Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 分子與細胞生物學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82190
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃筱鈞(Hsiao-Chun Huang)
dc.contributor.authorFa-Hsuan Chiangen
dc.contributor.author江法萱zh_TW
dc.date.accessioned2022-11-25T06:33:26Z-
dc.date.copyright2021-08-20
dc.date.issued2021
dc.date.submitted2021-08-03
dc.identifier.citation1. Vazin T, Freed WJ. Human embryonic stem cells: Derivation, culture, and differentiation: A review. Restorative Neurology and Neuroscience 2010; 28:589-603. 2. Macfarlan TS, Gifford WD, Driscoll S, Lettieri K, Rowe HM, Bonanomi D, Firth A, Singer O, Trono D, Pfaff SL. Embryonic stem cell potency fluctuates with endogenous retrovirus activity. Nature 2012; 487:57-63. 3. Ramalho-Santos M, Yoon S, Matsuzaki Y, Mulligan RC, Melton DA. 'Stemness': Transcriptional Profiling of Embryonic and Adult Stem Cells. Science 2002; 298:597-600. 4. He S, Nakada D, Morrison SJ. Mechanisms of Stem Cell Self-Renewal. Annual Review of Cell and Developmental Biology 2009; 25:377-406. 5. Niwa H. How is pluripotency determined and maintained? Development (Cambridge, England) 2007; 134:635-46. 6. Weinberger L, Ayyash M, Novershtern N, Hanna JH. Dynamic stem cell states: naive to primed pluripotency in rodents and humans. Nature Reviews Molecular Cell Biology 2016; 17:155-69. 7. Ohgushi M, Sasai Y. Lonely death dance of human pluripotent stem cells: ROCKing between metastable cell states. Trends in Cell Biology 2011; 21:274-82. 8.Nichols J, Smith A. Naive and Primed Pluripotent States. Cell stem cell 2009; 4:487-92. 9.Yousefi M, Marashi S-A, Sharifi-Zarchi A, Taleahmad S. The metabolic network model of primed/naive human embryonic stem cells underlines the importance of oxidation-reduction potential and tryptophan metabolism in primed pluripotency. Cell Bioscience 2019; 9:71. 10. Yang Y, Liu B, Xu J, Wang J, Wu J, Shi C, Xu Y, Dong J, Wang C, Lai W, et al. Derivation of Pluripotent Stem Cells with In Vivo Embryonic and Extraembryonic Potency. Cell 2017; 169:243-57 e25. 11. Yang J, Ryan DJ, Wang W, Tsang JC, Lan G, Masaki H, Gao X, Antunes L, Yu Y, Zhu Z, et al. Establishment of mouse expanded potential stem cells. Nature 2017; 550:393-7. 12. Gao X, Nowak-Imialek M, Chen X, Chen D, Herrmann D, Ruan D, Chen ACH, Eckersley-Maslin MA, Ahmad S, Lee YL, et al. Establishment of porcine and human expanded potential stem cells. Nat Cell Biol 2019; 21:687-99. 13. Wu J, Platero-Luengo A, Sakurai M, Sugawara A, Gil MA, Yamauchi T, Suzuki K, Bogliotti YS, Cuello C, Morales Valencia M, et al. Interspecies Chimerism with Mammalian Pluripotent Stem Cells. Cell 2017; 168:473-86 e15. 14. Primed to Naive-Like Conversion of the Common Marmoset Embryonic Stem Cells. Stem cells and development 2020; 29:761-73. 15. Guo G, von Meyenn F, Santos F, Chen Y, Reik W, Bertone P, Smith A, Nichols J. Naive Pluripotent Stem Cells Derived Directly from Isolated Cells of the Human Inner Cell Mass. Stem cell reports 2016; 6:437-46. 16. Ware CB, Nelson AM, Mecham B, Hesson J, Zhou W, Jonlin EC, Jimenez-Caliani AJ, Deng X, Cavanaugh C, Cook S, et al. Derivation of naive human embryonic stem cells. Proceedings of the National Academy of Sciences of the United States of America 2014; 111:4484-9. 17. Yashin AI, Wu D, Arbeev K, Bagley O, Akushevich I, Duan M, Yashkin A, Ukraintseva S. Interplay between stress-related genes may influence Alzheimer’s disease development: The results of genetic interaction analyses of human data. Mechanisms of Ageing and Development 2021; 196:111477. 18. Theunissen TW, Powell BE, Wang H, Mitalipova M, Faddah DA, Reddy J, Fan ZP, Maetzel D, Ganz K, Shi L, et al. Systematic identification of culture conditions for induction and maintenance of naive human pluripotency. Cell stem cell 2014; 15:471-87. 19. Takashima Y, Guo G, Loos R, Nichols J, Ficz G, Krueger F, Oxley D, Santos F, Clarke J, Mansfield W, et al. Resetting transcription factor control circuitry toward ground-state pluripotency in human. Cell 2014; 158:1254-69. 20. Gafni O, Weinberger L, Mansour AA, Manor YS, Chomsky E, Ben-Yosef D, Kalma Y, Viukov S, Maza I, Zviran A, et al. Derivation of novel human ground state naive pluripotent stem cells. Nature 2013; 504:282-6. 21. Wang J, Xie G, Singh M, Ghanbarian AT, Rasko T, Szvetnik A, Cai H, Besser D, Prigione A, Fuchs NV, et al. Primate-specific endogenous retrovirus-driven transcription defines naive-like stem cells. Nature 2014; 516:405-9. 22. Chan YS, Goke J, Ng JH, Lu X, Gonzales KA, Tan CP, Tng WQ, Hong ZZ, Lim YS, Ng HH. Induction of a human pluripotent state with distinct regulatory circuitry that resembles preimplantation epiblast. Cell stem cell 2013; 13:663-75. 23. Guo G, von Meyenn F, Santos F, Chen Y, Reik W, Bertone P, Smith A, Nichols J. Naive Pluripotent Stem Cells Derived Directly from Isolated Cells of the Human Inner Cell Mass. Stem Cell Reports 2016; 6:437-46. 24. Yamaji M, Ueda J, Hayashi K, Ohta H, Yabuta Y, Kurimoto K, Nakato R, Yamada Y, Shirahige K, Saitou M. PRDM14 Ensures Naive Pluripotency through Dual Regulation of Signaling and Epigenetic Pathways in Mouse Embryonic Stem Cells. Cell stem cell 2013; 12:368-82. 25. Bao S, Tang WWC, Wu B, Kim S, Li J, Li L, Kobayashi T, Lee C, Chen Y, Wei M, et al. Derivation of hypermethylated pluripotent embryonic stem cells with high potency. Cell Research 2018; 28:22-34. 26. Pantier R, Tatar T, Colby D, Chambers I. Endogenous epitope-tagging of Tet1, Tet2 and Tet3 identifies TET2 as a naïve pluripotency marker. Life Science Alliance 2019; 2:e201900516. 27. Shahbazi MN, Scialdone A, Skorupska N, Weberling A, Recher G, Zhu M, Jedrusik A, Devito LG, Noli L, Macaulay IC, et al. Pluripotent state transitions coordinate morphogenesis in mouse and human embryos. Nature 2017; 552:239-43. 28. Hay DC, Sutherland L, Clark J, Burdon T. Oct-4 knockdown induces similar patterns of endoderm and trophoblast differentiation markers in human and mouse embryonic stem cells. Stem Cells 2004; 22:225-35. 29. Hyslop L, Stojkovic M, Armstrong L, Walter T, Stojkovic P, Przyborski S, Herbert M, Murdoch A, Strachan T, Lako M. Downregulation of NANOG Induces Differentiation of Human Embryonic Stem Cells to Extraembryonic Lineages. Stem cells (Dayton, Ohio) 2005; 23:1035-43. 30. Wang L, Jiang Z, Huang D, Duan J, Huang C, Sullivan S, Vali K, Yin Y, Zhang M, Wegrzyn J, et al. JAK/STAT3 regulated global gene expression dynamics during late-stage reprogramming process. BMC Genomics 2018; 19:183-. 31. Du P, Pirouz M, Choi J, Huebner AJ, Clement K, Meissner A, Hochedlinger K, Gregory RI. An Intermediate Pluripotent State Controlled by MicroRNAs Is Required for the Naive-to-Primed Stem Cell Transition. Cell stem cell 2018; 22:851-64.e5. 32. Wu KJ, Grandori C, Amacker M, Simon-Vermot N, Polack A, Lingner J, Dalla-Favera R. Direct activation of TERT transcription by c-MYC. Nature genetics 1999; 21:220-4. 33. Teichroeb JH, Kim J, Betts DH. The role of telomeres and telomerase reverse transcriptase isoforms in pluripotency induction and maintenance. RNA Biology 2016; 13:707-19. 34. Singh SK, Kagalwala MN, Parker-Thornburg J, Adams H, Majumder S. REST maintains self-renewal and pluripotency of embryonic stem cells. Nature 2008; 453:223-7. 35. Wilson A, Murphy MJ, Oskarsson T, Kaloulis K, Bettess MD, Oser GM, Pasche AC, Knabenhans C, MacDonald HR, Trumpp A. c-Myc controls the balance between hematopoietic stem cell self-renewal and differentiation. Genes development 2004; 18:2747-63. 36. Varlakhanova N, Cotterman R, Bradnam K, Korf I, Knoepfler PS. Myc and Miz-1 have coordinate genomic functions including targeting Hox genes in human embryonic stem cells. Epigenet Chromatin 2011; 4. 37. Varlakhanova NV, Cotterman RF, deVries WN, Morgan J, Donahue LR, Murray S, Knowles BB, Knoepfler PS. myc maintains embryonic stem cell pluripotency and self-renewal. Differentiation; research in biological diversity 2010; 80:9-19. 38. Scognamiglio R, Cabezas-Wallscheid N, Thier MC, Altamura S, Reyes A, Prendergast AM, Baumgartner D, Carnevalli LS, Atzberger A, Haas S, et al. Myc Depletion Induces a Pluripotent Dormant State Mimicking Diapause. Cell 2016; 164:668-80. 39. Zviran A, Mor N, Rais Y, Gingold H, Peles S, Chomsky E, Viukov S, Buenrostro JD, Scognamiglio R, Weinberger L, et al. Deterministic Somatic Cell Reprogramming Involves Continuous Transcriptional Changes Governed by Myc and Epigenetic-Driven Modules. Cell stem cell 2018. 40. Fong H, Hohenstein KA, Donovan PJ. Regulation of Self-Renewal and Pluripotency by Sox2 in Human Embryonic Stem Cells. STEM CELLS 2008; 26:1931-8. 41. Zhang S, Cui W. Sox2, a key factor in the regulation of pluripotency and neural differentiation. World J Stem Cells 2014; 6:305-11. 42. Zhao R, Daley GQ. From fibroblasts to iPS cells: Induced pluripotency by defined factors. Journal of cellular biochemistry 2008. 43. Yu J, Thomson JA. Pluripotent stem cell lines. Genes Dev 2008; 22:1987-97. 44. Okita K, Ichisaka T, Yamanaka S. Generation of germline-competent induced pluripotent stem cells. Nature 2007; 448:313-7. 45. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007; 131:861-72. 46. Park IH, Zhao R, West JA, Yabuuchi A, Huo H, Ince TA, Lerou PH, Lensch MW, Daley GQ. Reprogramming of human somatic cells to pluripotency with defined factors. Nature 2008; 451:141-6. 47. Wernig M, Meissner A, Foreman R, Brambrink T, Ku M, Hochedlinger K, Bernstein BE, Jaenisch R. In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature 2007; 448:318-24. 48. Itoh M, Kiuru M, Cairo MS, Christiano AM. Generation of keratinocytes from normal and recessive dystrophic epidermolysis bullosa-induced pluripotent stem cells. Proceedings of the National Academy of Sciences 2011; 108:8797-802. 49. Shi Y, Inoue H, Wu JC, Yamanaka S. Induced pluripotent stem cell technology: a decade of progress. Nature Reviews Drug Discovery 2017; 16:115-30. 50. Kang L, Wang J, Zhang Y, Kou Z, Gao S. iPS Cells Can Support Full-Term Development of Tetraploid Blastocyst-Complemented Embryos. Cell stem cell 2009; 5:135-8. 51. Lee S-Y, Noh HB, Kim H-T, Lee K-I, Hwang D-Y. Glis family proteins are differentially implicated in the cellular reprogramming of human somatic cells. Oncotarget 2017; 8:77041-9. 52. Gao Y, Chen J, Li K, Wu T, Huang B, Liu W, Kou X, Zhang Y, Huang H, Jiang Y, et al. Replacement of Oct4 by Tet1 during iPSC Induction Reveals an Important Role of DNA Methylation and Hydroxymethylation in Reprogramming. Cell stem cell 2013; 12:453-69. 53. Heng J-CD, Feng B, Han J, Jiang J, Kraus P, Ng J-H, Orlov YL, Huss M, Yang L, Lufkin T, et al. The Nuclear Receptor Nr5a2 Can Replace Oct4 in the Reprogramming of Murine Somatic Cells to Pluripotent Cells. Cell stem cell 2010; 6:167-74. 54. Maekawa M, Yamaguchi K, Nakamura T, Shibukawa R, Kodanaka I, Ichisaka T, Kawamura Y, Mochizuki H, Goshima N, Yamanaka S. Direct reprogramming of somatic cells is promoted by maternal transcription factor Glis1. Nature 2011; 474:225-9. 55. Muramatsu T, Muramatsu H. Carbohydrate antigens expressed on stem cells and early embryonic cells. Glycoconjugate journal 2004; 21:41-5. 56. Andrews PW. Toward safer regenerative medicine. Nature biotechnology 2011; 29:803-5. 57. Kang L, Yao C, Khodadadi-Jamayran A, Xu W, Zhang R, Banerjee NS, Chang CW, Chow LT, Townes T, Hu K. The Universal 3D3 Antibody of Human PODXL Is Pluripotent Cytotoxic, and Identifies a Residual Population After Extended Differentiation of Pluripotent Stem Cells. Stem cells and development 2016; 25:556-68. 58. Brandenberger R, Wei H, Zhang S, Lei S, Murage J, Fisk GJ, Li Y, Xu C, Fang R, Guegler K, et al. Transcriptome characterization elucidates signaling networks that control human ES cell growth and differentiation. Nature biotechnology 2004; 22:707-16. 59. Cai J, Chen J, Liu Y, Miura T, Luo Y, Loring JF, Freed WJ, Rao MS, Zeng X. Assessing self-renewal and differentiation in human embryonic stem cell lines. Stem cells 2006; 24:516-30. 60. Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, Devon K, Dewar K, Doyle M, FitzHugh W, et al. Initial sequencing and analysis of the human genome. Nature 2001; 409:860-921. 61. Tupler R, Perini G, Green MR. Expressing the human genome. Nature 2001; 409:832-3. 62. Ma H, Ng HM, Teh X, Li H, Lee YH, Chong YM, Loh YH, Collins JJ, Feng B, Yang H, et al. Zfp322a Regulates Mouse ES Cell Pluripotency and Enhances Reprogramming Efficiency. PLOS Genetics 2014; 10:e1004038. 63. Fidalgo M, Huang X, Guallar D, Sanchez-Priego C, Valdes Victor J, Saunders A, Ding J, Wu W-S, Clavel C, Wang J. Zfp281 Coordinates Opposing Functions of Tet1 and Tet2 in Pluripotent States. Cell stem cell 2016; 19:355-69. 64. Yu S, Ma H, Ow JR, Goh Z, Chiang R, Yang H, Loh YH, Wu Q. Zfp553 Is Essential for Maintenance and Acquisition of Pluripotency. Stem Cells and Development 2015; 25:55-67. 65. Cowan CA, Klimanskaya I, McMahon J, Atienza J, Witmyer J, Zucker JP, Wang S, Morton CC, McMahon AP, Powers D, et al. Derivation of embryonic stem-cell lines from human blastocysts. N Engl J Med 2004; 350:1353-6. 66. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM. Embryonic Stem Cell Lines Derived from Human Blastocysts. Science 1998; 282:1145-7. 67. Mandegar MA, Huebsch N, Frolov EB, Shin E, Truong A, Olvera MP, Chan AH, Miyaoka Y, Holmes K, Spencer CI, et al. CRISPR Interference Efficiently Induces Specific and Reversible Gene Silencing in Human iPSCs. Cell stem cell 2016; 18:541-53. 68. Warlich E, Kuehle J, Cantz T, Brugman MH, Maetzig T, Galla M, Filipczyk AA, Halle S, Klump H, Schöler HR, et al. Lentiviral Vector Design and Imaging Approaches to Visualize the Early Stages of Cellular Reprogramming. Molecular Therapy 2011; 19:782-9. 69. Wobus AM, Holzhausen H, Jäkel P, Schöneich J. Characterization of a pluripotent stem cell line derived from a mouse embryo. Experimental Cell Research 1984; 152:212-9. 70. Štefková K, Procházková J, Pacherník J. Alkaline Phosphatase in Stem Cells. Stem Cells International 2015; 2015:628368. 71. Mandegar Mohammad A, Huebsch N, Frolov Ekaterina B, Shin E, Truong A, Olvera Michael P, Chan Amanda H, Miyaoka Y, Holmes K, Spencer CI, et al. CRISPR Interference Efficiently Induces Specific and Reversible Gene Silencing in Human iPSCs. Cell stem cell 2016; 18:541-53. 72. Salmon-Divon M, Dvinge H, Tammoja K, Bertone P. PeakAnalyzer: Genome-wide annotation of chromatin binding and modification loci. BMC Bioinformatics 2010; 11:415. 73. Qin Q, Mei S, Wu Q, Sun H, Li L, Taing L, Chen S, Li F, Liu T, Zang C, et al. ChiLin: a comprehensive ChIP-seq and DNase-seq quality control and analysis pipeline. BMC Bioinformatics 2016; 17:404. 74. Zhou M, Liu Z, Zhao Y, Ding Y, Liu H, Xi Y, Xiong W, Li G, Lu J, Fodstad O, et al. MicroRNA-125b Confers the Resistance of Breast Cancer Cells to Paclitaxel through Suppression of Pro-apoptotic Bcl-2 Antagonist Killer 1 (Bak1) Expression *<sup></sup>. Journal of Biological Chemistry 2010; 285:21496-507. 75. Lin R-C, Yang S-F, Chiou H-L, Hsieh S-C, Wen S-H, Lu K-H, Hsieh Y-H. Licochalcone A-Induced Apoptosis Through the Activation of p38MAPK Pathway Mediated Mitochondrial Pathways of Apoptosis in Human Osteosarcoma Cells In Vitro and In Vivo. Cells 2019; 8:1441. 76. Nakamura A, Nambu T, Ebara S, Hasegawa Y, Toyoshima K, Tsuchiya Y, Tomita D, Fujimoto J, Kurasawa O, Takahara C, et al. Inhibition of GCN2 sensitizes ASNS-low cancer cells to asparaginase by disrupting the amino acid response. Proceedings of the National Academy of Sciences 2018; 115:E7776-E85. 77. Regulation of the Intrinsic Apoptosis Pathway by Reactive Oxygen Species. Antioxidants Redox Signaling 2013; 19:546-58. 78. Tzifi F, Economopoulou C, Gourgiotis D, Ardavanis A, Papageorgiou S, Scorilas A. The Role of BCL2 Family of Apoptosis Regulator Proteins in Acute and Chronic Leukemias. Advances in Hematology 2012; 2012:524308. 79. Kalkavan H, Green DR. MOMP, cell suicide as a BCL-2 family business. Cell Death Differentiation 2018; 25:46-55. 80. Wang YD, Cai N, Wu XL, Cao HZ, Xie LL, Zheng PS. OCT4 promotes tumorigenesis and inhibits apoptosis of cervical cancer cells by miR-125b/BAK1 pathway. Cell Death Disease 2013; 4:e760-e. 81. Li Q, Wu Y, Zhang Y, Sun H, Lu Z, Du K, Fang S, Li W. miR-125b regulates cell progression in chronic myeloid leukemia via targeting BAK1. Am J Transl Res 2016; 8:447-59. 82. Guan H, Xie L, Leithäuser F, Flossbach L, Möller P, Wirth T, Ushmorov A. KLF4 is a tumor suppressor in B-cell non-Hodgkin lymphoma and in classic Hodgkin lymphoma. Blood 2010; 116:1469-78. 83. Alenzi FQ, Alenazi BQ, Ahmad SY, Salem ML, Al-Jabri AA, Wyse RKH. The haemopoietic stem cell: between apoptosis and self renewal. Yale J Biol Med 2009; 82:7-18. 84. Daniele S, Pietrobono D, Costa B, Giustiniano M, La Pietra V, Giacomelli C, La Regina G, Silvestri R, Taliani S, Trincavelli ML, et al. Bax Activation Blocks Self-Renewal and Induces Apoptosis of Human Glioblastoma Stem Cells. ACS Chemical Neuroscience 2018; 9:85-99. 85. Galan-Caridad JM, Harel S, Arenzana TL, Hou ZE, Doetsch FK, Mirny LA, Reizis B. Zfx controls the self-renewal of embryonic and hematopoietic stem cells. Cell 2007; 129:345-57. 86. Zhang H, Zhou J, Xiao P, Lin Y, Gong X, Liu S, Xu Q, Wang M, Ren H, Lu M, et al. PtdIns4P restriction by hydrolase SAC1 decides specific fusion of autophagosomes with lysosomes. Autophagy 2020:1-11. 87. Casas M, Fadó R, Domínguez JL, Roig A, Kaku M, Chohnan S, Solé M, Unzeta M, Miñano-Molina AJ, Rodríguez-Álvarez J, et al. Sensing of nutrients by CPT1C controls SAC1 activity to regulate AMPA receptor trafficking. Journal of Cell Biology 2020; 219. 88. Doñate-Macián P, Enrich-Bengoa J, Dégano IR, Quintana DG, Perálvarez-Marín A. Trafficking of Stretch-Regulated TRPV2 and TRPV4 Channels Inferred Through Interactomics. Biomolecules 2019; 9:791. 89. Bajaj Pahuja K, Wang J, Blagoveshchenskaya A, Lim L, Madhusudhan MS, Mayinger P, Schekman R. Phosphoregulatory protein 14-3-3 facilitates SAC1 transport from the endoplasmic reticulum. Proceedings of the National Academy of Sciences 2015; 112:E3199. 90. Foti M, Audhya A, Emr SD. Sac1 Lipid Phosphatase and Stt4 Phosphatidylinositol 4-Kinase Regulate a Pool of Phosphatidylinositol 4-Phosphate That Functions in the Control of the Actin Cytoskeleton and Vacuole Morphology. Molecular Biology of the Cell 2001; 12:2396-411. 91. Mesmin B, Antonny B. The counterflow transport of sterols and PI4P. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids 2016; 1861:940-51. 92. Godi A, Di Campli A, Konstantakopoulos A, Di Tullio G, Alessi DR, Kular GS, Daniele T, Marra P, Lucocq JM, De Matteis MA. FAPPs control Golgi-to-cell-surface membrane traffic by binding to ARF and PtdIns(4)P. Nature cell biology 2004; 6:393-404. 93. De Matteis MA, Di Campli A, Godi A. The role of the phosphoinositides at the Golgi complex. Biochimica et biophysica acta 2005; 1744:396-405. 94. Blagoveshchenskaya A, Cheong FY, Rohde HM, Glover G, Knödler A, Nicolson T, Boehmelt G, Mayinger P. Integration of Golgi trafficking and growth factor signaling by the lipid phosphatase SAC1. Journal of Cell Biology 2008; 180:803-12. 95. Rohde HM, Cheong FY, Konrad G, Paiha K, Mayinger P, Boehmelt G. The human phosphatidylinositol phosphatase SAC1 interacts with the coatomer I complex. The Journal of biological chemistry 2003; 278:52689-99. 96. Sarkar P, Randall SM, Muddiman DC, Rao BM. Targeted Proteomics of the Secretory Pathway Reveals the Secretome of Mouse Embryonic Fibroblasts and Human Embryonic Stem Cells*. Molecular Cellular Proteomics 2012; 11:1829-39. 97. Liu Y, Boukhelifa M, Tribble E, Bankaitis VA. Functional studies of the mammalian Sac1 phosphoinositide phosphatase. Adv Enzyme Regul 2009; 49:75-86. 98. Hu Q, Lin X, Ding L, Zeng Y, Pang D, Ouyang N, Xiang Y, Yao H. ARHGAP42 promotes cell migration and invasion involving PI3K/Akt signaling pathway in nasopharyngeal carcinoma. Cancer Medicine 2018; 7:3862-74. 99. Hall A. Rho GTPases and the Actin Cytoskeleton. Science 1998; 279:509-14. 100. El Masri R, Delon J. RHO GTPases: from new partners to complex immune syndromes. Nature Reviews Immunology 2021. 101. Bai X, Lenhart KC, Bird KE, Suen AA, Rojas M, Kakoki M, Li F, Smithies O, Mack CP, Taylor JM. The smooth muscle-selective RhoGAP GRAF3 is a critical regulator of vascular tone and hypertension. Nature Communications 2013; 4:2910. 102. Luo W, Janoštiak R, Tolde O, Ryzhova LM, Koudelková L, Dibus M, Brábek J, Hanks SK, Rosel D. ARHGAP42 is activated by Src-mediated tyrosine phosphorylation to promote cell motility. Journal of Cell Science 2017; 130:2382-93. 103. Doherty JT, Lenhart KC, Cameron MV, Mack CP, Conlon FL, Taylor JM. Skeletal Muscle Differentiation and Fusion Are Regulated by the BAR-containing Rho-GTPase-activating Protein (Rho-GAP), GRAF1*. Journal of Biological Chemistry 2011; 286:25903-21. 104. Lyashenko N, Winter M, Migliorini D, Biechele T, Moon RT, Hartmann C. Differential requirement for the dual functions of β-catenin in embryonic stem cell self-renewal and germ layer formation. Nature cell biology 2011; 13:753-61. 105. Murray P, Prewitz M, Hopp I, Wells N, Zhang H, Cooper A, Parry KL, Short R, Antoine DJ, Edgar D. The self-renewal of mouse embryonic stem cells is regulated by cell–substratum adhesion and cell spreading. The International Journal of Biochemistry Cell Biology 2013; 45:2698-705. 106. Benyamin B, Pourcain B, Davis OS, Davies G, Hansell NK, Brion MJ, Kirkpatrick RM, Cents RAM, Franić S, Miller MB, et al. Childhood intelligence is heritable, highly polygenic and associated with FNBP1L. Molecular Psychiatry 2014; 19:253-8. 107. Ho H-YH, Rohatgi R, Lebensohn AM, Le M, Li J, Gygi SP, Kirschner MW. Toca-1 Mediates Cdc42-Dependent Actin Nucleation by Activating the N-WASP-WIP Complex. Cell 2004; 118:203-16. 108. Visa N, Percipalle P. Nuclear functions of actin. Cold Spring Harbor Perspectives in Biology 2010; 2:a000620-a. 109. Ma L, Cantley LC, Janmey PA, Kirschner MW. Corequirement of Specific Phosphoinositides and Small GTP-binding Protein Cdc42 in Inducing Actin Assembly in Xenopus Egg Extracts. Journal of Cell Biology 1998; 140:1125-36. 110. Rohatgi R, Ma L, Miki H, Lopez M, Kirchhausen T, Takenawa T, Kirschner MW. The Interaction between N-WASP and the Arp2/3 Complex Links Cdc42-Dependent Signals to Actin Assembly. Cell 1999; 97:221-31. 111. Misu S, Takebayashi M, Miyamoto K. Nuclear Actin in Development and Transcriptional Reprogramming. Frontiers in Genetics 2017; 8. 112. Miyamoto K, Gurdon JB. Transcriptional regulation and nuclear reprogramming: roles of nuclear actin and actin-binding proteins. Cellular and Molecular Life Sciences 2013; 70:3289-302. 113. Bond S, Lopez-Lloreda C, Gannon PJ, Akay-Espinoza C, Jordan-Sciutto KL. The Integrated Stress Response and Phosphorylated Eukaryotic Initiation Factor 2α in Neurodegeneration. Journal of Neuropathology Experimental Neurology 2020; 79:123-43. 114. Girardin SE, Cuziol C, Philpott DJ, Arnoult D. The eIF2α kinase HRI in innate immunity, proteostasis, and mitochondrial stress. The FEBS Journal 2021; 288:3094-107. 115. Costa-Mattioli M, Walter P. The integrated stress response: From mechanism to disease. Science 2020; 368:eaat5314. 116. Chaveroux C, Lambert-Langlais S, Parry L, Carraro V, Jousse C, Maurin A-C, Bruhat A, Marceau G, Sapin V, Averous J, et al. Identification of GCN2 as new redox regulator for oxidative stress prevention in vivo. Biochemical and Biophysical Research Communications 2011; 415:120-4. 117. Tian R-D, Chen Y-Q, He Y-H, Tang Y-J, Chen G-M, Yang F-W, Li Y, Huang W-G, Chen H, Liu X, et al. Phosphorylation of eIF2α mitigates endoplasmic reticulum stress and hepatocyte necroptosis in acute liver injury. Annals of Hepatology 2020; 19:79-87. 118. Menacho-Marquez M, Perez-Valle J, Ariño J, Gadea J, Murguía JR. Gcn2p regulates a G1/S cell cycle checkpoint in response to DNA damage. Cell cycle (Georgetown, Tex) 2007; 6:2302-5. 119. Castilho BA, Shanmugam R, Silva RC, Ramesh R, Himme BM, Sattlegger E. Keeping the eIF2 alpha kinase Gcn2 in check. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 2014; 1843:1948-68. 120. Xia X, Lei L, Qin W, Wang L, Zhang G, Hu J. GCN2 controls the cellular checkpoint: potential target for regulating inflammation. Cell Death Discovery 2018; 4:20. 121. Iwawaki T, Akai R, Toyoshima T, Takeda N, Ishikawa T-o, Yamamura K-i. Transgenic mouse model for imaging of ATF4 translational activation-related cellular stress responses in vivo. Scientific Reports 2017; 7:46230. 122. Chen M-S, Wang S-F, Hsu C-Y, Yin P-H, Yeh T-S, Lee H-C, Tseng L-M. CHAC1 degradation of glutathione enhances cystine-starvation-induced necroptosis and ferroptosis in human triple negative breast cancer cells via the GCN2-eIF2α-ATF4 pathway. Oncotarget 2017; 8:114588-602. 123. Wang C-K, Yang S-C, Hsu S-C, Chang F-P, Lin Y-T, Chen S-F, Cheng C-L, Hsiao M, Lu FL, Lu J. CHAC2 is essential for self-renewal and glutathione maintenance in human embryonic stem cells. Free Radical Biology and Medicine 2017; 113:439-51. 124. Kato Y, Kunimasa K, Takahashi M, Harada A, Nagasawa I, Osawa M, Sugimoto Y, Tomida A. GZD824 Inhibits GCN2 and Sensitizes Cancer Cells to Amino Acid Starvation Stress. Molecular Pharmacology 2020; 98:669-76. 125. Ye J, Kumanova M, Hart LS, Sloane K, Zhang H, De Panis DN, Bobrovnikova-Marjon E, Diehl JA, Ron D, Koumenis C. The GCN2-ATF4 pathway is critical for tumour cell survival and proliferation in response to nutrient deprivation. The EMBO Journal 2010; 29:2082-96. 126. Miyamoto K, Pasque V, Jullien J, Gurdon JB. Nuclear actin polymerization is required for transcriptional reprogramming of Oct4 by oocytes. Genes development 2011; 25:946-58. 127. Mori T, Nishimura N, Hasegawa D, Kawasaki K, Kosaka Y, Uchide K, Yanai T, Hayakawa A, Takeshima Y, Nishio H, et al. Persistent detection of a novel MLL–SACM1L rearrangement in the absence of leukemia. Leukemia Research 2010; 34:1398-401.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82190-
dc.description.abstract"根據呂仁實驗室陳薇如博士先前的研究,發現PODXL在人類富潛能幹細胞中,可以藉由調控膽固醇細胞的代謝維持細胞自我更新的能力。鋅手指蛋白883 (Zinc finger protein 883, ZNF883) 為PODXL的下游基因。然而,ZNF883是個新穎的基因,從未在細胞中探討過它的功能。本研究揭露ZNF883富含於未分化的人類富潛能幹細胞中,但於分化細胞中會減少表現。抑制ZNF883會導致幹細胞自我更新的能力受損,且造成KLF4 和 OCT4的表現量在人類富潛能幹細胞中下降。在人類誘導性富潛能幹細胞進行逆編程的過程中,ZNF883會在後期增加表現量。另外,我建立ZNF883過度表達的系統,細胞經去氧羥四環素 (doxycycline) 處理後,ZNF883會被誘發增加表現量。ZNF883過量表達,可促進細胞自我更新。為了進一步探討ZNF883的調控路徑,我透過互補核苷酸微陣列 (cDNA microarray)及染色質免疫沉澱-測序 (ChIP-seq),選出五個ZNF883的下游基因BAK1、 SACM1L、ARHGAP42、FNBP1L和 EIF2AK4。當抑制BAK1時,可以挽救在人類誘導性富潛能幹細胞中剔除ZNF883所造成的幹細胞自我更新能力的損傷及細胞凋亡。不論是在有無過度表現ZNF883的細胞中減少SACM1L、ARHGAP42、FNBP1L和 EIF2AK4表達,皆會造成細胞數量及鹼性磷酸酶 (alkaline phosphatase, ALP) 的活性下降。總結以上發現,ZNF883對於維持人類富潛能幹細胞中自我更新的能力是很重要的。而ZNF883如何藉由下游基因去維持幹細胞自我更新的調控機制仍尚待研究。"zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-25T06:33:26Z (GMT). No. of bitstreams: 1
U0001-2507202116481800.pdf: 34793094 bytes, checksum: db696847ab04e60aa5e9e3afd144abfb (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents"口試委員會審定書 i 誌謝 ii 中文摘要 iii Abstract iv Table of contents v List of Figures viii List of Tables ix Chapter 1. Introduction 1 1.1 Pluripotent stem cells (PSCs) 1 1.2 Pluripotent state cells and extended pluripotent stem cells (EPSCs) 1 1.3 hESC core transcriptional regulators in self-renewal 2 1.4 Induced pluripotent stem cells (iPSCs) and somatic cells reprogramming 3 1.5 Podocalyxin (PODXL) and its downstream factor Zinc finger protein 883 (ZNF883) 4 1.6 Aim of the study 6 Chapter 2. Materials and Methods 8 2.1 Cell lines and culture conditions 8 2.1.1 Culture of primed human PSCs 8 2.1.2 Culture of human EPSCs 8 2.1.3 Culture of HEK293T cells and fibroblasts 9 2.2 Formation of Embryoid Bodies (EBs) from hESCs 9 2.3 Lentivirus production and hESC transduction 10 2.4 Generation of inducible CRISPR iPSCs to knockout ZNF883 10 2.4.1 To design sgRNAs and clone into the gRNA expression vector 10 2.4.2 To knockout ZNF883 by inducible CRISPR iPSC line 11 2.5 Somatic cell reprogramming to generate hiPSCs 12 2.6 Generation of ZNF883 inducible overexpressing hPSCs 12 2.7 ZNF883 downstream factor EIF2AK4 inhibitor treatment 13 2.8 Alamar blue assay 13 2.9 Alkaline phosphatase activity and staining assay 13 2.10 RNA extraction and quantitative reverse transcription real-time PCR (qRT-PCR) 14 2.11 DNA extraction and PCR 14 2.12 Western blot analysis 15 2.13 Immunofluorescence staining 15 2.14 Microarray analysis 15 2.15 Statistical analysis 16 Chapter 3. Results 17 3.1 ZNF883 is enriched in undifferentiated hESCs and downregulated after differentiation 17 3.2 Knockdown of ZNF883 by shRNA impairs self-renewal and pluripotency of hESCs 17 3.3 Inducible CRISPRn knockout of ZNF883 lose the function of self-renewal and pluripotency in hiPSCs 18 3.4 Overexpression of ZNF883 moderately increases the self-renewal and delayed cell differentiation in hESCs 19 3.5 Overexpression of ZNF883 in inducible cell lines promotes hESC self-renewal 20 3.6 ZNF883 is crucial for iPSC reprogramming 21 3.7 ZNF883 has DNA binding ability 22 3.8 Identification of ZNF883-related downstream genes by ChIP sequencing and cDNA microarray in hESCs 24 3.9 BAK1 knockdown rescues the self-renewal of hiPSCs under ZNF883 inducible knockout conditions 24 3.10 Using the shRNA and GCN2iB to suppress the expression levels of SACM1L, ARHGAP42, FNBP1L or EIF2AK4 in hESCs 27 3.11 shRNA of SACM1L, ARHGAP42, FNBP1L and GCN2iB block hESC renewal in ZNF883 overexpressing cells 28 Chapter 4. Discussion 30 4.1 ZNF883 plays a crucial role in self-renewal regulation of hPSCs 30 4.2 ZNF883 mediates BAK1 to induce cell apoptosis and balance cellular proliferation 31 4.3 SACM1L regulates secretory pathway to involve in cell proliferation 32 4.4 ARHGAP42 controls cellular development upon Rho-GTPase signaling pathway 33 4.5 FNBP1L promotes actin polymerization to regulate cellular reprogramming 33 4.6 EIF2AK4 maintain self-renewal of hESCs that is similar to promote growth in tumor cells 34 4.7 ZNF883 may have secondary pathway with SACM1L, ARHGAP42 or FNBP1L 35 4.8 Conclusion and future work 36 References 38 List of Figures Figure 1. ZNF883 was highly expressed in human pluripotent stem cells. 49 Figure 2. ZNF883 knockdown impaired the cell numbers and self-renewal in hESCs. 51 Figure 3. hESCs lost the pluripotent state after ZNF883 knockdown. 53 Figure 4. The strategy of ZNF883 knockout design. 55 Figure 5. Inducible knockout of ZNF883 blocked the self-renewal in hiPSCs. 57 Figure 6. ZNF883 overexpression upregulated pluripotency moderately. 58 Figure 7. Generation of inducible ZNF883-overexpressed RUES cell lines. 60 Figure 8. ZNF883 overexpression promoted the self-renewal of RUES cell lines. 61 Figure 9. High ZNF883 expression is reestablished upon iPSC reprogramming. 63 Figure 10. Identification of ZNF883 downstream target genes in hESCs. 65 Figure 11. Knockout ZNF883 by CRISPR/Cas9 inducible system and knockdown BAK1 by shBAK1. 67 Figure 12. ZNF883 inducible knockout lost the self-renewal were rescued by BAK1 knockdown. 69 Figure 13. SACM1L, ARHGAP42 and FNBP1L were knockdown by shRNA lentiviral transduction in hESC RUES2 cell lines. 71 Figure 14. To test the inhibition efficiency of GCN2iB on EIF2AK4 gene in hESC RUES2 cell lines. 73 Figure 15. ZNF883 was upregulated by doxycycline after shRNA transduction in inducible ZNF883-overexpressed RUES cells. 75 Figure 16. SACM1L, ARHGAP42 and FNBP1L downregulated the expression levels and impaired self-renewal by shRNA transduction in inducible ZNF883-overexpressed RUES cells. 77 Figure 17. The inhibition of EIF2AK4 impaired the self-renewal in ZNF883-overexpressed RUES cells. 79 Figure 18. ZNF883 is required for supporting the self-renewal in hPSCs. 80 Appendix Figure 1. ZNF883 was low expressed in differentiated cells. 81 Appendix Figure 2. The CRISPRn construct inserted into iPSC lines. 82 Appendix Figure 3. ZNF883 overexpression delayed stem cells differentiation. 83 Appendix Figure 4. Downregulation of ZNF883 affected iPSC formation efficiency. 84 Appendix Figure 5. ChIP sequence analysis of ZNF883. 85 List of Tables Table 1. shRNA target gene sequences 86 Table 2. The primers for qRT-PCR 87 Table 3. The PCR primers used for genotyping PCR or junction PCR 88 Table 4. The antibodies used for Western blot 89 Table 5. The antibodies used for immunofluorescence staining 90 Table 6. The 19 selected genes list 91 "
dc.language.isoen
dc.subject細胞逆編程序zh_TW
dc.subject鋅指蛋白zh_TW
dc.subject人類胚胎幹細胞zh_TW
dc.subject人類誘導性富潛能幹細胞zh_TW
dc.subject幹細胞自我更新zh_TW
dc.subjectZinc-finger proteinen
dc.subjecthuman induced pluripotent stem cellen
dc.subjectself-renewalen
dc.subjectreprogrammingen
dc.subjecthuman embryonic stem cellen
dc.title探討ZNF883在人類富潛能幹細胞中調控自我更新的功能及機制zh_TW
dc.titleThe functions and mechanisms of ZNF883 in regulating self-renewal human pluripotent stem cellsen
dc.date.schoolyear109-2
dc.description.degree碩士
dc.contributor.coadvisor呂仁(Jean Lu)
dc.contributor.oralexamcommittee林劭品(Hsin-Tsai Liu),(Chih-Yang Tseng)
dc.subject.keyword鋅指蛋白,人類胚胎幹細胞,人類誘導性富潛能幹細胞,幹細胞自我更新,細胞逆編程序,zh_TW
dc.subject.keywordZinc-finger protein,human embryonic stem cell,human induced pluripotent stem cell,self-renewal,reprogramming,en
dc.relation.page91
dc.identifier.doi10.6342/NTU202101723
dc.rights.note未授權
dc.date.accepted2021-08-04
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept分子與細胞生物學研究所zh_TW
dc.date.embargo-lift2026-08-03-
顯示於系所單位:分子與細胞生物學研究所

文件中的檔案:
檔案 大小格式 
U0001-2507202116481800.pdf
  未授權公開取用
33.98 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved