Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 環境工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82191
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor侯嘉洪(Chia-Hung Hou)
dc.contributor.authorChu-Yun Chengen
dc.contributor.author鄭筑云zh_TW
dc.date.accessioned2022-11-25T06:33:26Z-
dc.date.copyright2021-11-06
dc.date.issued2021
dc.date.submitted2021-07-20
dc.identifier.citationAl-Amshawee, S., Yunus, M. Y. B. M., Azoddein, A. A. M., Hassell, D. G., Dakhil, I. H., Hasan, H. A. (2020). Electrodialysis desalination for water and wastewater: A review. Chemical Engineering Journal, 380, 122231. Al-Karaghouli, A., Kazmerski, L. L. (2013). Energy consumption and water production cost of conventional and renewable-energy-powered desalination processes. Renewable and Sustainable Energy Reviews, 24, 343-356. Beh, E. S., Benedict, M. A., Desai, D., Rivest, J. B. (2019). A redox-shuttled electrochemical method for energy-efficient separation of salt from water. ACS Sustainable Chemistry Engineering, 7(15), 13411-13417. Biesheuvel, P. M., Zhao, R., Porada, S., Van der Wal, A. (2011). Theory of membrane capacitive deionization including the effect of the electrode pore space. Journal of Colloid and Interface Science, 360(1), 239-248. Chen, F., Huang, Y., Guo, L., Sun, L., Wang, Y., Yang, H. Y. (2017). Dual-ions electrochemical deionization: a desalination generator. Energy Environmental Science, 10(10), 2081-2089. Chen, F., Wang, J., Feng, C., Ma, J., Waite, T. D. (2020). Low energy consumption and mechanism study of redox flow desalination. Chemical Engineering Journal, 401, 126111. Cheng, Y., Hao, Z., Hao, C., Deng, Y., Li, X., Li, K., Zhao, Y. (2019). A review of modification of carbon electrode material in capacitive deionization. RSC Advances, 9(42), 24401-24419. Choi, J., Dorji, P., Shon, H. K., Hong, S. (2019). Applications of capacitive deionization: Desalination, softening, selective removal, and energy efficiency. Desalination, 449, 118-130. Choi, J. H., Yoon, D. J. (2019). A stable operation method for membrane capacitive deionization systems without electrode reactions at high cell potentials. Water Research, 157, 167-174. Debruler, C., Wu, W., Cox, K., Vanness, B., Liu, T. L. (2020). Integrated Saltwater Desalination and Energy Storage through a pH Neutral Aqueous Organic Redox Flow Battery. Advanced Functional Materials, 30(24), 2000385. Desai, D., Beh, E. S., Sahu, S., Vedharathinam, V., van Overmeere, Q., de Lannoy, C. F., Jose, A. P., Völkel, A. R., Rivest, J. B. (2018). Electrochemical desalination of seawater and hypersaline brines with coupled electricity storage. ACS Energy Letters, 3(2), 375-379. Doornbusch, G. J., Dykstra, J. E., Biesheuvel, P. M., Suss, M. E. (2016). Fluidized bed electrodes with high carbon loading for water desalination by capacitive deionization. Journal of Materials Chemistry A, 4(10), 3642-3647. Doornbusch, G. J., Tedesco, M., Post, J. W., Borneman, Z., Nijmeijer, K. (2019). Experimental investigation of multistage electrodialysis for seawater desalination. Desalination, 464, 105-114. Dydo, P. (2012). The mechanism of boric acid transport during an electrodialytic desalination process. Journal of Membrane Science, 407, 202-210. Galama, A. H., Saakes, M., Bruning, H., Rijnaarts, H. H. M., Post, J. W. (2014). Seawater predesalination with electrodialysis. Desalination, 342, 61-69. García-Quismondo, E., Santos, C., Palma, J., Anderson, M. A. (2016). On the challenge of developing wastewater treatment processes: capacitive deionization. Desalination and Water Treatment, 57(5), 2315-2324. Gendel, Y., Rommerskirchen, A. K. E., David, O., Wessling, M. (2014). Batch mode and continuous desalination of water using flowing carbon deionization (FCDI) technology. Electrochemistry Communications, 46, 152-156. Gurreri, L., Tamburini, A., Cipollina, A., Micale, G. (2020). Electrodialysis applications in wastewater treatment for environmental protection and resources recovery: A systematic review on progress and perspectives. Membranes, 10(7), 146. Han, B., Cheng, G., Wang, Y., Wang, X. (2019). Structure and functionality design of novel carbon and faradaic electrode materials for high-performance capacitive deionization. Chemical Engineering Journal, 360, 364-384. Hassanvand, A., Chen, G. Q., Webley, P. A., Kentish, S. E. (2018). A comparison of multicomponent electrosorption in capacitive deionization and membrane capacitive deionization. Water Research, 131, 100-109. Hatzell, K. B., Hatzell, M. C., Cook, K. M., Boota, M., Housel, G. M., McBride, A., Kumber, E. C., Gogotsi, Y. (2015). Effect of oxidation of carbon material on suspension electrodes for flow electrode capacitive deionization. Environmental Science Technology, 49(5), 3040-3047. He, C., Ma, J., Zhang, C., Song, J., Waite, T. D. (2018). Short-circuited closed-cycle operation of flow-electrode CDI for brackish water softening. Environmental Science Technology, 52(16), 9350-9360. Hou, C. H., Huang, C. Y., Hu, C. Y. (2013). Application of capacitive deionization technology to the removal of sodium chloride from aqueous solutions. International Journal of Environmental Science and Technology, 10(4), 753-760. Hou, X., Liang, Q., Hu, X., Zhou, Y., Ru, Q., Chen, F., Hu, S. (2018). Coupling desalination and energy storage with redox flow electrodes. Nanoscale, 10(26), 12308-12314. Hu, B., Luo, J., DeBruler, C., Hu, M., Wu, W., Liu, T. L. (2011). Redox‐Active Inorganic Materials for Redox Flow Batteries. Encyclopedia of Inorganic and Bioinorganic Chemistry, 1-25. Huang, Y., Chen, F., Guo, L., Zhang, J., Chen, T., Yang, H. Y. (2019). Low energy consumption dual-ion electrochemical deionization system using NaTi2 (PO4) 3-AgNPs electrodes. Desalination, 451, 241-247. Humplik, T., Lee, J., O’hern, S. C., Fellman, B. A., Baig, M. A., Hassan, S. F., Atieh, M. A., Rahman, F., Laoui, T., Wang, E. N. (2011). Nanostructured materials for water desalination. Nanotechnology, 22(29), 292001. Jeon, S. I., Park, H. R., Yeo, J. G., Yang, S., Cho, C. H., Han, M. H., Kim, D. K. (2013). Desalination via a new membrane capacitive deionization process utilizing flow-electrodes. Energy Environmental Science, 6(5), 1471-1475. Kalogirou, S. A. (2005). Seawater desalination using renewable energy sources. Progress in Energy and Combustion Science, 31(3), 242-281. Kim, B., Seo, J. Y., Chung, C. H. (2020). A hybrid system of capacitive deionization and redox flow battery for continuous desalination and energy storage. Journal of Power Sources, 448, 227384. Kim, B., Seo, J. Y., Chung, C. H. (2021). Electrochemical Desalination and Recovery of Lithium from Saline Water upon Operation of a Capacitive Deionization Cell Combined with a Redox Flow Battery. ACS ES T Water, 1(4), 1047-1054. Kim, J., Hong, S. (2018). A novel single-pass reverse osmosis configuration for high-purity water production and low energy consumption in seawater desalination. Desalination, 429, 142-154. Kim, N., Hong, S. P., Lee, J., Kim, C., Yoon, J. (2019). High-desalination performance via redox couple reaction in the multichannel capacitive deionization system. ACS Sustainable Chemistry Engineering, 7(19), 16182-16189. Kim, N., Lee, J., Kim, S., Hong, S. P., Lee, C., Yoon, J., Kim, C. (2020). Short review of multichannel membrane capacitive deionization: principle, current status, and future prospect. Applied Sciences, 10(2), 683. Kim, N., Su, X., Kim, C. (2020). Electrochemical lithium recovery system through the simultaneous lithium enrichment via sustainable redox reaction. Chemical Engineering Journal, 127715. Kim, T., Gorski, C. A., Logan, B. E. (2017). Low energy desalination using battery electrode deionization. Environmental Science Technology Letters, 4(10), 444-449. Lee, J., Kim, S., Yoon, J. (2017). Rocking chair desalination battery based on Prussian Blue electrodes. Acs Omega, 2(4), 1653-1659. Lee, J., Lee, J., Ahn, J., Jo, K., Hong, S. P., Kim, C., Lee, C., Yoon, J. (2019). Enhancement in desalination performance of battery electrodes via improved mass transport using a multichannel flow system. ACS Applied Materials Interfaces, 11(40), 36580-36588. Lee, M., Fan, C. S., Chen, Y. W., Chang, K. C., Chiueh, P. T., Hou, C. H. (2019). Membrane capacitive deionization for low-salinity desalination in the reclamation of domestic wastewater effluents. Chemosphere, 235, 413-422. Liang, Q., Chen, F., Wang, S., Ru, Q., He, Q., Hou, X., Su, C., Shi, Y. (2019). An organic flow desalination battery. Energy Storage Materials, 20, 203-207. Liu, E., Lee, L. Y., Ong, S. L., Ng, H. Y. (2020). Treatment of industrial brine using Capacitive Deionization (CDI) towards zero liquid discharge–Challenges and optimization. Water Research, 116059. Ma, J., He, D., Tang, W., Kovalsky, P., He, C., Zhang, C., Waite, T. D. (2016). Development of redox-active flow electrodes for high-performance capacitive deionization. Environmental Science Technology, 50(24), 13495-13501. Ma, J., Ma, J., Zhang, C., Song, J., Dong, W., Waite, T. D. (2020). Flow-electrode capacitive deionization (FCDI) scale-up using a membrane stack configuration. Water Research, 168, 115186. Nam, D. H., Choi, K. S. (2019). Tandem Desalination/Salination Strategies Enabling the Use of Redox Couples for Efficient and Sustainable Electrochemical Desalination. ACS Applied Materials Interfaces, 11(42), 38641-38647. Nativ, P., Badash, Y., Gendel, Y. (2017). New insights into the mechanism of flow-electrode capacitive deionization. Electrochemistry Communications, 76, 24-28. Pan, Y., Yao, L., Wu, D., Bentalib, A., Li, J., Peng, Z. (2020). Sulfonated nickel phthalocyanine redox flow cell for high-performance electrochemical water desalination. Desalination, 496, 114762. Pasta, M., Wessells, C. D., Cui, Y., La Mantia, F. (2012). A desalination battery. Nano Letters, 12(2), 839-843. Porada, S., Shrivastava, A., Bukowska, P., Biesheuvel, P. M., Smith, K. C. (2017). Nickel hexacyanoferrate electrodes for continuous cation intercalation desalination of brackish water. Electrochimica Acta, 255, 369-378. Porada, S., Zhang, L., Dykstra, J. E. (2020). Energy consumption in membrane capacitive deionization and comparison with reverse osmosis. Desalination, 488, 114383. Porada, S., Zhao, R., Van Der Wal, A., Presser, V., Biesheuvel, P. M. (2013). Review on the science and technology of water desalination by capacitive deionization. Progress in Materials Science, 58(8), 1388-1442. Qasim, M., Badrelzaman, M., Darwish, N. N., Darwish, N. A., Hilal, N. (2019). Reverse osmosis desalination: A state-of-the-art review. Desalination, 459, 59-104. Qin, M., Deshmukh, A., Epsztein, R., Patel, S. K., Owoseni, O. M., Walker, W. S., Elimelech, M. (2019). Comparison of energy consumption in desalination by capacitive deionization and reverse osmosis. Desalination, 455, 100-114. Rommerskirchen, A., Gendel, Y., Wessling, M. (2015). Single module flow-electrode capacitive deionization for continuous water desalination. Electrochemistry Communications, 60, 34-37. Sebti, E., Besli, M. M., Metzger, M., Hellstrom, S., Schultz-Neu, M. J., Alvarado, J., Christensen, J., Doeff, M., Kuppan, S., Subban, C. V. (2020). Removal of Na+ and Ca2+ with Prussian blue analogue electrodes for brackish water desalination. Desalination, 487, 114479. Semiat, R. (2008). Energy issues in desalination processes. Environmental Science Technology, 42(22), 8193-8201. Shatat, M., Worall, M., Riffat, S. (2013). Opportunities for solar water desalination worldwide. Sustainable Cities and Society, 9, 67-80. Shen, Y. Y., Sun, S. H., Tsai, S. W., Chen, T. H., Hou, C. H. (2021). Development of a membrane capacitive deionization stack for domestic wastewater reclamation: A pilot-scale feasibility study. Desalination, 500, 114851. Silva, V., Poiesz, E., van der Heijden, P. (2013). Industrial wastewater desalination using electrodialysis: evaluation and plant design. Journal of Applied Electrochemistry, 43(11), 1057-1067. Singh, K., Zhang, L., Zuilhof, H., de Smet, L. C. P. M. (2020). Water desalination with nickel hexacyanoferrate electrodes in capacitive deionization: Experiment, model and comparison with carbon. Desalination, 496, 114647. Srimuk, P., Su, X., Yoon, J., Aurbach, D., Presser, V. (2020). Charge-transfer materials for electrochemical water desalination, ion separation and the recovery of elements. Nature Reviews Materials, 5(7), 517-538. Strathmann, H. (2010). Electrodialysis, a mature technology with a multitude of new applications. Desalination, 264(3), 268-288. Su, X., Hatton, T. A. (2017). Redox-electrodes for selective electrochemical separations. Advances in Colloid and Interface Science, 244, 6-20. Suss, M. E., Porada, S., Sun, X., Biesheuvel, P. M., Yoon, J., Presser, V. (2015). Water desalination via capacitive deionization: what is it and what can we expect from it?. Energy Environmental Science, 8(8), 2296-2319. Suss, M. E., Presser, V. (2018). Water desalination with energy storage electrode materials. Joule, 2(1), 10-15. Tang, W., Kovalsky, P., He, D., Waite, T. D. (2015). Fluoride and nitrate removal from brackish groundwaters by batch-mode capacitive deionization. Water Research, 84, 342-349. Turek, M., Bandura, B., Dydo, P. (2008). Electrodialytic boron removal from SWRO permeate. Desalination, 223(1-3), 17-22. Wang, J., Zhang, Q., Chen, F., Hou, X., Tang, Z., Shi, Y., Liang, P., Yu, D. Y. W., He, Q., Li, L. J. (2019). Continuous desalination with a metal-free redox-mediator. Journal of Materials Chemistry A, 7(23), 13941-13947. Ward, A. J., Arola, K., Brewster, E. T., Mehta, C. M., Batstone, D. J. (2018). Nutrient recovery from wastewater through pilot scale electrodialysis. Water Research, 135, 57-65. Yang, S., Choi, J., Yeo, J. G., Jeon, S. I., Park, H. R., Kim, D. K. (2016). Flow-electrode capacitive deionization using an aqueous electrolyte with a high salt concentration. Environmental Science Technology, 50(11), 5892-5899. Yang, S., Kim, H., Jeon, S. I., Choi, J., Yeo, J. G., Park, H. R., Jin, J., Kim, D. K. (2017). Analysis of the desalting performance of flow-electrode capacitive deionization under short-circuited closed cycle operation. Desalination, 424, 110-121. Zhang, C., Ma, J., Wu, L., Sun, J., Wang, L., Li, T., Waite, T. D. (2021). Flow Electrode Capacitive Deionization (FCDI): Recent Developments, Environmental Applications, and Future Perspectives. Environmental Science Technology, 55(8), 4243-4267. Zhang, C., Wu, L., Ma, J., Wang, M., Sun, J., Waite, T. D. (2020). Evaluation of long-term performance of a continuously operated flow-electrode CDI system for salt removal from brackish waters. Water Research, 173, 115580. Zhao, R., Biesheuvel, P. M., Van der Wal, A. (2012). Energy consumption and constant current operation in membrane capacitive deionization. Energy Environmental Science, 5(11), 9520-9527. Zhao, R., Porada, S., Biesheuvel, P. M., Van der Wal, A. (2013). Energy consumption in membrane capacitive deionization for different water recoveries and flow rates, and comparison with reverse osmosis. Desalination, 330, 35-41. Zhao, Y., Wang, Y., Wang, R., Wu, Y., Xu, S., Wang, J. (2013). Performance comparison and energy consumption analysis of capacitive deionization and membrane capacitive deionization processes. Desalination, 324, 127-133.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82191-
dc.description.abstract"近年來水資源的匱乏以及能源的需求日益提升,開發新穎的脫鹽技術,以低能耗的方式提供新興水資源(如海水淡化、再生水),成為國際間重要的研究課題。而在現今的脫鹽技術中,亦有其各自的限制。因此,氧化還原液流式電池脫鹽技術(redox-flow battery desalination, FBD)被進一步提出,其使用氧化還原液流電池材料(redox-flow battery, RFB)作為液流式電極,透過氧化還原反應及電子遷移的機制去除水中離子,以期能將此技術應用於高鹽度溶液的脫鹽。 本研究的目的為開發FBD模組系統,探討脫鹽過程中的反應機制與重要的操作參數,並驗證其在海水淡化的應用可行性。在本研究中,FBD模組具有四個通道,包含陽極室、陰極室、淡室與濃室,並利用鐵氰化物/亞鐵氰化物(ferri-/ferrocyanide)作為氧化還原液流電池材料,探討電壓(0.2, 0.4, 0.6, 0.8 V)、鐵氰化物/亞鐵氰化物濃度(5, 10, 50, 100 mM)與氯化鈉濃度(介於3000至35000 mg/L),對於脫鹽效能及能耗表現的影響。在此FBD系統中,若對其施加外部電場,氧化還原液流電池材料將於陽極室發生氧化反應,由亞鐵氰化物氧化為鐵氰化物,同時於陰極室發生還原反應,由鐵氰化物還原為亞鐵氰化物。為了達到電荷平衡,陽極室和淡室中的陽離子會通過陽離子交換膜(cation exchange membrane, CEM),分別往濃室及陰極室移動;而淡室中的陰離子則會通過陰離子交換膜(anion exchange membrane, AEM)向濃室遷移。因此,淡室中的離子將不斷被去除,相反地,濃室中的離子將持續被濃縮。由於FBD系統以氧化還原液流電池材料取代固定式電極,進行離子的去除,其在電場下可不斷發生氧化還原反應的特性,使得FBD系統具有無限的脫鹽容量。此外,FBD模組的四通道設計使其能夠同時產生淨水及濃水,達成完全連續的操作程序。 以處理初始濃度為3000 mg/L的氯化鈉溶液為例,在施加電壓為0.2 V、鐵氰化物/亞鐵氰化物濃度為100 mM時,其平均脫鹽速度和單位莫耳能耗分別為65.8 μg/min-cm2及18.1 kJ/mole。當初始氯化鈉濃度增加至35000 mg/L,其平均脫鹽速度亦提升至96.2 μg/min-cm2,單位莫耳能耗則為20.6 kJ/mole。相較於過去針對RO(約20.8–27.5 kJ/mole)和ED(約23.2–26.5 kJ/mole)的研究結果,FBD對較低鹽度或高鹽度溶液進行脫鹽時,均具有較低的能耗。由此可知,因驅使氧化還原反應發生所需的電壓相對較低,使得FBD系統在處理高鹽度溶液時,亦能維持良好的脫鹽性能與較低的能耗。此外,本研究將透過各項指標及水質分析,以評估FBD系統應用於真實海水的可行性。FBD系統對真實海水進行脫鹽時,其單位莫耳能耗為23.9 kJ/mole,並可將總溶解固體濃度(total dissolved solids, TDS)由39200 mg/L降至約1840 mg/L。其中,鈣離子(Ca2+)、鎂離子(Mg2+)及硫酸根離子(SO42–)的去除率均可達到99%以上,而鈉離子(Na+)及氯離子(Cl–)去除率則分別為96%與95%。從本研究的實驗結果可知,FBD系統為一個極具潛能的低能耗電化學脫鹽技術,具有較大的脫鹽濃度範圍,有助於海水淡化的應用與發展。"zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-25T06:33:26Z (GMT). No. of bitstreams: 1
U0001-1907202114432800.pdf: 12168438 bytes, checksum: e993edbe28756989d677e1ef2f442ef0 (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents誌謝 i 中文摘要 iv Abstract vi Contents viii List of Figures x List of Tables xiv Abbreviations xv Chapter 1 Introduction 1 1.1 Background 1 1.2 Motivation and Objectives 1 Chapter 2 Theory and Literature Review 3 2.1 Electrochemical Desalination Technologies 3 2.1.1 Electrodialysis 5 2.1.2 Capacitive Deionization 7 2.1.3 Battery Electrode Deionization 11 2.2 Redox-flow Battery 13 2.3 Redox-flow Battery Desalination 19 Chapter 3 Experimental 27 3.1 Materials and Instruments 27 3.2 Research Design 30 3.3 Electrochemical Characterization 31 3.4 Setup of FBD System 33 3.5 Key Performance Indicators 37 Chapter 4 Results and Discussion 39 4.1 Characteristics of Redox-flow Battery 39 4.2 Desalination Performance of FBD System 41 4.3 Effect of Applied Voltage with Anolyte and Catholyte Concentration on Desalination Performance 44 4.4 Effect of Initial NaCl Concentration on Desalination Performance 53 4.5 Long-term Cycling Stability of FBD 62 4.6 A Practical Study of Seawater Desalination 65 Chapter 5 Conclusions and Suggestions 75 5.1 Conclusions 75 5.2 Suggestions 78 References 79
dc.language.isoen
dc.subject能源消耗zh_TW
dc.subject氧化還原液流式電池脫鹽技術zh_TW
dc.subject海水淡化zh_TW
dc.subjectredox-flow battery desalinationen
dc.subjectseawater desalinationen
dc.subjectenergy consumptionen
dc.title氧化還原液流式電池脫鹽技術應用於低能耗海水淡化之研析zh_TW
dc.titleRedox-flow battery as a low-energy approach for electrochemical desalination of seawateren
dc.date.schoolyear109-2
dc.description.degree碩士
dc.contributor.oralexamcommittee李公哲(Hsin-Tsai Liu),董瑞安(Chih-Yang Tseng),童國倫
dc.subject.keyword氧化還原液流式電池脫鹽技術,海水淡化,能源消耗,zh_TW
dc.subject.keywordredox-flow battery desalination,seawater desalination,energy consumption,en
dc.relation.page86
dc.identifier.doi10.6342/NTU202101568
dc.rights.note未授權
dc.date.accepted2021-07-21
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept環境工程學研究所zh_TW
dc.date.embargo-lift2026-07-21-
顯示於系所單位:環境工程學研究所

文件中的檔案:
檔案 大小格式 
U0001-1907202114432800.pdf
  未授權公開取用
11.88 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved