Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 園藝暨景觀學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82198
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor許輔(Fuu Sheu)
dc.contributor.authorI-Hsuan Loen
dc.contributor.author羅逸軒zh_TW
dc.date.accessioned2022-11-25T06:33:32Z-
dc.date.copyright2021-08-18
dc.date.issued2021
dc.date.submitted2021-07-14
dc.identifier.citationAl-Banna, L., Ploeg, A., Williamson, V., Kaloshian, I. (2004). Discrimination of six Pratylenchus species using PCR and species-specific primers. Journal of Nematology, 36(2), 142. Anguita-Maeso, M., Olivares-García, C., Haro, C., Imperial, J., Navas-Cortés, J. A., Landa, B. B. (2020). Culture-dependent and culture-independent characterization of the olive xylem microbiota: Effect of sap extraction methods. Frontiers in Plant Science, 10, 1708. Baker, G., Smith, J. J., Cowan, D. A. (2003). Review and re-analysis of domain-specific 16S primers. Journal of Microbiological Methods, 55(3), 541-555. Behera, S. S., El Sheikha, A. F., Hammami, R., Kumar, A. (2020). Traditionally fermented pickles: How the microbial diversity associated with their nutritional and health benefits?. Journal of Functional Foods, 70, 103971. Belstrøm, D., Constancias, F., Liu, Y., Yang, L., Drautz-Moses, D. I., Schuster, S. C., Kohli, G. S., Jakobsen, T. H., Holmstrup, P., Givskov, M. (2017). Metagenomic and metatranscriptomic analysis of saliva reveals disease-associated microbiota in patients with periodontitis and dental caries. NPJ Biofilms and Microbiomes, 3(1), 1-8. Beveridge, T. J., Lawrence, J. R., Murray, R. G. (2007). Sampling and staining for light microscopy. Methods for General and Molecular Microbiology, 19-33. Bodilis, J., Nsigue-Meilo, S., Besaury, L., Quillet, L. (2012). Variable copy number, intra-genomic heterogeneities and lateral transfers of the 16S rRNA gene in Pseudomonas. PloS one, 7(4), e35647. Breidenbach, B., Pump, J., Dumont, M. G. (2016). Microbial community structure in the rhizosphere of rice plants. Frontiers in Microbiology, 6, 1537. Broome, M., Powell, I., Limsowtin, G. (2011). Cheese| starter cultures: specific properties. In Fuquay, J. W., McSweeney, P. L., Fox, P. F (Eds.). (2011). Encyclopedia of dairy sciences. Cambridge, MA:Academic Press. Campbell, C., Grayston, S., Hirst, D. (1997). Use of rhizosphere carbon sources in sole carbon source tests to discriminate soil microbial communities. Journal of Microbiological Methods, 30(1), 33-41. Cao, Y., Fanning, S., Proos, S., Jordan, K., Srikumar, S. (2017). A review on the applications of next generation sequencing technologies as applied to food-related microbiome studies. Frontiers in Microbiology, 8, 1829. Chang, J. Y., Chang, H. C. (2010). Improvements in the quality and shelf life of kimchi by fermentation with the induced bacteriocin‐producing strain, Leuconostoc citreum GJ7 as a starter. Journal of Food Science, 75(2), M103-M110. Chen, A. J., Luo, W., Peng, Y. T., Niu, K. L., Liu, X. Y., Shen, G. H., Zhang, Z. Q., Wan, H., Luo, Q. Y., Li, S. S. (2019). Quality and microbial flora changes of radish paocai during multiple fermentation rounds. Food Control, 106, 106733. Chen, K., Pachter, L. (2005). Bioinformatics for whole-genome shotgun sequencing of microbial communities. PLoS Comput Biol, 1(2), e24. Chen, S.B., (1994). Study on the preparation and critical control points for commercial sauerkraut production. Department of Horticultural National Taiwan University Master Thesis. Taipei. Cho J, Lee D, Yang C, Jeon J, Kim J, Han H (2006) Microbial population dynamics of kimchi, a fermented cabbage product. FEMS Microbiol Lett. 257:262–267. Choi HJ, Cheigh CI, Kim SB, Lee JC, Lee DW, Choi SW, Park JM, Pyun YR (2002) Weissella kimchii sp. nov., a novel lactic acid bacterium from kimchi. International Journal of System Evolutionary Microbiology. 52:507–511. Coit, P., Mumcu, G., Ture-Ozdemir, F., Unal, A. U., Alpar, U., Bostanci, N., Ergun, T., Direskeneli, H., Sawalha, A. H. (2016). Sequencing of 16S rRNA reveals a distinct salivary microbiome signature in Behcet's disease. Clinical Immunology, 169, 28-35. Courtois, S., Cappellano, C. M., Ball, M., Francou, F. X., Normand, P., Helynck, G., Martinez, A., Kolvek, S. J., Hopke, J., Osburne, M. S. (2003). Recombinant environmental libraries provide access to microbial diversity for drug discovery from natural products. Applied and Environmental Microbiology, 69(1), 49-55. Di Cagno, R., Coda, R., De Angelis, M., Gobbetti, M. (2013). Exploitation of vegetables and fruits through lactic acid fermentation. Food Microbiology, 33(1), 1-10. Di Cagno, R., Filannino, P., Gobbetti, M. (2016). Fermented foods: Fermented vegetables and other products. Reference module in food science. Encyclopedia of Food and Health. Amsterdam, the Netherlands, Elsevier Science. Diekstra, A., Bosgoed, E., Rikken, A., van Lier, B., Kamsteeg, E. J., Tychon, M., Derks, R. C., van Soest, R. A., Mensenkamp, A. R., Scheffer, H. (2015). Translating sanger-based routine DNA diagnostics into generic massive parallel ion semiconductor sequencing. Clinical Chemistry, 61(1), 154-162. Du, R., Wu, Q., Xu, Y. (2020). Chinese liquor fermentation: identification of key flavor-producing Lactobacillus spp. by quantitative profiling with indigenous internal standards. Applied and Environmental Microbiology, 86(12), e00456-00420. Duru, I. C., Laine, P., Andreevskaya, M., Paulin, L., Kananen, S., Tynkkynen, S., Auvinen, P., Smolander, O.-P. (2018). Metagenomic and metatranscriptomic analysis of the microbial community in Swiss-type Maasdam cheese during ripening. International Journal of Food Microbiology, 281, 10-22. Ercolini, D. (2013). High-throughput sequencing and metagenomics: moving forward in the culture-independent analysis of food microbial ecology. Applied and Environmental Microbiology, 79(10), 3148-3155. Fey, A., Eichler, S., Flavier, S., Christen, R., Höfle, M. G., Guzmán, C. A. (2004). Establishment of a real-time PCR-based approach for accurate quantification of bacterial RNA targets in water, using Salmonella as a model organism. Applied and Environmental Microbiology, 70(6), 3618-3623. Fleming, H. P., McFeeters, R. F., Humphries, E. G. (1988). A fermentor for study of sauerkraut fermentation. Biotechnology and Bioengineering, 31(3), 189-197. Giraffa, G., Neviani, E. (2001). DNA-based, culture-independent strategies for evaluating microbial communities in food-associated ecosystems. International Journal of Food Microbiology, 67(1-2), 19-34. Gong, C., Wen-Hua, Y., Qi-sheng, Z., Ping, S., Bei-Bei, Z., Zhu, L., Jing-gang, Y., Heng, L. (2014). Research of sichuan paocai and lactic acid bacteria. Advance Journal of Food Science and Technology, 6(1), 1-5. Goodwin, S., McPherson, J. D., McCombie, W. R. (2016). Coming of age: ten years of next-generation sequencing technologies. Nature Reviews Genetics, 17(6), 333. Handelsman, J. (2004). Metagenomics: application of genomics to uncultured microorganisms. Microbiology and Molecular Biology Reviews, 68(4), 669-685. Handelsman, J., Rondon, M. R., Brady, S. F., Clardy, J., Goodman, R. M. (1998). Molecular biological access to the chemistry of unknown soil microbes: a new frontier for natural products. Chemistry Biology, 5(10), R245-R249. Herlemann, D. P., Labrenz, M., Jürgens, K., Bertilsson, S., Waniek, J. J., Andersson, A. F. (2011). Transitions in bacterial communities along the 2000 km salinity gradient of the Baltic Sea. The ISME Journal, 5(10), 1571-1579. Haynes, E., Jimenez, E., Pardo, M. A., Helyar, S. J. (2019). The future of NGS (Next Generation Sequencing) analysis in testing food authenticity. Food Control, 101, 134-143. Hierro, N., Esteve-Zarzoso, B., González, Á., Mas, A., Guillamón, J. M. (2006). Real-time quantitative PCR (QPCR) and reverse transcription-QPCR for detection and enumeration of total yeasts in wine. Applied and Environmental Microbiology, 72(11), 7148-7155. Hodkinson, B. P., Grice, E. A. (2015). Next-generation sequencing: a review of technologies and tools for wound microbiome research. Advances in Wound Care, 4(1), 50-58. Hong, P.-Y., Mantilla-Calderon, D., Wang, C. (2020). Metagenomics as a tool to monitor reclaimed-water quality. Applied and Environmental Microbiology, 86(16), e00724-00720. Hou, G., Chen, W. T., Lu, H. S., Cheng, F., Xie, S. G. (2018). Developing a DNA barcode library for perciform fishes in the South China Sea: Species identification, accuracy and cryptic diversity. Molecular Ecology Resources, 18(1), 137-146. Hou, Q., Bai, X., Li, W., Gao, X., Zhang, F., Sun, Z., Zhang, H. (2018). Design of primers for evaluation of lactic acid bacteria populations in complex biological samples. Frontiers in Microbiology, 9, 2045. Hugenholtz, P., Tyson, G. W. (2008). Metagenomics. Nature, 455(7212), 481-483. Jansson, J. K., Hofmockel, K. S. (2018). The soil microbiome—from metagenomics to metaphenomics. Current Opinion in Microbiology, 43, 162-168. Jany, J. L., Barbier, G. (2008). Culture-independent methods for identifying microbial communities in cheese. Food Microbiology, 25(7), 839-848. Jarvie, T. (2005). Next generation sequencing technologies. Drug Discovery Today: Technologies, 2(3), 255-260. Jeong, S. H., Lee, S. H., Jung, J. Y., Choi, E. J., Jeon, C. O. (2013). Microbial succession and metabolite changes during long‐term storage of kimchi. Journal of Food Science, 78(5), M763-M769. Johansson, S., Vasaitis, R., Ihrmark, K., Barklund, P., Stenlid, J. (2010). Detection of Chalara fraxinea from tissue of Fraxinus excelsior using species‐specific ITS primers. Forest Pathology, 40(2), 111-115. Ju, J., Kim, D. H., Bi, L., Meng, Q., Bai, X., Li, Z., Li, X., Marma, M. S., Shi, S., Wu, J. (2006). Four-color DNA sequencing by synthesis using cleavable fluorescent nucleotide reversible terminators. Proceedings of the National Academy of Sciences, 103(52), 19635-19640. Lee, J.S., Lee, K.C., Ahn, J.S., Mheen, T.I., Pyun, Y.R., Park, Y.H. (2002) Weissella koreensis sp. nov., isolated from kimchi. International Journal of System Evolutionary Microbiology. 52:1257–1261. Lee, S.H., Park, M.S., Jung, J.Y., Jeon, C.O. (2012) Leuconostoc miyukkimchii sp. nov., isolated from brown algae (Undaria pinnatifida) kimchi. International Journal of System Evolutionary Microbiology. 62:1098–1103. Jung, J. Y., Lee, S. H., Jeon, C. O. (2014). Kimchi microflora: history, current status, and perspectives for industrial kimchi production. Applied Microbiology and Biotechnology, 98(6), 2385-2393. Jung, J.Y., Lee, S.H., Lee, H.J., Seo, H.Y., Park, W.S., Jeon, C.O. (2012). Effects of Leuconostoc mesenteroides starter cultures on microbial communities and metabolites during kimchi fermentation. International Journal of Food Microbiology, 153(3), 378-387. Jung, M. Y., Kim, T.-W., Lee, C., Kim, J. Y., Song, H. S., Kim, Y. B., Ahn, S. W., Kim, J. S., Roh, S. W., Lee, S. H. (2018). Role of jeotgal, a Korean traditional fermented fish sauce, in microbial dynamics and metabolite profiles during kimchi fermentation. Food Chemistry, 265, 135-143. Kim B, Lee J, Jang J, Kim J, Han H (2003) Leuconostoc inhae sp. nov., a lactic acid bacterium isolated from kimchi. International Journal of System Evolutionary Microbiology. 53:1123–1126. Kim J, Chun J, Han HU (2000) Leuconostoc kimchii sp. nov., a new species from kimchi. International Journal of System Evolutionary Microbiology. 50:1915–1919. Kobayashi, T. (2011). Regulation of ribosomal RNA gene copy number and its role in modulating genome integrity and evolutionary adaptability in yeast. Cellular and Molecular Life Sciences, 68(8), 1395-1403. Lai, Z., Fiehn, O. (2018). Mass spectral fragmentation of trimethylsilylated small molecules. Mass Spectrometry Reviews, 37(3), 245-257. Lee, C. M., Sieo, C. C., Abdullah, N., Ho, Y. W. (2008). Estimation of 16S rRNA gene copy number in several probiotic Lactobacillus strains isolated from the gastrointestinal tract of chicken. FEMS Microbiology Letters, 287(1), 136-141. Lee, K., Lee, Y. (2010). Effect of Lactobacillus plantarum as a starter on the food quality and microbiota of kimchi. Food Science and Biotechnology, 19(3), 641-646. Lee, M., Song, J. H., Jung, M. Y., Lee, S. H., Chang, J. Y. (2017). Large-scale targeted metagenomics analysis of bacterial ecological changes in 88 kimchi samples during fermentation. Food Microbiology, 66, 173-183. Leisner, J., Vancanneyt, M., Rusul, G., Pot, B., Lefebvre, K., Fresi, A., Tee, L. (2001). Identification of lactic acid bacteria constituting the predominating microflora in an acid-fermented condiment (tempoyak) popular in Malaysia. International Journal of Food Microbiology, 63(1-2), 149-157. Li, Z., Dong, L., Zhao, C., Zhu, Y. (2020). Metagenomic insights into the changes in microbial community and antimicrobial resistance genes associated with different salt content of red pepper (Capsicum annuum L.) sauce. Food Microbiology, 85, 103295. Lin, Y., Gifford, S., Ducklow, H., Schofield, O., Cassar, N. (2019). Towards quantitative microbiome community profiling using internal standards. Applied and Environmental Microbiology, 85(5), e02634-02618. Liu, A., Li, X., Pu, B., Ao, X., Zhou, K., He, L., Chen, S., Liu, S. (2017). Use of psychrotolerant lactic acid bacteria (Lactobacillus spp. and Leuconostoc spp.) Isolated from Chinese Traditional Paocai for the Quality Improvement of Paocai Products. Journal of Agricultural and Food Chemistry, 65(12), 2580-2587. Liu, X., Li, J., Yu, L., Pan, H., Liu, H., Liu, Y., Di, H., Li, Y., Xu, J. (2018). Simultaneous measurement of bacterial abundance and composition in response to biochar in soybean field soil using 16S rRNA gene sequencing. Land Degradation Development, 29(7), 2172-2182. Lopez, I., Ruiz-Larrea, F., Cocolin, L., Orr, E., Phister, T., Marshall, M., VanderGheynst, J., Mills, D. A. (2003). Design and evaluation of PCR primers for analysis of bacterial populations in wine by denaturing gradient gel electrophoresis. Applied and Environmental Microbiology, 69(11), 6801-6807. Lu, Y.W., (1996). Study on low salt pickling of Chinese kale. Department of Horticultural National Taiwan University Master Thesis. Taipei. Mathur, H., Beresford, T. P., Cotter, P. D. (2020). Health benefits of lactic acid bacteria (LAB) fermentates. Nutrients, 12(6), 1679. Matsuki, T., Watanabe, K., Fujimoto, J., Kado, Y., Takada, T., Matsumoto, K., Tanaka, R. (2004). Quantitative PCR with 16S rRNA-gene-targeted species-specific primers for analysis of human intestinal bifidobacteria. Applied and Environmental Microbiology, 70(1), 167-173. Metzker, M. L. (2010). Sequencing technologies—the next generation. Nature Reviews Genetics, 11(1), 31-46. Mohammad, H. A., Madi, N. M., Al-Nakib, W. (2020). Analysis of viral diversity in stool samples from infants and children with acute gastroenteritis in Kuwait using Metagenomics approach. Virology Journal, 17(1), 10. Muyzer, G., De Waal, E. C., Uitterlinden, A. G. (1993). Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Applied and Environmental Microbiology, 59(3), 695-700. Nagendra, H. (2002). Opposite trends in response for the Shannon and Simpson indices of landscape diversity. Applied Geography, 22(2), 175-186. Nalbantoglu, U., Cakar, A., Dogan, H., Abaci, N., Ustek, D., Sayood, K., Can, H. (2014). Metagenomic analysis of the microbial community in kefir grains. Food Microbiology, 41, 42-51. Pace, N. R., Stahl, D. A., Lane, D. J., Olsen, G. J. (1986). The analysis of natural microbial populations by ribosomal RNA sequences. Advances in Microbial Ecology, 1-55. Park, S. E., Seo, S. H., Kim, E. J., Byun, S., Na, C. S., Son, H. S. (2019). Changes of microbial community and metabolite in kimchi inoculated with different microbial community starters. Food Chemistry, 274, 558-565. Park, S. E., Yoo, S. A., Seo, S. H., Lee, K. I., Na, C. S., Son, H. S. (2016). GC–MS based metabolomics approach of Kimchi for the understanding of Lactobacillus plantarum fermentation characteristics. LWT-Food Science and Technology, 68, 313-321. Pei, C., Mi, C., Sun, L., Liu, W., Li, O., Hu, X. (2017). Diversity of endophytic bacteria of Dendrobium officinale based on culture-dependent and culture-independent methods. Biotechnology Biotechnological Equipment, 31(1), 112-119. Perin, L. M., Sardaro, M. L. S., Nero, L. A., Neviani, E., Gatti, M. (2017). Bacterial ecology of artisanal Minas cheeses assessed by culture-dependent and-independent methods. Food Microbiology, 65, 160-169. Pitcher, A., Villanueva, L., Hopmans, E. C., Schouten, S., Reichart, G.-J., Damsté, J. S. S. (2011). Niche segregation of ammonia-oxidizing archaea and anammox bacteria in the Arabian Sea oxygen minimum zone. The ISME Journal, 5(12), 1896-1904. Poretsky, R., Rodriguez-R, L. M., Luo, C., Tsementzi, D., Konstantinidis, K. T. (2014). Strengths and limitations of 16S rRNA gene amplicon sequencing in revealing temporal microbial community dynamics. PloS one, 9(4), e93827. Rao, Y., Qian, Y., Tao, Y., She, X., Li, Y., Chen, X., Guo, S., Xiang, W., Liu, L., Du, H. (2020). Characterization of the microbial communities and their correlations with chemical profiles in assorted vegetable Sichuan pickles. Food Control, 113, 107174. Reis-Filho, J. S. (2009). Next-generation sequencing. Breast Cancer Research, 11(3), 1-7. Rondon, M. R., August, P. R., Bettermann, A. D., Brady, S. F., Grossman, T. H., Liles, M. R., Loiacono, K. A., Lynch, B. A., MacNeil, I. A., Minor, C. (2000). Cloning the soil metagenome: a strategy for accessing the genetic and functional diversity of uncultured microorganisms. Applied and Environmental Microbiology, 66(6), 2541-2547. Schloss, P. D., Handelsman, J. (2003). Biotechnological prospects from metagenomics. Current Opinion in Biotechnology, 14(3), 303-310. Schuster, S. C. (2008). Next-generation sequencing transforms today's biology. Nature Methods, 5(1), 16-18. Shannon, C. E. (1948). A mathematical theory of communication. The Bell System Technical Journal, 27(3), 379-423. Shokralla, S., Gibson, J. F., Nikbakht, H., Janzen, D. H., Hallwachs, W., Hajibabaei, M. (2014). Next‐generation DNA barcoding: using next‐generation sequencing to enhance and accelerate DNA barcode capture from single specimens. Molecular Ecology Resources, 14(5), 892-901. Shokralla, S., Porter, T. M., Gibson, J. F., Dobosz, R., Janzen, D. H., Hallwachs, W., Golding, G. B., Hajibabaei, M. (2015). Massively parallel multiplex DNA sequencing for specimen identification using an Illumina MiSeq platform. Scientific Reports, 5(1), 1-7. Simpson, E. H. (1949). Measurement of diversity. Nature, 163(4148), 688-688. Sleator, R. D., Shortall, C., Hill, C. (2008). Metagenomics. Letters in Applied Microbiology, 47(5), 361-366. Sollai, M., Villanueva, L., Hopmans, E. C., Reichart, G. J., Sinninghe Damsté, J. S. (2019). A combined lipidomic and 16S rRNA gene amplicon sequencing approach reveals archaeal sources of intact polar lipids in the stratified Black Sea water column. Geobiology, 17(1), 91-109. Speranza, B., Bevilacqua, A., Corbo, M. R., Sinigaglia, M. (2017). Starter cultures in food production. Hoboken, NJ:Wiley-Blackwell. Stamer, J. R., Stoyla, B. O., Dunckel, B. A. (1971). Growth rates and fermentation patterns of lactic acid bacteria associated with the sauerkraut fermentation. Journal of Milk and Food Technology, 34(11), 521-525. Stämmler, F., Gläsner, J., Hiergeist, A., Holler, E., Weber, D., Oefner, P. J., Gessner, A., Spang, R. (2016). Adjusting microbiome profiles for differences in microbial load by spike-in bacteria. Microbiome, 4(1), 1-13. Swanson, K., De Vos, W., Martens, E., Gilbert, J., Menon, R., Soto-Vaca, A., Hautvast, J., Meyer, P., Borewicz, K., Vaughan, E. (2020). Effect of fructans, prebiotics and fibres on the human gut microbiome assessed by 16S rRNA-based approaches: a review. Beneficial Microbes, 11(2), 101-129. Temmerman, R., Huys, G., Swings, J. (2004). Identification of lactic acid bacteria: culture-dependent and culture-independent methods. Trends in Food Science Technology, 15(7-8), 348-359. Tourlousse, D. M., Yoshiike, S., Ohashi, A., Matsukura, S., Noda, N., Sekiguchi, Y. (2017). Synthetic spike-in standards for high-throughput 16S rRNA gene amplicon sequencing. Nucleic Acids Research, 45(4), e23-e23. Van Dijk, E. L., Auger, H., Jaszczyszyn, Y., Thermes, C. (2014). Ten years of next-generation sequencing technology. Trends in Genetics, 30(9), 418-426. Vandeputte, D., Kathagen, G., D’hoe, K., Vieira-Silva, S., Valles-Colomer, M., Sabino, J., Wang, J., Tito, R. Y., De Commer, L., Darzi, Y. (2017). Quantitative microbiome profiling links gut community variation to microbial load. Nature, 551(7681), 507-511. Vieira-Silva, S., Sabino, J., Valles-Colomer, M., Falony, G., Kathagen, G., Caenepeel, C., Cleynen, I., van der Merwe, S., Vermeire, S., Raes, J. (2019). Quantitative microbiome profiling disentangles inflammation-and bile duct obstruction-associated microbiota alterations across PSC/IBD diagnoses. Nature Microbiology, 4(11), 1826-1831. Xia, Y., Liu, X., Wang, G., Zhang, H., Xiong, Z., Sun, Y., Ai, L. (2017). Characterization and selection of Lactobacillus brevis starter for nitrite degradation of Chinese pickle. Food Control, 78, 126-131. Xiong, T., Guan, Q., Song, S., Hao, M., Xie, M. (2012). Dynamic changes of lactic acid bacteria flora during Chinese sauerkraut fermentation. Food Control, 26(1), 178-181. Xiong, T., Li, J., Liang, F., Wang, Y., Guan, Q., Xie, M. (2016). Effects of salt concentration on Chinese sauerkraut fermentation. LWT-Food Science and Technology, 69, 169-174. Xiong, T., Li, X., Guan, Q., Peng, F., Xie, M. (2014). Starter culture fermentation of Chinese sauerkraut: Growth, acidification and metabolic analyses. Food Control, 41, 122-127. Yan, P.-M., Xue, W.-T., Tan, S.-S., Zhang, H., Chang, X.-H. (2008). Effect of inoculating lactic acid bacteria starter cultures on the nitrite concentration of fermenting Chinese paocai. Food Control, 19(1), 50-55. Yang, H., Wu, H., Gao, L., Jia, H., Zhang, Y., Cui, Z., Li, Y. (2016). Effects of Lactobacillus curvatus and Leuconostoc mesenteroides on suan cai fermentation in Northeast China. Journal of Microbiology and Biotechnology, 26(12), 2148-2158. Yang, L., Lou, J., Wang, H., Wu, L., Xu, J. (2018). Use of an improved high-throughput absolute abundance quantification method to characterize soil bacterial community and dynamics. Science of the Total Environment, 633, 360-371. Yang, X., Hu, W., Jiang, A., Xiu, Z., Ji, Y., Guan, Y., Yang, X. (2019). Effect of salt concentration on quality of Chinese northeast sauerkraut fermented by Leuconostoc mesenteroides and Lactobacillus plantarum. Food Bioscience, 30, 100421. Yang, X., Hu, W., Xiu, Z., Jiang, A., Yang, X., Ji, Y., Guan, Y., Feng, K. (2020). Microbial dynamics and volatilome profiles during the fermentation of Chinese northeast sauerkraut by Leuconostoc mesenteroides ORC 2 and Lactobacillus plantarum HBUAS 51041 under different salt concentrations. Food Research International, 130, 108926. Yu, J., Gao, W., Qing, M., Sun, Z., Wang, W., Liu, W., ... Zhang, H. (2012). Identification and characterization of lactic acid bacteria isolated from traditional pickles in Sichuan, China. The Journal of General and Applied Microbiology, 58(3), 163-172. Zabat, M. A., Sano, W. H., Wurster, J. I., Cabral, D. J., Belenky, P. (2018). Microbial community analysis of sauerkraut fermentation reveals a stable and rapidly established community. Foods, 7(5), 77.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82198-
dc.description.abstract台式泡菜常於製作過程添加食醋及菌酛 (starter),以加速並穩定發酵過程。傳統上以前次發酵完成之泡菜汁液,作為後一批次發酵之循環菌酛 (backslopping fermentation)。另一方面,總基因體學 (metagenomics) 結合次世代定序技術,可分析環境中生物多樣性及菌相消長。本研究以總基因體學為基礎之非經培養 (culture-independent) 方法,分析台式泡菜發酵過程各階段菌相及產物變化,並探討循環菌酛及食醋於其中扮演的角色。比較添加及未添加菌酛之組別,添加菌酛組 (R2) 於發酵四天後,可滴定酸度,與未添加菌酛組 (R1) 發酵五天相當,約為 0.63%。以real-time PCR對16S rRNA基因複製數 (copy number) 進行定量,R2組之泡菜,於發酵第二天總菌含量達到9.0 log copies mL-1以上,而R1組則需要三天才能達到。菌相組成則以高通量擴增子定序分析泡菜總基因體中 16S rRNA 基因V3-V4片段,結果顯示R1組菌種組成相對複雜,而R2組則有穩定一致的菌相。R1組之台式泡菜優勢菌屬從發酵第二天至第四天依序為 Lactococcus、Leuconostoc、Lactobacillus,其相對含量分別為53%、58%、85%;R2組之泡菜菌相並無消長情形,Lactobacillus為優勢菌屬,其中之優勢菌種為Lactobacillus plantarum,並有未經培養的 Lactobacillus 及 Leuconostoc 菌種存在。添加食醋製作之泡菜 (vR2) 與未添加食醋組 (nvR2) 相比,Lactobacillus 於發酵 18 小時後成為優勢菌屬,且在2% (w/w)鹽濃度下,可於發酵 24 小時內抑制非乳酸菌之細菌生長,顯示於低鹽濃度下添加食醋,可快速促進乳酸菌成為泡菜之優勢菌。本研究建立以總基因體學為基礎之微生物組成分析平台,相較於傳統微生物培養之方法,具有高效且完整之優勢;並以此平台深入分析樣品菌相至菌種及菌屬層面,說明添加循環菌酛與食醋可穩定發酵過程之菌相,同時找到多種於發酵製程穩定存在而未被培養之乳酸菌,此平台未來可用於監測食品加工過程之菌相變化並鑑別其中未經培養之重要微生物。zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-25T06:33:32Z (GMT). No. of bitstreams: 1
U0001-1207202117053400.pdf: 3941217 bytes, checksum: 5f7f12ffc645697b43963c151b6e278d (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents"致謝 I 摘要 II ABSTRACT III CONTENT V LIST OF TABLES VIII LIST OF FIGURES X ABBREVIATION LIST XII CHAPTER 1 INTRODUCTION 1 1.1 Metagenomics and its methodology 1 1.1.1 Methodology of metagenomics in the past 1 1.1.2 Methodology of metagenomics nowadays 2 1.1.3 Next generation sequencing 3 1.2 Methodology for characteristics of microbiota 4 1.2.1 Culture-dependent method 4 1.2.2 Culture-independent method based on 16S rRNA gene 5 1.2.3 16S rRNA gene amplicon sequencing 6 1.2.4 16S rRNA gene quantification 8 1.3 Taiwanese-style pickle 9 1.3.1 Starter added cultivation 12 1.4 The aim of this study 13 CHAPTER 2 MATERIALS AND METHODS 15 2.1 Chemicals and reagents 15 2.2 Taiwanese-style pickle preparation 15 2.3 Sensory evaluation 16 2.4 Acidity analysis 16 2.5 Total bacterial genomic DNA purification for 16S rRNA gene analysis 16 2.6 Bacterial 16S rRNA gene copy number analysis by real-time PCR 17 2.7 16S rRNA gene amplicon sequencing by next generation sequencing 18 2.8 Next generation sequencing data analysis 19 2.9 Sample derivatization for GC-MS 19 2.10 Gas chromatography coupled with mass spectrometry 20 2.11 Statistical analysis 21 CHAPTER 3 RESULTS 22 3.1 Determination of the fermentation conditions 22 3.2 The titratable acidity of Taiwanese-style pickle during fermentation 23 3.3 Quantification of total bacteria, lactic acid bacteria, and yeast 24 3.3.1 Quantification of total bacteria 25 3.3.2 Quantification of total lactic acid bacteria 25 3.3.3 Quantification of total yeast 26 3.4 Sequencing of 16S rRNA gene amplicons from Taiwanese-style pickle samples 26 3.5 Microbiota diversity of Taiwanese-style pickle samples 27 3.5.1 Alpha diversity 27 3.5.2 Beta diversity 28 3.6 Relative abundance and succession of microbiota in R1 and R2 28 3.7 Species composition of Lactobacillus and Leuconostoc 29 3.8 Determination of metabolites relative abundance 30 3.9 Role of vinegar in the starter added fermentation 31 3.9.1 Summary of NGS results for vR2 and nvR2 32 3.9.2 Diversity of vR2 and nvR2 Taiwanese-style pickle 32 3.9.3 Bacterial genera composition of vR2 and nvR2 33 CHAPTER 4 DISCUSSION 35 4.1 Culture-independent approach compared with traditional culture method 35 4.2 Metagenomics strategy reveals critical role of starter addition in fermentation 36 4.3 Role of vinegar in Taiwanese-style pickle production 37 4.4 Conclusion 39 REFERENCE 40 TABLES 54 FIGURES 66 "
dc.language.isoen
dc.subject菌相zh_TW
dc.subject微生物定量zh_TW
dc.subject非經培養法zh_TW
dc.subject菌酛zh_TW
dc.subject食醋zh_TW
dc.subjectvinegaren
dc.subjectculture-independent methoden
dc.subjectbacterial communityen
dc.subjectquantification of microorganismsen
dc.subjectstarteren
dc.title以總基因體學探討台式泡菜發酵之研究zh_TW
dc.titleA comprehensive study of Taiwanese-style pickle fermentation using metagenomic strategyen
dc.date.schoolyear109-2
dc.description.degree碩士
dc.contributor.oralexamcommittee蘇南維(Hsin-Tsai Liu),周志輝(Chih-Yang Tseng),官彥州,鄭光成
dc.subject.keyword非經培養法,菌相,微生物定量,菌酛,食醋,zh_TW
dc.subject.keywordculture-independent method,bacterial community,quantification of microorganisms,starter,vinegar,en
dc.relation.page83
dc.identifier.doi10.6342/NTU202101413
dc.rights.note未授權
dc.date.accepted2021-07-15
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept園藝暨景觀學系zh_TW
dc.date.embargo-lift2024-07-12-
顯示於系所單位:園藝暨景觀學系

文件中的檔案:
檔案 大小格式 
U0001-1207202117053400.pdf
  未授權公開取用
3.85 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved