ghosh, D. (2012). Strategies for improving biological hydrogen production. Bioresource Technology, 110, 1-9. 33. Han, S.-K., Shin, H.-S. (2004). Biohydrogen production by anaerobic fermentation of food waste. International Journal of Hydrogen Energy, 29(6), 569-577. 34. Herrmann, M., Wegner, C.-E., Taubert, M., Geesink, P., Lehmann, K., Yan, L., Lehmann, R., Totsche, K. U., Küsel, K. (2019). Predominance of Cand. Patescibacteria in groundwater is caused by their preferential mobilization from soils and flourishing under oligotrophic conditions. Frontiers in Microbiology, 10, 1407. 35. Hofmann, K. (1977). influence of heat on meat proteins, studied by SDS electrophoresis. Physical. 36. Hua, D., Fan, Q., Zhao, Y., Xu, H., Chen, L., Li, Y. (2020). Comparison of methanogenic potential of wood vinegar with gradient loads in batch and continuous anaerobic digestion and microbial community analysis. Science of The Total Environment, 739, 139943. 37. Hug, L. A., Castelle, C. J., Wrighton, K. C., Thomas, B. C., Sharon, I., Frischkorn, K. R., Williams, K. H., Tringe, S. G., Banfield, J. F. (2013). Community genomic analyses constrain the distribution of metabolic traits across the Chloroflexi phylum and indicate roles in sediment carbon cycling. Microbiome, 1(1), 1-17. 38. Im, W.-T., Hu, Z.-Y., Kim, K.-H., Rhee, S.-K., Meng, H., Lee, S.-T., Quan, Z.-X. (2012). Description of Fimbriimonas ginsengisoli gen. nov., sp. nov. within the Fimbriimonadia class nov., of the phylum Armatimonadetes. Antonie Van Leeuwenhoek, 102(2), 307-317. 39. Jankowska, E., Duber, A., Chwialkowska, J., Stodolny, M., Oleskowicz-Popiel, P. (2018). Conversion of organic waste into volatile fatty acids–The influence of process operating parameters. Chemical Engineering Journal, 345, 395-403. 40. Jokinen, H. K., Kiikkilä, O., Fritze, H. (2006). Exploring the mechanisms behind elevated microbial activity after wood ash application. Soil Biology and Biochemistry, 38(8), 2285-2291. 41. Kader, F., Baky, A. H., Khan, M. N. H., Chowdhury, H. A. (2015). Production of biogas by anaerobic digestion of food waste and process simulation. American Journal of Mechanical Engineering, 3(3), 79-83. 42. Kainthola, J., Kalamdhad, A. S., Goud, V. V. (2020). Optimization of process parameters for accelerated methane yield from anaerobic co-digestion of rice straw and food waste. Renewable Energy, 149, 1352-1359. 43. Kampmann, K., Ratering, S., Kramer, I., Schmidt, M., Zerr, W., Schnell, S. (2012). Unexpected stability of Bacteroidetes and Firmicutes communities in laboratory biogas reactors fed with different defined substrates. Applied and Environmental Microbiology, 78(7), 2106-2119. 44. Kim, J. K., Oh, B. R., Chun, Y. N., Kim, S. W. (2006). Effects of temperature and hydraulic retention time on anaerobic digestion of food waste. Journal of Bioscience and Bioengineering, 102(4), 328-332. 45. Kumar, G., Cho, S.-K., Sivagurunathan, P., Anburajan, P., Mahapatra, D. M., Park, J.-H., Pugazhendhi, A. (2018). Insights into evolutionary trends in molecular biology tools in microbial screening for biohydrogen production through dark fermentation. International Journal of Hydrogen Energy, 43(43), 19885-19901. 46. Kumar, P., Chandrasekhar, K., Kumari, A., Sathiyamoorthi, E., Kim, B. S. (2018). Electro-fermentation in aid of bioenergy and biopolymers. Energies, 11(2), 343. 47. Kurade, M. B., Saha, S., Kim, J. R., Roh, H.-S., Jeon, B.-H. (2020). Microbial community acclimatization for enhancement in the methane productivity of anaerobic co-digestion of fats, oil, and grease. Bioresource Technology, 296, 122294. 48. Lee, J., Kim, E., Han, G., Tongco, J. V., Shin, S. G., Hwang, S. (2018). Microbial communities underpinning mesophilic anaerobic digesters treating food wastewater or sewage sludge: a full-scale study. Bioresource Technology, 259, 388-397. 49. Lee, J., Koo, T., Yulisa, A., Hwang, S. (2019). Magnetite as an enhancer in methanogenic degradation of volatile fatty acids under ammonia-stressed condition. Journal of Environmental Management, 241, 418-426. 50. Lee, K. C.-Y., Dunfield, P. F., Morgan, X. C., Crowe, M. A., Houghton, K. M., Vyssotski, M., Ryan, J. L., Lagutin, K., McDonald, I. R., Stott, M. B. (2011). Chthonomonas calidirosea gen. nov., sp. nov., an aerobic, pigmented, thermophilic micro-organism of a novel bacterial class, Chthonomonadetes classis nov., of the newly described phylum Armatimonadetes originally designated candidate division OP10. International Journal of Systematic and Evolutionary Microbiology, 61(10), 2482-2490. 51. Lee, S.-H., Park, J.-H., Kang, H.-J., Lee, Y. H., Lee, T. J., Park, H.-D. (2013). Distribution and abundance of Spirochaetes in full-scale anaerobic digesters. Bioresource Technology, 145, 25-32. 52. Li, J., Kudo, C., Tonouchi, A. (2019). Capsulimonas corticalis gen. nov., sp. nov., an aerobic capsulated bacterium, of a novel bacterial order, Capsulimonadales ord. nov., of the class Armatimonadia of the phylum Armatimonadetes. International Journal of Systematic and Evolutionary Microbiology, 69(1), 220-226. 53. Li, Y., Chi, J., Ao, J., Gao, X., Liu, X., Sun, Y., Zhu, W. (2021). Effects of Different Continuous Cropping Years on Bacterial Community and Diversity of Cucumber Rhizosphere Soil in Solar-Greenhouse. Current Microbiology, 78(6), 2380-2390. 54. Li, Y., Luo, W., Lu, J., Zhang, X., Li, S., Wu, Y., Li, G. (2018). Effects of digestion time in anaerobic digestion on subsequent digestate composting. Bioresource Technology, 267, 117-125. 55. Li, Y., Jin, Y., Borrion, A., Li, J. (2018). Influence of feed/inoculum ratios and waste cooking oil content on the mesophilic anaerobic digestion of food waste. Waste Management, 73, 156-164. 56. Łukajtis, R., Hołowacz, I., Kucharska, K., Glinka, M., Rybarczyk, P., Przyjazny, A., Kamiński, M. (2018). Hydrogen production from biomass using dark fermentation. Renewable and Sustainable Energy Reviews, 91, 665-694. 57. Luo, C., Lü, F., Shao, L., He, P. (2015). Application of eco-compatible biochar in anaerobic digestion to relieve acid stress and promote the selective colonization of functional microbes. Water Research, 68, 710-718. 58. Lv, Z., Chen, Z., Chen, X., Liang, J., Jiang, J., Loake, G. J. (2019). Effects of various feedstocks on isotope fractionation of biogas and microbial community structure during anaerobic digestion. Waste Management, 84, 211-219. 59. Ma, J., Duong, T. H., Smits, M., Verstraete, W., Carballa, M. (2011). Enhanced biomethanation of kitchen waste by different pre-treatments. Bioresource Technology, 102(2), 592-599. 60. Magot, M., Fardeau, M.-L., Arnauld, O., Lanau, C., Ollivier, B., Thomas, P., Patel, B. (1997). Spirochaeta smaragdinae sp. nov., a new mesophilic strictly anaerobic spirochete from an oil field. FEMS Microbiology Letters, 155(2), 185-191. 61. Mardis, E. R. (2008). Next-generation DNA sequencing methods. Annu. Rev. Genomics Hum. Genet., 9, 387-402. 62. Mathews, J., Wang, G. (2009). Metabolic pathway engineering for enhanced biohydrogen production. International Journal of Hydrogen Energy, 34(17), 7404-7416. 63. Meng, L., Xie, L., Kinh, C. T., Suenaga, T., Hori, T., Riya, S., Terada, A., Hosomi, M. (2018). Influence of feedstock-to-inoculum ratio on performance and microbial community succession during solid-state thermophilic anaerobic co-digestion of pig urine and rice straw. Bioresource Technology, 252, 127-133. 64. Metzker, M. L. (2010). Sequencing technologies—the next generation. Nature Reviews Genetics, 11(1), 31-46. 65. Misson, G., Mainardis, M., Marroni, F., Peressotti, A., Goi, D. (2021). Environmental methane emissions from seagrass wrack and evaluation of salinity effect on microbial community composition. Journal of Cleaner Production, 285, 125426. 66. Mohd, N. S., Husnain, T., Li, B., Li, B., Rahman, A., Riffat, R. (2015). Investigation of the Performance and Kinetics of Anaerobic Digestion at 45 C. Journal of Water Resource and Protection, 7(14), 1099. 67. Montowska, M., Pospiech, E. (2013). Species-specific expression of various proteins in meat tissue: Proteomic analysis of raw and cooked meat and meat products made from beef, pork and selected poultry species. Food Chemistry, 136(3-4), 1461-1469. 68. Nagao, N., Tajima, N., Kawai, M., Niwa, C., Kurosawa, N., Matsuyama, T., Yusoff, F. M., Toda, T. (2012). Maximum organic loading rate for the single-stage wet anaerobic digestion of food waste. Bioresource Technology, 118, 210-218. 69. Nakasaki, K., Koyama, M., Maekawa, T., Fujita, J. (2019). Changes in the microbial community during the acclimation process of anaerobic digestion for treatment of synthetic lipid-rich wastewater. Journal of Biotechnology, 306, 32-37. 70. Nakasaki, K., Nguyen, K. K., Ballesteros Jr, F. C., Maekawa, T., Koyama, M. (2020). Characterizing the microbial community involved in anaerobic digestion of lipid-rich wastewater to produce methane gas. Anaerobe, 61, 102082. 71. Nazina, T., Sokolova, D. S., Babich, T., Semenova, E., Borzenkov, I., Bidzhieva, S. K., Merkel, A. Y., Khisametdinov, M., Tourova, T. (2018). Phylogenetic diversity of microorganisms from the sludge of a biogas reactor processing oil-containing and municipal waste. Microbiology, 87(3), 416-424. 72. Němeček, J., Steinová, J., Špánek, R., Pluhař, T., Pokorný, P., Najmanová, P., Knytl, V., Černík, M. (2018). Thermally enhanced in situ bioremediation of groundwater contaminated with chlorinated solvents–a field test. Science of the Total Environment, 622, 743-755. 73. Ng, H. S., Kee, P. E., Yim, H. S., Chen, P.-T., Wei, Y.-H., Lan, J. C.-W. (2020). Recent advances on the sustainable approaches for conversion and reutilization of food wastes to valuable bioproducts. Bioresource Technology, 302, 122889. 74. Nordgård, A. S. R., Bergland, W. H., Vadstein, O., Mironov, V., Bakke, R., Østgaard, K., Bakke, I. (2017). Anaerobic digestion of pig manure supernatant at high ammonia concentrations characterized by high abundances of Methanosaeta and non-euryarchaeotal archaea. Scientific Reports, 7(1), 1-14. 75. Oh, J.-I., Lee, J., Lin, K.-Y. A., Kwon, E. E., Fai Tsang, Y. (2018). Biogas production from food waste via anaerobic digestion with wood chips. Energy Environment, 29(8), 1365-1372. 76. Oh, S. T., Martin, A. D. (2010). Long chain fatty acids degradation in anaerobic digester: thermodynamic equilibrium consideration. Process Biochemistry, 45(3), 335-345. 77. Owusu-Agyeman, I., Plaza, E., Cetecioglu, Z. (2021). Long-term alkaline volatile fatty acids production from waste streams: Impact of pH and dominance of Dysgonomonadaceae. Bioresource Technology, 126621. 78. Peces, M., Astals, S., Jensen, P., Clarke, W. (2018). Deterministic mechanisms define the long-term anaerobic digestion microbiome and its functionality regardless of the initial microbial community. Water Research, 141, 366-376. 79. Poirier, S., Bize, A., Bureau, C., Bouchez, T., Chapleur, O. (2016). Community shifts within anaerobic digestion microbiota facing phenol inhibition: towards early warning microbial indicators? Water Research, 100, 296-305. 80. Pore, S. D., Shetty, D., Arora, P., Maheshwari, S., Dhakephalkar, P. K. (2016). Metagenome changes in the biogas producing community during anaerobic digestion of rice straw. Bioresource Technology, 213, 50-53. 81. Qiu, B., Hu, Y., Tang, C., Chen, Y., Cheng, J. (2021). Degradation of diclofenac via sequential reduction-oxidation by Ru/Fe modified biocathode dual-chamber bioelectrochemical system: Performance, pathways and degradation mechanisms. Chemosphere, 132881. 82. Resende, J. A., Silva, V. L., de Oliveira, T. L. R., de Oliveira Fortunato, S., da Costa Carneiro, J., Otenio, M. H., Diniz, C. G. (2014). Prevalence and persistence of potentially pathogenic and antibiotic resistant bacteria during anaerobic digestion treatment of cattle manure. Bioresource Technology, 153, 284-291. 83. Rousk, J., Bååth, E., Brookes, P. C., Lauber, C. L., Lozupone, C., Caporaso, J. G., Knight, R., Fierer, N. (2010). Soil bacterial and fungal communities across a pH gradient in an arable soil. The ISME Journal, 4(10), 1340-1351. 84. Saha, S., Jeon, B.-H., Kurade, M. B., Govindwar, S. P., Chatterjee, P. K., Oh, S.-E., Roh, H.-S., Lee, S. S. (2019). Interspecies microbial nexus facilitated methanation of polysaccharidic wastes. Bioresource Technology, 289, 121638. 85. Salem, A. H., Mietzel, T., Brunstermann, R., Widmann, R. (2018). Two-stage anaerobic fermentation process for bio-hydrogen and bio-methane production from pre-treated organic wastes. Bioresource Technology, 265, 399-406. 86. Santé-Lhoutellier, V., Astruc, T., Marinova, P., Greve, E., Gatellier, P. (2008). Effect of meat cooking on physicochemical state and in vitro digestibility of myofibrillar proteins. Journal of Agricultural and Food Chemistry, 56(4), 1488-1494. 87. Schmidt, T. M. (2019). Encyclopedia of Microbiology. Academic Press. 88. Shaw, A. J., Hogsett, D. A., Lynd, L. R. (2010). Natural competence in Thermoanaerobacter and Thermoanaerobacterium species. Applied and Environmental Microbiology, 76(14), 4713-4719. 89. Shirokova, V. L., Ferris, F. G. (2013). Microbial diversity and biogeochemistry of a shallow pristine Canadian Shield groundwater system. Geomicrobiology Journal, 30(2), 140-149. 90. Song, Y.-C., Kwon, S.-J., Woo, J.-H. (2004). Mesophilic and thermophilic temperature co-phase anaerobic digestion compared with single-stage mesophilic-and thermophilic digestion of sewage sludge. Water Research, 38(7), 1653-1662. 91. Stolze, Y., Bremges, A., Maus, I., Pühler, A., Sczyrba, A., Schlüter, A. (2018). Targeted in situ metatranscriptomics for selected taxa from mesophilic and thermophilic biogas plants. Microbial Biotechnology, 11(4), 667-679. 92. Suksong, W., Tukanghan, W., Promnuan, K., Kongjan, P., Reungsang, A., Insam, H., Sompong, O. (2020). Biogas production from palm oil mill effluent and empty fruit bunches by coupled liquid and solid-state anaerobic digestion. Bioresource Technology, 296, 122304. 93. Szekeres, E., Chiriac, C. M., Baricz, A., Szőke-Nagy, T., Lung, I., Soran, M.-L., Rudi, K., Dragos, N., Coman, C. (2018). Investigating antibiotics, antibiotic resistance genes, and microbial contaminants in groundwater in relation to the proximity of urban areas. Environmental Pollution, 236, 734-744. 94. Wang, G., Li, Q., Gao, X., Wang, X. C. (2018). Synergetic promotion of syntrophic methane production from anaerobic digestion of complex organic wastes by biochar: Performance and associated mechanisms. Bioresource Technology, 250, 812-820. 95. Wang, J., Yin, Y. (2017). Principle and application of different pretreatment methods for enriching hydrogen-producing bacteria from mixed cultures. International Journal of Hydrogen Energy, 42(8), 4804-4823. 96. Wang, L.-Y., Duan, R.-Y., Liu, J.-F., Yang, S.-Z., Gu, J.-D., Mu, B.-Z. (2012). Molecular analysis of the microbial community structures in water-flooding petroleum reservoirs with different temperatures. Biogeosciences, 9(11), 4645-4659. 97. Wang, S., Zeng, Y. (2018). Ammonia emission mitigation in food waste composting: a review. Bioresource Technology, 248, 13-19. 98. Waqas, M., Rehan, M., Khan, M. D., Nizami, A.-S. (2019). Conversion of food waste to fermentation products. Encyclopedia of Food Security and Sustainability, 1, 501-509. 99. Wasmund, K., Schreiber, L., Lloyd, K. G., Petersen, D. G., Schramm, A., Stepanauskas, R., Jørgensen, B. B., Adrian, L. (2014). Genome sequencing of a single cell of the widely distributed marine subsurface Dehalococcoidia, phylum Chloroflexi. The ISME Journal, 8(2), 383-397. 100. Westerholm, M., Liu, T., Schnürer, A. (2020). Comparative study of industrial-scale high-solid biogas production from food waste: Process operation and microbiology. Bioresource Technology, 304, 122981. 101. Xia, Y., Wang, Y., Wang, Y., Chin, F. Y., Zhang, T. (2016). Cellular adhesiveness and cellulolytic capacity in Anaerolineae revealed by omics-based genome interpretation. Biotechnology for Biofuels, 9(1), 1-13. 102. Xiao, L., Deng, Z., Fung, K. Y., Ng, K. M. (2013). Biohydrogen generation from anaerobic digestion of food waste. International Journal of Hydrogen Energy, 38(32), 13907-13913. 103. Yamada, T., Sekiguchi, Y., Imachi, H., Kamagata, Y., Ohashi, A., Harada, H. (2005). Diversity, localization, and physiological properties of filamentous microbes belonging to Chloroflexi subphylum I in mesophilic and thermophilic methanogenic sludge granules. Applied and Environmental Microbiology, 71(11), 7493-7503. 104. Yang, G., Hu, Y., Wang, J. (2019). Biohydrogen production from co-fermentation of fallen leaves and sewage sludge. Bioresource Technology, 285, 121342. 105. Yi, J., Dong, B., Jin, J., Dai, X. (2014). Effect of increasing total solids contents on anaerobic digestion of food waste under mesophilic conditions: performance and microbial characteristics analysis. PloS One, 9(7), e102548. 106. You, Z., Pan, S.-Y., Sun, N., Kim, H., Chiang, P.-C. (2019). Enhanced corn-stover fermentation for biogas production by NaOH pretreatment with CaO additive and ultrasound. Journal of Cleaner Production, 238, 117813. 107. Zhang, C., Zhang, M., Pang, X., Zhao, Y., Wang, L., Zhao, L. (2012). Structural resilience of the gut microbiota in adult mice under high-fat dietary perturbations. The ISME Journal, 6(10), 1848-1857. 108. Zhang, Y., Cong, J., Lu, H., Li, G., Qu, Y., Su, X., Zhou, J., Li, D. (2014). Community structure and elevational diversity patterns of soil Acidobacteria. Journal of Environmental Sciences, 26(8), 1717-1724. 109. Zhang, Y., Shen, H., He, X., Thomas, B. W., Lupwayi, N. Z., Hao, X., Thomas, M. C., Shi, X. (2017). Fertilization shapes bacterial community structure by alteration of soil pH. Frontiers in Microbiology, 8, 1325. 110. Zhang, Y., Wu, G., Jiang, H., Yang, J., She, W., Khan, I., Li, W. (2018). Abundant and rare microbial biospheres respond differently to environmental and spatial factors in Tibetan hot springs. Frontiers in Microbiology, 9, 2096. 111. Zhu, X., Campanaro, S., Treu, L., Kougias, P. G., Angelidaki, I. (2019). Novel ecological insights and functional roles during anaerobic digestion of saccharides unveiled by genome-centric metagenomics. Water Research, 151, 271-279. 112. Zhu, Y., Lin, X., Zhao, F., Shi, X., Li, H., Li, Y., Zhu, W., Xu, X., Li, C., Zhou, G. (2015). Meat, dairy and plant proteins alter bacterial composition of rat gut bacteria. Scientific Reports, 5(1), 1-14.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82225-
dc.description.abstract臺灣每年廚餘產生60萬噸,平均每月產生5萬噸,這些廚餘隨2019年非洲豬瘟爆發而禁用廚餘養豬隻後,瞬間變成燙手山芋,但這些廚餘也許可以作為厭氧消化的有機物,既能解決廚餘處理的問題,也能作為再生能源的來源。 本研究選擇四種臺灣銷售佳的農產品作為進行厭氧消化的有機物原料,並將其依照不同的比例相互混和,組別大致分成生的有機物、熟的有機物、熟的有機物添加食用鹽、熟的有機物添加食用油、熟的有機物添加食用鹽與食用油,再將這些有機物混合厭氧底泥後置入封閉中的血清瓶中,進行厭氧消化45至50天,每日進行採樣試驗並計算產出氣體量與分析氣體組成,並在試驗結束後將產氣狀況較佳的組別進行定序分析,以瞭解菌群組成。 實驗的結果顯示,生與熟的樣本比較結果後發現,使用冰存18個月的生活污水厭氧污泥(以下簡稱底泥18m,不同儲存時間依此原則表示之)進行發酵試驗的樣品,近90%的熟樣品在甲烷產氣量多出27~992 mL/ g-VS,而使用底泥0m的同樣品中,近60%的熟樣品在甲烷產氣多出4~193 mL/ g-VS;而添加食用油的樣本與僅使用熟有機物相比,在使用底泥0m的同樣品中,未添加食用油組的甲烷產出量都優於有添加食用油的組別,增加203~605 mL/ g-VS;而添加食用鹽與純粹熟有機物相比,在使用底泥0m的相同樣品中,近70%的加鹽樣品產甲烷量會較未添加的樣品增加135~525 mL/ g-VS;而添加食用鹽/食用油的樣品與熟有機物相比,在使用底泥0m的同樣品中,所有添加食用鹽/食用油的樣品的甲烷產出量皆低於未添加的樣品,減少37~213 mL/ g-VS;在使用底泥6m的試驗中,將熟有機物混合食用鹽以及熟有機物與食用鹽/食用油混合的比較中,近60%的混合食用鹽樣品產甲烷優於食用鹽/食用油混合的樣品,多出26~342 mL/ g-VS。而實驗結果發現混用兩種不同的熟有機物菜/牛的產甲烷氣較多且穩定,在使用底泥18m產出約598mL/ g-VS的甲烷氣,使用0m產出約605mL/ g-VS的甲烷氣;而混合三種熟的菜/魚/牛則是居次,使用18m產出約655mL/ g-VS的甲烷氣,使用0m時產出約305mL/ g-VS的甲烷氣,而推測使用熟的有機物會有較多的甲烷產出是因為經過加熱的有機物會因高溫破壞掉有機物的蛋白質鍵結,使得菌群在分解有機物時更為快速,使得甲烷產出量會有所提升。 而進行厭氧消化產甲烷時並不建議使用高鹽與高油脂的廚餘作為發酵,應該盡量避免使用這些有機物,進行厭氧消化時的有機物與厭氧底泥的重量比配置可以調配在1:5,在該配比下的整體產甲烷氣狀況較為穩定與高量,然而若是在油脂含量較高的有機物中添加食用鹽,則可能會對產甲烷的效果有所增益,未來可以前往果菜市場收集一般的廢棄有機物(如:葉菜類的高麗菜或是水果),又或者是前往餐廳收集餐飲業的廢棄有機物,藉由從不同的地區收集不同性質的有機物,來推斷一個地區的廢棄有機物進行厭氧消化產甲烷氣的可能性。 關鍵字:乾式厭氧消化、廚餘、甲烷、二氧化碳、微生物分析zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-25T06:33:58Z (GMT). No. of bitstreams: 1
U0001-1201202223065800.pdf: 42752049 bytes, checksum: ad5429aa1303aa30184ce4aace643049 (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents口試委員會審定書. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i 誌謝. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .ii 中文摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .iv 英文摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .vi 目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .ix 表目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii 圖目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv 第一章 前言 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1 1.1 研究背景. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 研究源起. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 研究目的. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 第二章 文獻回顧. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5 2.1 厭氧消化原理. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2 厭氧消化應用. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.3 厭氧消化的操作參數. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9 2.3.1 碳源. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.3.2 酸鹼值. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11 2.3.3 溫度. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13 2.3.4 反應時間. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14 2.4 厭氧消化的菌相. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15 2.4.1 NGS次世代定序(Next-Generation Sequencing). . . .25 2.4.2 由菌相分析瞭解厭氧消化. . . . . . . . . . . . . . . . . . . . . . . . . . . .27 第三章 實驗步驟與方法. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29 3.1 研究架構. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29 3.2 實驗設計. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.2.1實驗碳源挑選. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.2.2實驗器材與儀器. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3.3 實驗內容. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3.4 實驗步驟. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3.4.1 元素分析. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36 3.4.2 氣體分析. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37 3.4.3 菌相分析. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38 第四章 結果與討論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39 4.1 元素分析結果. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 4.2 產氣結果. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40 4.2.1 底泥18m混和有機樣品產氣結果. . . . . . . . . . . . . . . . . . . 40 4.2.2 底泥0m混和有機樣品產氣結果. . . . . . . . . . . . . . . . . . . 53 4.2.3 底泥6m混和有機樣品產氣結果. . . . . . . . . . . . . . . . . . . . . . .73 4.2.4產氣動力學模型分析. . . . . . . . . . . . . . . . . . . . . . . . . .86 4.3 菌相分析結果. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .87 4.3.1 使用底泥18m進行厭氧消化50天後的定序結果 . . . . . . .87 4.3.2 使用底泥6m進行厭氧消化50天後的定序結果 . . . . . .91 第五章 結論與建議 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .96 5.1 結論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 5.2建議. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 第六章 參考文獻 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .101 附錄一 動力學公式推導. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .112 附錄二 第一批次產氣表. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .113 附錄三 第二批次產氣表. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .121 附錄四 第三批次產氣表. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .130 附錄五 底泥18m混和樣品的定序菌科細表. . . . . . . . . . . . . . . . . . . . . . . . .135 附錄六 底泥0m混和樣品的定序菌科細表. . . . . . . . . . . . . . . . . . . . . . . . .146
dc.language.isozh-TW
dc.subject微生物分析zh_TW
dc.subject乾式厭氧消化zh_TW
dc.subject廚餘zh_TW
dc.subject甲烷zh_TW
dc.subject二氧化碳zh_TW
dc.subjectdry digestionen
dc.subjectmethaneen
dc.subjectcarbon dioxideen
dc.subjectmicrobial analysisen
dc.subjectkitchen leftoveren
dc.title以不同有機物混和厭氧底泥行乾式厭氧消化甲烷產量之研究zh_TW
dc.titleComparative study of methane production using dry anaerobic digestion with different organics and domestic sludgeen
dc.date.schoolyear110-1
dc.description.degree碩士
dc.contributor.coadvisor潘述元(Shu-Yuan Pan)
dc.contributor.oralexamcommittee蕭友晉(Chih-Yuan Wang),(Tieng-Chun Chang)
dc.subject.keyword乾式厭氧消化,廚餘,甲烷,二氧化碳,微生物分析,zh_TW
dc.subject.keyworddry digestion,kitchen leftover,methane,carbon dioxide,microbial analysis,en
dc.relation.page156
dc.identifier.doi10.6342/NTU202200053
dc.rights.note未授權
dc.date.accepted2022-02-11
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept生物環境系統工程學研究所zh_TW
dc.date.embargo-lift2024-02-10-
顯示於系所單位:生物環境系統工程學系

文件中的檔案:
檔案 大小格式 
U0001-1201202223065800.pdf
  未授權公開取用
41.75 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved