Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 地質科學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82216
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor劉雅瑄(Ya-Hsuan Liou)
dc.contributor.authorWen-Ta Yangen
dc.contributor.author楊汶達zh_TW
dc.date.accessioned2022-11-25T06:33:50Z-
dc.date.copyright2022-02-21
dc.date.issued2022
dc.date.submitted2022-02-14
dc.identifier.citationWorld Health Organization. (2019). Ten threats to global health in 2019. Retrieved from https://anmj.org.au/whos-top-10-threats-to-global-health-in-2019/ International Energy Agency. Indoor Air Pollution and Health.Total energy supply (TES) by source, World 1990-2019. ToxFAQs™ for Carbon Monoxide. Venkatesh Rao, Lee Tooly and Josh Drukenbrod. (2013). 2008 National Emissions Inventory: Review, Analysis and Highlights. U.S. Environmental Protection Agency. https://www.epa.gov/sites/default/files/2018-06/documents/2008report.pdf 交通工具空氣污染排放標準,行政院環保署, 2007 移動污染源空氣污染物排放標準,行政院環保署, 2010 工作業場所容許暴露標準,行政院勞委會, 2014 室內空氣品質標準,行政院環保署, 2002 固定污染源空氣污染物排放標準,行政院環保署, 2021 Cote, Arthur E. (2008) National Fire Protection Association. Fire Protection Handbook Vol. 2. U.S. Environmental Protection Agency. (2014). Profile of the 2011 National Air Emissions Inventory. Office of Air Quality Planning Standards Emissions Inventory Analysis Group. https://www.epa.gov/sites/default/files/2015-08/documents/lite_finalversion_ver10.pdf. U.S. Environmental Protection Agency. (2017). Profile of Version 1 of the 2014 National Emissions Inventory. Office of Air Quality Planning and Standards Emissions Inventory and Analysis Group. https://www.epa.gov/sites/default/files/2017-04/documents/2014neiv1_profile_final_april182017.pdf Adschiri, Tadafumi, Yukiya Hakuta, and Kunio Arai. (2000). Hydrothermal synthesis of metal oxide fine particles at supercritical conditions. Industrial engineering chemistry research, 39(12), 4901-4907. https://doi.org/10.1021/ie0003279 V. R. Akshay, B. Arun, Guruprasad Mandal, Anupama Chanda, and M. Vasundhara. (2019). Significant reduction in the optical band-gap and defect assisted magnetic response in Fe-doped anatase TiO2 nanocrystals as dilute magnetic semiconductors. New Journal of Chemistry, 43(15), 6048-6062. https://doi.org/10.1039/C9NJ00275H H. Aliaga, D. Magnoux, A. Moreo, D. Poilblanc, S. Yunoki, E. Dagotto. (2003). Theoretical study of half-doped models for manganites: Fragility of CE phase with disorder, two types of colossal magnetoresistance, and charge-ordered states for electron-doped materials. Physical Review B, 68(10), 104405. https://doi.org/10.1103/PhysRevB.68.104405 Wei An, Yong Pei, X. C. Zeng. (2008). CO oxidation catalyzed by single-walled helical gold nanotube. Nano letters, 8(1), 195-202. https://doi.org/10.1021/nl072409t Bandna Bharti, Santosh Kumar, Heung-No Lee, Rajesh Kumar. (2016). Formation of oxygen vacancies and Ti3+ state in TiO2 thin film and enhanced optical properties by air plasma treatment. Scientific reports, 6(1), 1-12. https://doi.org/10.1038/srep32355 Flora Boccuzzi, Anna Chiorino, Suzumu Tsubota, Masatake Haruta. (1996). FTIR study of carbon monoxide oxidation and scrambling at room temperature over gold supported on ZnO and TiO2. 2. The Journal of Physical Chemistry, 100(9), 3625-3631. https://doi.org/10.1021/jp952259n Carlsson, Per-Anders, Magnus Skoglundh. (2011). Low-temperature oxidation of carbon monoxide and methane over alumina and ceria supported platinum catalysts. Applied Catalysis B: Environmental, 101(3-4), 669-675. https://doi.org/10.1016/j.apcatb.2010.11.008 Maria Casapu, Anna Fischer, Andreas M. Gänzler, Radian Popescu, Marlene Crone, Dagmar Gerthsen, Michael Türk, and Jan-Dierk Grunwaldt. (2017). Origin of the normal and inverse hysteresis behavior during CO oxidation over Pt/Al2O3. ACS Catalysis, 7(1), 343-355. https://doi.org/10.1021/acscatal.6b02709 Larisa A. Chizhova, Florian Libisch, and Joachim Burgdörfer. (2016). Nonlinear response of graphene to a few-cycle terahertz laser pulse: role of doping and disorder. Physical Review B, 94(7), 075412. https://doi.org/10.1103/PhysRevB.94.075412. Biswajit Choudhury, Munmun Dey Amarjyoti Choudhury. (2013). Defect generation, dd transition, and band gap reduction in Cu-doped TiO2 nanoparticles. International Nano Letters, 3(1), 1-8. https://doi.org/10.1186/2228-5326-3-25 B.S.Clausen, G. Steffensen, B. Fabius, J.Villadsen, R.Feidenhans'l, H.Topsøe. (1991). In situ cell for combined XRD and on-line catalysis tests: Studies of Cu-based water gas shift and methanol catalysts. Journal of Catalysis, 132(2), 524-535. https://doi.org/10.1016/0021-9517(91)90168-4 Cychosz, Katie A., and Matthias Thommes. (2018). Progress in the physisorption characterization of nanoporous gas storage materials. Engineering, 4(4), 559-566. https://doi.org/10.1016/j.eng.2018.06.001 Leo DeRita, Sheng Dai, Orcid, Kimberly Lopez-Zepeda, Nicholas Pham, George W. Graham, Xiaoqing Pan, and Phillip Christopher. (2017). Catalyst architecture for stable single atom dispersion enables site-specific spectroscopic and reactivity measurements of CO adsorbed to Pt atoms, oxidized Pt clusters, and metallic Pt clusters on TiO2. Journal of the American Chemical Society, 139(40), 14150-14165. https://doi.org/10.1021/jacs.7b07093 Paul A. DeSario, Catherine L. Pitman, Daniel J. Delia, Darren M. Driscoll, Andrew J. Maynes, John R. Morris, Ashley M. Pennington, Todd H. Brintlinger, Debra R. Rolison, Jeremy J. Pietron. (2019). Low-temperature CO oxidation at persistent low-valent Cu nanoparticles on TiO2 aerogels. Applied Catalysis B: Environmental, 252, 205-213. https://doi.org/10.1016/j.apcatb.2019.03.073 Domagala, Melanie E., and Charles T. Campbell. (1991). The mechanism of CO oxidation over Cu (110): effect of CO gas energy. Catalysis Letters, 9(1), 65-70. https://doi.org/10.1007/BF00769083 Lihui Dong, Yanxia Tang, Bin Li, Liya Zhou, Fuzhong Gong, Haixiang He, Baozhen Sun, Changjin Tang, Fei Gao, Lin Dong. (2016). Influence of molar ratio and calcination temperature on the properties of TixSn1− xO2 supporting copper oxide for CO oxidation. Applied Catalysis B: Environmental, 180, 451-462. https://doi.org/10.1016/j.apcatb.2015.06.034 Xiaorui Du, Yike Huang, Xiaoli Pan, Bing Han, Yang Su, Qike Jiang, Mingrun Li, Hailian Tang, Gao Li, Botao Qiao. (2020). Size-dependent strong metal-support interaction in TiO2 supported Au nanocatalysts. Nature communications, 11(1), 1-8. https://doi.org/10.1038/s41467-020-19484-4 E. J. Ekoi, A. Gowen, R. Dorrepaal, D. P. Dowling. (2019). Characterisation of titanium oxide layers using Raman spectroscopy and optical profilometry: Influence of oxide properties. Results in Physics, 12, 1574-1585. https://doi.org/10.1016/j.rinp.2019.01.054 Zakaria El Koura, Giacomo Rossi, Marco Calizzi, Lucia Amidani, Luca Pasquini, Antonio Miotello, Federico Boscherini. (2018). XANES study of vanadium and nitrogen dopants in photocatalytic TiO2 thin films. Physical Chemistry Chemical Physics, 20(1), 221-231. https://doi.org/10.1039/C7CP06742A Ernst, Armin, Joseph D. Zibrak. (1998). Carbon monoxide poisoning. New England journal of medicine, 339(22), 1603-1608. https://doi.org/10.1056/NEJM199811263392206 Ferrari, Andrea C., Denis M. Basko. (2013). Raman spectroscopy as a versatile tool for studying the properties of graphene. Nature nanotechnology, 8(4), 235-246. https://doi.org/10.1038/nnano.2013.46 Frost, Ray L., Ashley Locke, Wayde N. Martens. (2008). Synthesis and Raman spectroscopic characterisation of the oxalate mineral wheatleyite Na2Cu2+ (C2O4)2· 2H2O. Journal of Raman Spectroscopy: An International Journal for Original Work in all Aspects of Raman Spectroscopy, Including Higher Order Processes, and also Brillouin and Rayleigh Scattering, 39(7), 901-908. https://doi.org/10.1002/jrs.1932 Jiajian Gao, Chunmiao Jia, Liping Zhang, Hongming Wang, Yanhui Yang, Sung-Fu Hung, Ying-Ya Hsu, Bin Liu. (2016). Tuning chemical bonding of MnO2 through transition-metal doping for enhanced CO oxidation. Journal of catalysis, 341, 82-90. https://doi.org/10.1016/j.jcat.2016.06.009 Ginsberg, Myron D., Ronald E. Myers. (1976). Fetal brain injury after maternal carbon monoxide intoxication: clinical and neuropathologic aspects. Neurology, 26(1), 15-15. https://doi.org/10.1212/WNL.26.1.15 Lingli Gu, Qin Su, Wu Jian, Yao Yao, Yijun Pan, Weijie Ji, Chak-Tong Au. (2018). How do the unique Au/α-Fe2O3 interfacial structures determine activity in CO oxidation?. Catalysis Science Technology, 8(22), 5782-5793. https://doi.org/10.1039/C8CY01467A Hongling Guan, Jian Lin, Botao Qiao, Xiaofeng Yang, Lin Li, Shu Miao, Jingyue Liu, Aiqin Wang, Xiaodong Wang, Tao Zhang. (2016). Catalytically Active Rh Sub‐Nanoclusters on TiO2 for CO Oxidation at Cryogenic Temperatures. Angewandte Chemie, 128(8), 2870-2874. https://doi.org/10.1002/ange.201510643 Guo, Wei, Dionisios G. Vlachos. (2015). Patched bimetallic surfaces are active catalysts for ammonia decomposition. Nature communications, 6(1), 1-7. https://doi.org/10.1038/ncomms9619 Konstantin I. Hadjiivanov, Dimitar A. Panayotov, Mihail Y. Mihaylov, Elena Z. Ivanova, Kristina K. Chakarova, Stanislava M. Andonova, Nikola L. Drenchev. (2020). Power of infrared and raman spectroscopies to characterize metal-organic frameworks and investigate their interaction with guest molecules. Chemical Reviews, 121(3), 1286-1424. https://doi.org/10.1021/acs.chemrev.0c00487 Hampsey , J. Eric, Sarah Arsenault, Qingyuan Hu, Yunfeng Lu. (2005). One-Step Synthesis of Mesoporous Metal− SiO2 Particles by an Aerosol-Assisted Self-assembly Process. Chemistry of materials, 17(9), 2475-2480. https://doi.org/10.1021/cm0487167 Hanaor, Dorian A. H, Charles C. Sorrell. (2011). Review of the anatase to rutile phase transformation. Journal of Materials science, 46(4), 855-874. https://doi.org/10.1007/s10853-010-5113-0 Henry, Christopher R., Daniel Satran, Bruce Lindgren, Cheryl Adkinson, Caren I. Nicholson, Timothy D. Henry. (2006). Myocardial injury and long-term mortality following moderate to severe carbon monoxide poisoning. Jama, 295(4), 398-402. https://doi.org/10.1001/jama.295.4.398 Iljeong Heo, Steven J. Schmieg, Se H. Oh, Wei Li, Charles H. F. Peden, Chang Hwan Kim, János Szanyi. (2018). Improved thermal stability of a copper-containing ceria-based catalyst for low temperature CO oxidation under simulated diesel exhaust conditions. Catalysis Science Technology, 8(5), 1383-1394. https://doi.org/10.1039/C7CY02288C Mariana Hinojos Reyes, Roberto Camposeco-Solís, Rodolfo Zanella, Vicente Rodríguez González. (2017). Hydrogen production by tailoring the brookite and Cu2O ratio of sol-gel Cu-TiO2 photocatalysts. Chemosphere, 184, 992-1002. https://doi.org/10.1016/j.chemosphere.2017.06.066 Nóra Justh, László Péter Bakos, Klára Hernádi, Gabriella Kiss, Balázs Réti, Zoltán Erdélyi, Bence Parditka, Imre Miklós Szilágyi. (2017). Photocatalytic hollow TiO2 and ZnO nanospheres prepared by atomic layer deposition. Scientific reports, 7(1), 1-9. https://doi.org/10.1038/s41598-017-04090-0 Piotr Kaminski, Maria Ziolek, Betiana Campo, Marco Daturi. (2015). FTIR spectroscopic study of CO oxidation on bimetallic catalysts. https://doi.org/10.1016/j.cattod.2014.08.035 Kontoyannis, Christos G., Nikos V. Vagenas. (2000). Calcium carbonate phase analysis using XRD and FT-Raman spectroscopy. Analyst, 125(2), 251-255. https://doi.org/10.1039/A908609I Sungsik Lee, Chaoyang Fan, Tianpin Wu, Scott L. Anderson. (2005). Agglomeration, support effects, and CO adsorption on Au/TiO2 (1 1 0) prepared by ion beam deposition. Surface Science, 578(1-3), 5-19. https://doi.org/10.1016/j.susc.2005.01.017 Christina W. Li, Matthew W. Kanan. (2012). CO2 reduction at low overpotential on Cu electrodes resulting from the reduction of thick Cu2O films. Journal of the American Chemical Society, 134(17), 7231-7234. https://doi.org/10.1021/ja3010978 Lei Lia, Wenshi Li, Canyan Zhu, Ling-Feng Mao. (2020). The effect of oxygen vacancy at CO oxidation on anatase (001)-supported single-Au catalyst. Materials Chemistry and Physics, 240, 122291. https://doi.org/10.1016/j.matchemphys.2019.122291 Meijun Li, Zili Wu, Zhen Ma, Viviane Schwartz, David R. Mullins, Sheng Dai, Steven H. Overbury. (2009). CO oxidation on Au/FePO4 catalyst: Reaction pathways and nature of Au sites. Journal of Catalysis, 266(1), 98-105. https://doi.org/10.1016/j.jcat.2009.05.019 Chin-Jung Lin, Wen-Ta Yang. (2014). Ordered mesostructured Cu-doped TiO2 spheres as active visible-light-driven photocatalysts for degradation of paracetamol. Chemical Engineering Journal, 237, 131-137. https://doi.org/10.1016/j.cej.2013.10.027 Liang-Y iLin, Chen Yeh Wang, Hsunling Bai. (2015). A comparative investigation on the low-temperature catalytic oxidation of acetone over porous aluminosilicate-supported cerium oxides. Chemical Engineering Journal, 264, 835-844. https://doi.org/10.1016/j.cej.2014.12.042 Kuo Liu, Aiqin Wang, Tao Zhang. (2012). Recent advances in preferential oxidation of CO reaction over platinum group metal catalysts. ACS catalysis, 2(6), 1165-1178. https://doi.org/10.1021/cs200418w Trinh Thi Loana, Vu Hoang Huong, Nguyen Thi Huyen, Lai Van Quyet, Ngac An Bang, Nguyen Ngoc Long. (2021). Anatase to rutile phase transformation of iron-doped titanium dioxide nanoparticles: The role of iron content. Optical Materials, 111, 110651. https://doi.org/10.1016/j.optmat.2020.110651 Olga Lopez-Acevedo, Katarzyna A. Kacprzak, Jaakko Akola, Hannu Häkkinen. (2010). Quantum size effects in ambient CO oxidation catalysed by ligand-protected gold clusters. Nature chemistry, 2(4), 329-334. https://doi.org/10.1038/nchem.589 Yunfeng Lu, Hongyou Fan, Aaron Stump, Timothy L. Ward, Thomas Rieker, C. Jeffrey Brinker. (1999). Aerosol-assisted self-assembly of mesostructured spherical nanoparticles. Nature, 398(6724), 223-226. https://doi.org/10.1038/18410 Yunfeng Lu, Rahul Ganguli, Celeste A. Drewien, Mark T. Anderson, C. Jeffrey Brinker, Weilang Gong, Yongxing Guo, Hermes Soyez, Bruce Dunn, Michael H. Huang, Jeffrey I. Zink. (1997). Continuous formation of supported cubic and hexagonal mesoporous films by sol–gel dip-coating. Nature, 389(6649), 364-368. https://doi.org/10.1038/38699 Yongjin Luo, Yingbin Zheng, Jiachang Zuo, Xiaoshan Feng, Xiuyun Wang, Tianhua Zhang, Kai Zhang, Lilong Jiang. (2018). Insights into the high performance of Mn-Co oxides derived from metal-organic frameworks for total toluene oxidation. Journal of hazardous materials, 349, 119-127. https://doi.org/10.1016/j.jhazmat.2018.01.053 Lei Ma, Xiaoyin Chen, Junhua Li, Huazhen Chang, Johannes W. Schwank. (2020). Electronic metal-support interactions in Pt/FeOx nanospheres for CO oxidation. Catalysis Today, 355, 539-546. https://doi.org/10.1016/j.cattod.2019.06.055 A. J. Marchi, J. L. G. Fierro, J. Santamaría, A. Monzón. 1996). Dehydrogenation of isopropylic alcohol on a Cu/SiO2 catalyst: a study of the activity evolution and reactivation of the catalyst. Applied Catalysis A: General, 142(2), 375-386. https://doi.org/10.1016/0926-860X(96)00087-7 Mohammad Mehrmohammadi, Min Qu, Li L Ma, Dwight K Romanovicz, Keith P Johnston, Konstantin V Sokolov, Stanislav Y Emelianov. (2011). Pulsed magneto-motive ultrasound imaging to detect intracellular accumulation of magnetic nanoparticles. Nanotechnology, 22(41), 415105. https://doi.org/10.1088/0957-4484/22/41/415105 Florian Meneau, Amélie Rochet, Ross Harder, Wonsuk Cha, Aline Ribeiro Passos. (2021). Operando 3D imaging of defects dynamics of twinned-nanocrystal during catalysis. Journal of Physics: Condensed Matter, 33(27), 274004. https://doi.org/10.1088/1361-648X/abfd4f Shengpeng Mo, Hui He, Quanming Ren, Shuangde Li, Weixia Zhang, Mingli Fu, Limin Chen, Junliang Wu, Yunfa Chen, Daiqi Ye. (2019). Macroporous Ni foam-supported Co3O4 nanobrush and nanomace hybrid arrays for high-efficiency CO oxidation. Journal of Environmental Sciences, 75, 136-144. https://doi.org/10.1016/j.jes.2018.02.026 Kazumasa Murata, Eleen Eleeda , Junya Ohyama, Yuta Yamamoto , Shigeo Arai , Atsushi Satsuma. (2019). Identification of active sites in CO oxidation over a Pd/Al2 O3 catalyst. Physical Chemistry Chemical Physics, 21(33), 18128-18137. https://doi.org/10.1039/C9CP03943K Alberto Naldoni, Mattia Allieta, Saveria Santangelo, Marcello Marelli, Filippo Fabbri, Serena Cappelli, Claudia L. Bianchi, Rinaldo Psaro, Vladimiro Dal Santo. (2012). Effect of nature and location of defects on bandgap narrowing in black TiO2 nanoparticles. Journal of the American Chemical Society, 134(18), 7600-7603. https://doi.org/10.1021/ja3012676 Mark A. Newton, Davide Ferri, Grigory Smolentsev, Valentina Marchionni, Maarten Nachtegaal. (2015). Room-temperature carbon monoxide oxidation by oxygen over Pt/Al2O3 mediated by reactive platinum carbonates. Nature communications, 6(1), 1-7. https://doi.org/10.1038/ncomms9675 Lei Nie, Donghai Mei, Haifeng Xiong, Bo Peng, Zhibo Ren, Xavier Isidro Pereira Hernandez, Andrew Delariva, Meng Wang, Mark H. Engelhard, Yong Wang. (2017). Activation of surface lattice oxygen in single-atom Pt/CeO2 for low-temperature CO oxidation. Science, 358(6369), 1419-1423. https://doi.org/10.1126/science.aao2109 Norman, Christine A., David M. (1990). Is carbon monoxide a workplace teratogen? A review and evaluation of the literature. The Annals of occupational hygiene, 34(4), 335-347. https://doi.org/10.1093/annhyg/34.4.335 Toshiaki Ohsaka, Fujio Izumi, Yoshinori Fujiki. (1978). Raman spectrum of anatase, TiO2. Journal of Raman spectroscopy, 7(6), 321-324. https://doi.org/10.1002/jrs.1250070606 R. Palomino-Merino, P. Trejo-Garcia, O. Portillo-Moreno, S. Jiménez-Sandoval, S. A. Tomás, O. Zelaya-Angel, R. Lozada-Morales, V. M. Castaño. (2015). Red shifts of the Eg (1) Raman mode of nanocrystalline TiO2: Er monoliths grown by sol–gel process. Optical Materials, 46, 345-349. https://doi.org/10.1016/j.optmat.2015.04.042 Aline R. Passos, Amélie Rochet, Luiza M. Manente, Ana F. Suzana, Ross Harder, Wonsuk Cha, Florian Meneau. (2020). Three-dimensional strain dynamics govern the hysteresis in heterogeneous catalysis. Nature communications, 11(1), 1-8. https://doi.org/10.1038/s41467-020-18622-2 Thanh-Dong Pham, Byeong-Kyu Lee. (2016). Advanced removal of C. famata in bioaerosols by simultaneous adsorption and photocatalytic oxidation of Cu-doped TiO2/PU under visible irradiation. Chemical Engineering Journal, 286, 377-386. https://doi.org/10.1016/j.cej.2015.10.100 A. K. Pramanik, A. Banerjee. (2010). Griffiths phase and its evolution with Mn-site disorder in the half-doped manganite Pr0.5 Sr0.5 Mn1− y GayO3 (y= 0.0, 0.025, and 0.05). Physical Review B, 81(2), 024431. https://doi.org/10.1103/PhysRevB.81.024431 Leon D.Prockop, Rossitza I. Chichkova. (2007). Carbon monoxide intoxication: an updated review. Journal of the neurological sciences, 262(1-2), 122-130. https://doi.org/10.1016/j.jns.2007.06.037 I. A. Rahman, P. Vejayakumaran, C. S. Sipaut, J. Ismail, M. AbuBakar, R. Adnan, C. K. Chee. (2007). An optimized sol–gel synthesis of stable primary equivalent silica particles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 294(1-3), 102-110. https://doi.org/10.1016/j.colsurfa.2006.08.001 James A. Raub, Monique Mathieu-Nolf, Neil B. Hampson, Stephen R. Thom. (2000). Carbon monoxide poisoning—a public health perspective. Toxicology, 145(1), 1-14. https://doi.org/10.1016/S0300-483X(99)00217-6 Pegah Rezaei, Mehran Rezaei, Fereshteh Meshkani. (2018). Low temperature CO oxidation over mesoporous iron and copper mixed oxides nanopowders synthesized by a simple one-pot solid-state method. Process Safety and Environmental Protection, 119, 379-388. https://doi.org/10.1016/j.psep.2018.08.024 Vicente Rodríguez-González, Rodolfo Zanella, Lina A. Calzada, Ricardo Gómez. (2009). Low-temperature CO oxidation and long-term stability of Au/In2O3− TiO2 catalysts. The Journal of Physical Chemistry C, 113(20), 8911-8917. https://doi.org/10.1021/jp8099797 Jungho Ryu, Soonhyun Kim, Hyung Il Kim, Eun-Hee Jo, Young Kwang Kim, Minsun Kim, Hee Dong Jang. (2015). Self-assembled TiO2 agglomerates hybridized with reduced-graphene oxide: a high-performance hybrid photocatalyst for solar energy conversion. Chemical Engineering Journal, 262, 409-416. https://doi.org/10.1016/j.cej.2014.10.001 Enrico Sartoretti, Chiara Novara, Fabrizio Giorgis, Marco Piumetti, Samir Bensaid, Nunzio Russo, Debora Fino. (2019). In situ Raman analyses of the soot oxidation reaction over nanostructured ceria-based catalysts. Scientific reports, 9(1), 1-14. https://doi.org/10.1038/s41598-019-39105-5 M. ˇS´cepanovi´c, S. Aˇskrabi´c, V. Berec, A. Golubovi´c, Z. Dohˇcevi´c-Mitrovi´c, A. Kremenovi´c, Z.V. Popovi´c. (2008, September). Characterization of La-doped TiO2 nanopowders by raman spectroscopy. In Proceedings of the Tenth Annual Conference of the Materials Research Society of Serbia. https://doi.org/10.12693/APhysPolA.115.771 Philomena Schlexer, Daniel Widmann, R. Jürgen Behm, Gianfranco Pacchioni. (2018). CO oxidation on a Au/TiO2 nanoparticle catalyst via the Au-assisted Mars–van Krevelen mechanism. Acs Catalysis, 8(7), 6513-6525. https://doi.org/10.1021/acscatal.8b01751 H. Schmidt. (1988). Chemistry of material preparation by the sol-gel process. Journal of Non-Crystalline Solids, 100(1-3), 51-64. https://doi.org/10.1016/0022-3093(88)90006-3 Marie Katrin Schröter, Lamma Khodeir, Maurits W. E. van den Berg, Todor Hikov, Mirza Cokoja, Shaojun Miao, Wolfgang Grünert, Martin Muhlerb, Roland A. Fischer. (2006). A colloidal ZnO/Cu nanocatalyst for methanol synthesis. Chemical communications, (23), 2498-2500. https://doi.org/10.1039/B602261H Julia Schumann, Jutta Kröhnert, Elias Frei, Robert Schlögl, Annette Trunschke. (2017). IR-spectroscopic study on the interface of Cu-based methanol synthesis catalysts: evidence for the formation of a ZnO overlayer. Topics in Catalysis, 60(19), 1735-1743. https://doi.org/10.1007/s11244-017-0850-9 J. Schwan, S. Ulrich, V. Batori, H. Ehrhardt. (1996). Raman spectroscopy on amorphous carbon films. Journal of Applied Physics, 80(1), 440-447. https://doi.org/10.1063/1.362745 Phil WonSeo, Hyun Jin Choi, Suk In Hong, Sung Chang Hong. (2010). A study on the characteristics of CO oxidation at room temperature by metallic Pt. Journal of hazardous materials, 178(1-3), 917-925. https://doi.org/10.1016/j.jhazmat.2010.02.025 Mohammadreza Shokouhimehr, Kootak Hon, Tae Hyung Lee, Cheon Woo Moon, Seung Pyo Hong, Kaiqiang Zhang, Jun Min Suh, Kyoung Soon Choi, Rajender S. Varma, Ho Won Jang. (2018). Magnetically retrievable nanocomposite adorned with Pd nanocatalysts: efficient reduction of nitroaromatics in aqueous media. Green Chemistry, 20(16), 3809-3817. https://doi.org/10.1039/C8GC01240G S. Sinthika, Surya Teja Vala, Y. Kawazoe, Ranjit Thapa. (2016). CO oxidation prefers the Eley–Rideal or Langmuir–Hinshelwood pathway: monolayer vs thin film of SiC. ACS Applied Materials Interfaces, 8(8), 5290-5299. https://doi.org/10.1021/acsami.5b11384 Matthew W. Smith, Ian Dallmeyer, Timothy J. Johnson, Carolyn S. Brauer, Jean-Sabin McEwen, Juan F. Espinal, Manuel Garcia-Perez. (2016). Structural analysis of char by Raman spectroscopy: Improving band assignments through computational calculations from first principles. Carbon, 100, 678-692. https://doi.org/10.1016/j.carbon.2016.01.031 Petr Suchomel, Libor Kvitek, Robert Prucek, Ales Panacek, Avik Halder, Stefan Vajda, Radek Zboril. (2018). Simple size-controlled synthesis of Au nanoparticles and their size-dependent catalytic activity. Scientific reports, 8(1), 1-11. https://doi.org/10.1038/s41598-018-22976-5 Dmitry A. Svintsitskiy, Tatyana Yu. Kardash, Olga A. Stonkus, Elena M. Slavinskaya, Andrey I. Stadnichenko, Sergei V. Koscheev, Alexei P. Chupakhin, Andrei I. Boronin. (2013). In situ XRD, XPS, TEM, and TPR study of highly active in CO oxidation CuO nanopowders. The Journal of Physical Chemistry C, 117(28), 14588-14599. https://doi.org/10.1021/jp403339r János Szanyi , Ja Hun Kwak. (2014). Dissecting the steps of CO2 reduction: 2. The interaction of CO and CO2 with Pd/γ-Al2O3: an in situ FTIR study. Physical Chemistry Chemical Physics, 16(29), 15126-15138. https://doi.org/10.1039/C4CP00617H Matthias Thommes, Katsumi Kaneko, Alexander V. Neimark, James P. Olivier, Francisco Rodriguez-Reinoso, Jean Rouquerol, Kenneth S.W. Sing. (2015). Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure and applied chemistry, 87(9-10), 1051-1069. https://doi.org/10.1515/pac-2014-1117 Fang Tian, Yupeng Zhang, Jun Zhang, Chunxu Pan. (2012). Raman spectroscopy: a new approach to measure the percentage of anatase TiO2 exposed (001) facets. The Journal of Physical Chemistry C, 116(13), 7515-7519. https://doi.org/10.1021/jp301256h Chia-Kuang Tsung, Jie Fan, Nanfeng Zheng, Qihui Shi, Arnold J. Forman, Jianfang Wang, Galen D. Stucky. (2008). A general route to diverse mesoporous metal oxide submicrospheres with highly crystalline frameworks. Angewandte Chemie, 120(45), 8810-8814. https://doi.org/10.1002/ange.200802487 Chunlei Wang, Xiang-Kui Gu, Huan Yan, Yue Lin, Junjie Li, Dandan Liu, Wei-Xue Li, Junling Lu. (2017). Water-mediated Mars–van Krevelen mechanism for CO oxidation on ceria-supported single-atom Pt1 catalyst. Acs Catalysis, 7(1), 887-891. https://doi.org/10.1021/acscatal.6b02685 Dong Wanga, Yongchun Kan, Xiaojuan Yu, Jiajia Liu, Lei Song, Yuan Hu. (2016). In situ loading ultra-small Cu2O nanoparticles on 2D hierarchical TiO2-graphene oxide dual-nanosheets: Towards reducing fire hazards of unsaturated polyester resin. Journal of hazardous materials, 320, 504-512. https://doi.org/10.1016/j.jhazmat.2016.08.066 S. Wang, C. Vipulanandan. . (2000). Solidification/stabilization of Cr (VI) with cement: Leachability and XRD analyses. Cement and concrete research, 30(3), 385-389. https://doi.org/10.1016/S0008-8846(99)00265-3 Yanbiao Wang, Guangfen Wu, Mingli Yang, Jinlan Wang. (2013). Competition between Eley–Rideal and Langmuir–Hinshelwood pathways of CO oxidation on Cun and CunO (n= 6, 7) clusters. The Journal of Physical Chemistry C, 117(17), 8767-8773. https://doi.org/10.1021/jp3122775 Armin Ernst, Joseph D. Zibrak. (1998). Carbon monoxide poisoning. New England journal of medicine, 339(22), 1603-1608. https://doi.org/10.1056/NEJM199811263392206 Lindell K. Weaver, Ramona O. Hopkins, Karen J. Chan., Susan Churchill, N.P., C. Gregory Elliott, Terry P. Clemmer, James F. Orme, Jr., Frank O. Thomas, Alan H. Morris. (2002). Hyperbaric oxygen for acute carbon monoxide poisoning. New England Journal of Medicine, 347(14), 1057-1067. https://doi.org/ 10.1056/NEJMoa013121 Lindell K.Weaver, Steve Howe, Ramona Hopkins, Karen J. Chan. (2000). Carboxyhemoglobin half-life in carbon monoxide-poisoned patients treated with 100% oxygen at atmospheric pressure. Chest, 117(3), 801-808. https://doi.org/10.1378/chest.117.3.801 D. Widmann, R. J. Behm. (2018). Dynamic surface composition in a Mars-van Krevelen type reaction: CO oxidation on Au/TiO2. Journal of catalysis, 357, 263-273. https://doi.org/10.1016/j.jcat.2017.11.005 Jiang-Bin Wu, Miao-Ling Lin, Xin Cong, He-Nan Liu, Ping-Heng Tan. (2018). Raman spectroscopy of graphene-based materials and its applications in related devices. Chemical Society Reviews, 47(5), 1822-1873. https://doi.org/110.1039/C6CS00915H Xiangwei Wu, Zhaoyin Wen, Bin Lin, Xiaogang Xu. (2008). Sol–gel synthesis and sintering of nano-size Li2TiO3 powder. Materials Letters, 62(6-7), 837-839. https://doi.org/10.1016/j.matlet.2007.06.073 Yunfan Xu , Sujuan Wu, Piaopiao Wan, Jianguo Sun, Zachary D. Hood. (2017). Introducing Ti3+ defects based on lattice distortion for enhanced visible light photoreactivity in TiO2 microspheres. RSC advances, 7(52), 32461-32467. https://doi.org/10.1039/C7RA04885H Junjie Xue, Xinquan Wang, Gongshin Qi, Jun Wang, Meiqing Shen, Wei Li. . (2013). Characterization of copper species over Cu/SAPO-34 in selective catalytic reduction of NOx with ammonia: Relationships between active Cu sites and de-NOx performance at low temperature. Journal of Catalysis, 297, 56-64. https://doi.org/10.1016/j.jcat.2012.09.020 Junqing Yan, Guangjun Wu, Naijia Guan, Landong Li, Zhuoxin Li , Xingzhong Cao. (2013). Understanding the effect of surface/bulk defects on the photocatalytic activity of TiO2: anatase versus rutile. Physical Chemistry Chemical Physics, 15(26), 10978-10988. https://doi.org/10.1039/C3CP50927C Kazumichi Yanagisawa, James Ovenstone. (1999). Crystallization of anatase from amorphous titania using the hydrothermal technique: effects of starting material and temperature. The Journal of Physical Chemistry B, 103(37), 7781-7787. https://doi.org/10.1021/jp990521c Wen-TaYang, Chin JungLin, Tiziano Montini, Paolo Fornasiero, Sofia Ya Hsuan Liou. (2021). High-performance and long-term stability of mesoporous Cu-doped TiO2 microsphere for catalytic CO oxidation. Journal of Hazardous Materials, 403, 123630. https://doi.org/10.1016/j.jhazmat.2020.123630 Yiqiong Yang, Han Dong, Yin Wang, Chi He, Yuxin Wang, Xiaodong Zhang. (2018). Synthesis of octahedral like Cu-BTC derivatives derived from MOF calcined under different atmosphere for application in CO oxidation. Journal of Solid State Chemistry, 258, 582-587. https://doi.org/10.1016/j.jssc.2017.11.033 Rodolfo Zanella, Vicente Rodríguez-González, Yamin Arzola, Albino Moreno-Rodriguez. (2012). Au/Y-TiO2 catalyst: high activity and long-term stability in CO oxidation. ACS Catalysis, 2(1), 1-11. https://doi.org/10.1021/cs200332v Abdallah F. Zedan, Nageh K. Allam, Siham Y. AlQaradawi. (2017). A study of low-temperature CO oxidation over mesoporous CuO-TiO2 nanotube catalysts. Catalysts, 7(5), 129. https://doi.org/10.3390/catal7050129 Yiqing Zeng, Tianxiao Wang, Shule Zhang, Yanan Wang, Qin Zhong. (2017). Sol–gel synthesis of CuO-TiO2 catalyst with high dispersion CuO species for selective catalytic oxidation of NO. Applied Surface Science, 411, 227-234. https://doi.org/10.1016/j.apsusc.2017.03.107 Li-Long Zhang, Mo-Jie Sun, Chun-Guang Liu. (2019). CO oxidation on the phosphotungstic acid supported Rh single–atom catalysts via Rh–assisted Mans–van Krevelen mechanism. Molecular Catalysis, 462, 37-45. https://doi.org/10.1016/j.mcat.2018.10.017 Ruirui Zhang, Lin Hu, Shouxin Bao, Ran Li, Lei Gao, Ren Li, Qianwang Chen. (2016). Surface polarization enhancement: high catalytic performance of Cu/CuOx/C nanocomposites derived from Cu-BTC for CO oxidation. Journal of Materials Chemistry A, 4(21), 8412-8420. https://doi.org/10.1039/C6TA01199C Wenjie Zhang, Ying Li, Shenglong Zhu, Fuhui Wang. (2004). Copper doping in titanium oxide catalyst film prepared by dc reactive magnetron sputtering. Catalysis Today, 93, 589-594. https://doi.org/10.1016/j.cattod.2004.06.009 W. F. Zhang, Y. L. He, M. S. Zhang, Z. Yin, Q. Chen. (2000). Raman scattering study on anatase TiO2 nanocrystals. Journal of Physics D: Applied Physics, 33(8), 912. https://doi.org/10.1088/0022-3727/33/8/305 Yunxuan Zhao, Yufei Zhao, Run Shi, Bin Wang, Geoffrey I. N. Waterhouse, Li-Zhu Wu, Chen-Ho Tung, Tierui Zhang. (2019). Tuning oxygen vacancies in ultrathin TiO2 nanosheets to boost photocatalytic nitrogen fixation up to 700 nm. Advanced Materials, 31(16), 1806482. https://doi.org/10.1002/adma.201806482 Minghui Zhu, Pengfei Tian, Ravi Kurtz, Thomas Lunkenbein, Jing Xu, Robert Schlögl, Israel E. Wachs, Yi-Fan Han. (2019). Strong Metal–Support Interactions between Copper and Iron Oxide during the High‐Temperature Water‐Gas Shift Reaction. Angewandte Chemie, 131(27), 9181-9185. https://doi.org/10.1002/ange.201903298"………
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82216-
dc.description.abstract"本研究以一步驟氣溶膠輔助自組裝法製備高分散性之銅/二氧化鈦微米球(CuTMS)進行熱催化氧化去除一氧化碳,並結合原位分析技術深入了解其催化氧化反應機制。催化氧化一氧化碳反應利用在線式質譜儀監測銅/二氧化鈦微米球對一氧化碳的去除能力與反應溫度間的關係性,發現於相對高摻雜比例的銅/二氧化鈦觸媒對一氧化碳具有完全去除的能力,最低僅需約160℃即可。而長時間(200小時)的連續催化反應以及三次迴圈重複實驗結果中,CuTMS仍以高度的穩定性進行反應。X射線光電子能譜(XPS)分析中指出所製備的觸媒隨著銅摻雜而產生 Ti(III)的存在,可能形成Cu–O–Ti 結構;並利用一氧化二氮(N2O)輔助氫氣程溫還原法量測,計算得知銅摻雜的表面分散度可高達80%、粒徑僅約1.2 nm及銅的暴露表面積可達550 m2/gCu;並且結合原位傅里葉變換紅外光譜(in-situ FTIR)分析,觀察到2080 , 2130 與2360 cm-1處具有明顯的吸收峰,分別對應到銅對CO的吸附與CO2的吸附。從上述研究結果結合一氧化碳催化氧化的週轉頻率計算,歸納出銅/二氧化鈦觸媒同時具備有由銅入侵二氧化鈦結構中的Cu–O–Ti結構以及過量銅添加所析出於二氧化鈦表面的銅氧化物團簇兩種活性位置,其中Cu–O–Ti主導整體的一氧化碳催化氧化反應,而在富氧環境中表面的銅則在≤ 70℃的反應溫度就能進行催化反應。除了催化反應的活性位置外,我們經由一氧化碳的程溫還原串聯氧氣的程溫氧化反應,觀察所製備的銅/二氧化鈦觸媒催化氧化一氧化碳的氧氣供給以及補給行為,發現在缺氧環境中Cu–O–Ti可以提供自身的晶格氧使一氧化碳氧化成為二氧化碳,緊接著在氧氣的程溫氧化反應中,我們觀察到了氧氣得補給行為。為研究反應中晶格氧的失去以及補給,我們導入了operando Raman光譜,通過顯微反應器的輔助,觀察到在較低的反應溫度下一氧化碳會先吸附於催化劑表面,當反應溫度上升的過程中通過活性位置的作用使表面吸附的碳酸鹽物種去除,防止催化劑的積碳或是毒化行為的發生,同時亦證實了二氧化鈦的結構隨著反應溫度的上升,出現了明顯的結構變化所產生的缺陷,並且隨著反應溫度的下降逐步恢復到與反應前相似的狀態。 因此這種由Cu–O–Ti結構主導對一氧化碳催化氧化的反應活性,其反應過程中氧的失去而產生氧空缺,而氧空缺的補給使其再次氧化,周而復始使得催化反應不斷延續不至於降低活性,此類型的反應屬於Mars-van Krevelen型態的反應機制。而本研究結果將有助於未來的一氧化碳催化氧化觸媒的研發以及催化反應機制的相關後續研究,藉以降低可能的空氣污染行為以及保障的人類生命財產安全。 "zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-25T06:33:50Z (GMT). No. of bitstreams: 1
U0001-2401202216044300.pdf: 10426073 bytes, checksum: c1258e4279092df1b5373697adf39f90 (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents謝辭 I 摘要 II Abstract IV 圖目錄 VIII 表目錄 X 第一章、緒論 1 1.1 研究緣起 1 1.2 研究目的 2 1.3 研究內容 2 Chapter 2. 第二章、文獻回顧 4 2.1 一氧化碳議題 4 2.1.1 一氧化碳 4 2.1.2 生物毒性 5 2.1.3 一氧化碳的來源與影響 6 2.2 一氧化碳的處理技術 13 2.3 材料選擇 14 2.3.1 材料製備方法 14 2.3.2 催化材料的選定 15 2.4 一氧化碳催化氧化機制 16 2.5 Operando原位動態技術 17 Chapter 3. 第三章、材料製備與實驗方法 20 3.1 實驗內容與架構 20 3.2 材料製備 20 3.3 實驗儀器與方法 21 3.3.1 材料特性分析 22 3.3.2 化學性質鑑定 26 3.3.3 原位分析技術 28 Chapter 4. 第四章、活性位置作用評估 29 4.1 CuTMS表面形貌與特性分析 29 4.2 一氧化碳催化氧化反應與穩定性分析 39 4.3 原位傅立葉紅外光光譜分析 41 4.4 銅活化位的作用 44 4.5 小結 50 Chapter 5. 第五章、Operando催化反應動態解析 52 5.1 一氧化碳催化氧化的遲滯行為模式 52 5.2 氧的供給與補給行為觀察 59 5.3 材料的結構缺陷評估 64 5.4 小結 72 Chapter 6. 第六章、結論與建議 74 6.1 結論 74 6.2 建議 75 參考文獻 76 附錄 95
dc.language.isozh-TW
dc.subject原位傅里葉紅外光譜zh_TW
dc.subject一氧化碳催化氧化zh_TW
dc.subject原位動態拉曼光譜zh_TW
dc.subject氣溶膠輔助自組裝法zh_TW
dc.subject銅-二氧化鈦微米球zh_TW
dc.subjectoperando Ramanen
dc.subjectcatalytic CO oxidationen
dc.subjectone-step AASAen
dc.subjectCu/TiO2 mesospheresen
dc.subjectin-situ FTIRen
dc.title原位動態拉曼解析銅摻雜二氧化鈦中孔微米球催化氧化一氧化碳反應之研究zh_TW
dc.titleOperando Raman Analysis on Copper Doped TiO2 MesoporousMicrosphere for CO Catalytic Oxidationen
dc.date.schoolyear110-1
dc.description.degree博士
dc.contributor.author-orcid0000-0002-7339-3955
dc.contributor.oralexamcommittee胡景堯(Daniel Fu-Chang Tsai),林進榮(Hsin-Ju Kuo),董崇禮,官文惠
dc.subject.keyword銅-二氧化鈦微米球,氣溶膠輔助自組裝法,一氧化碳催化氧化,原位傅里葉紅外光譜,原位動態拉曼光譜,zh_TW
dc.subject.keywordCu/TiO2 mesospheres,one-step AASA,catalytic CO oxidation,in-situ FTIR,operando Raman,en
dc.relation.page102
dc.identifier.doi10.6342/NTU202200179
dc.rights.note未授權
dc.date.accepted2022-02-14
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept地質科學研究所zh_TW
dc.date.embargo-lift2027-02-11-
顯示於系所單位:地質科學系

文件中的檔案:
檔案 大小格式 
U0001-2401202216044300.pdf
  未授權公開取用
10.18 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved