請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82183完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 邱奕鵬(Yih-Peng Chiou) | |
| dc.contributor.author | Chin-Hsien Wu | en |
| dc.contributor.author | 吳晉賢 | zh_TW |
| dc.date.accessioned | 2022-11-25T06:33:20Z | - |
| dc.date.copyright | 2021-08-18 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-08-02 | |
| dc.identifier.citation | 參考文獻 [1] J. B. Pendry, A. Holden, W. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Physical Review Letters, vol. 76, no. 25, pp. 4773, 1996. [2] J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Transactions on Microwave Theory and Techniques, vol. 47, no. 11, pp. 2075-2084, 1999. [3] D. R. Smith, W. Padilla, D. C. Vier, S. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Physical Review Letters, vol. 84, pp. 4184-7, 05/01, 2000. [4] R. A. Shelby, D. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science, vol. 292, pp. 77-79, 2001. [5] R. A. Shelby, D. R. Smith, S. Nemat-Nasser, and S. Schultz, “Microwave transmission through a two-dimensional, isotropic, left-handed metamaterial,” Applied Physics Letters, vol. 78, pp. 489-491, 2001. [6] F. Martin, F. Falcone, J. Bonache, R. Marques, and M. Sorolla, “Miniaturized coplanar waveguide stop band filters based on multiple tuned split ring resonators,” IEEE Microwave and Wireless Components Letters, vol. 13, no. 12, pp. 511-513, 2003. [7] J. D. Baena, J. Bonache, F. Martin, R. M. Sillero, F. Falcone, T. Lopetegi, M. A. G. Laso, J. Garcia-Garcia, I. Gil, M. F. Portillo, and M. Sorolla, “Equivalent-circuit models for split-ring resonators and complementary split-ring resonators coupled to planar transmission lines,” IEEE Transactions on Microwave Theory and Techniques, vol. 53, no. 4, pp. 1451-1461, 2005. [8] Y. Shang, H. Yu, D. Cai, J. Ren, and K. S. Yeo, “Design of high-Q Millimeter-Wave oscillator by differential transmission line loaded with metamaterial resonator in 65-nm CMOS,” IEEE Transactions on Microwave Theory and Techniques, vol. 61, pp. 1892-1902, 2013. [9] F. Martín, J. Bonache, F. Falcone, M. Sorolla Ayza, and R. Marques, “Split ring resonator-based left-handed coplanar waveguide,” Applied Physics Letters, vol. 83, pp. 4652-4654, 2003. [10] F. Aznar, M. Gil, G. Siso, J. Bonache, and F. Martin, “SRR- and CSRR-based metamaterial transmission lines: modeling and comparison,” 2009 IEEE MTT-S International Microwave Workshop Series on Signal integrity and High-Speed Interconnects, pp. 49-52, Guadalajara, Mexico, 2009. [11] Z. Fu-Li, Z. Qian, L. Ya-Hong, L. Chun-Rong, and Z. Xiao-Peng, “Behaviour of hexagon split ring resonators and left-handed metamaterials,” Chinese Physics Letters, vol. 21, pp. 1330, 2004. [12] C. Saha, and J. Y. Siddiqui, “A comparative analyis for split ring resonators of different geometrical shapes,” Proc. IEEE Applied Electromagnetics Conference, pp. 1-4, 2011. [13] J. Baena, R. Marques, F. Medina, and J. Martel, “Artificial magnetic metamaterial design by using spiral resonators,” Physical Review B, vol. 20, 2004. [14] F. Bilotti, A. Toscano, and L. Vegni, “Design of spiral and multiple split-ring resonators for the realization of miniaturized metamaterial samples,” IEEE Transactions on Antennas and Propagation, vol. 55, no. 8, pp. 2258-2267, 2007. [15] M. K. T. Al-Nuaimi, and W. Whittow, “Compact microstrip band stop filter using SRR and CSSR: Design, simulation and results,” The Fourth European Conference on Antennas and Propagation, pp. 1-5, 2010. [16] T. Xie, G.-R. Kim, and Y.-K. Choi, “A study on the novel rectangular split ring notch resonators,” Journal of Information and Communication Convergence Engineering, vol. 8, 2010. [17] Y. Tseng, H. Ting, and T. Wu, “A quadruplet-resonator-based ferrite-free choke for suppressing noise currents on cable shielding,” IEEE Transactions on Microwave Theory and Techniques, vol. 64, no. 1, pp. 86-95, 2016.. [18] V. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and μ,” Physics-Uspekhi, vol. 10, pp. 509-514, 1968. [19] J. B. Pendry, “Negative refraction makes a perfect lens,” Physical Review Letters, vol. 85, pp. 3966-3969, 2000. [20] D. Schurig, J. J. Mock, B. J. Justice, S. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science (New York, N.Y.), vol. 314, pp. 977-980, 2006. [21] N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. Padilla, “Perfect metamaterial absorber,” Physical Review Letters, vol. 100, pp. 207402-1-207402-4, 2008. [22] B. Ozbey, and O. Aktas, “Continuously tunable terahertz metamaterial employing magnetically actuated cantilevers,” Optics Express, vol. 19, no. 7, pp. 5741-5752, 2011. [23] S. A. Ramakrishna, “Physics of negative refractive index materials,” Report on Progress in Physics, vol. 68, pp. 449-521, 2005. [24] O. Sydoruk, E. Tatartschuk, E. Shamonina, and L. Solymar, “Analytical formulation for the resonant frequency of split rings,” Journal of Applied Physics, vol. 105, pp. 014903-014903, 2009. [25] E. B. Rosa, and F. W. Grover, Formulas and Tables for The Calculation of Mutual and Self-Inductance: US Government Printing Office, 1948. [26] A. Vallecchi, E. Shamonina, and C. Stevens, “Analytical model of the fundamental mode of 3D square split ring resonators,” Journal of Applied Physics, vol. 125, pp. 014901, 2019. [27] J. Allen, and S. Segre, “The electric field in single-turn and multi-sector coils,” Il Nuovo Cimento (1955-1965), vol. 21, no. 6, pp. 980-987, 1961. [28] R. Mustafa, “Ring resonator with single gap for measurement of dielectric constants of materials,” Univ. Gavle, 2013. [29] R. Marques, and F. Medina, “Role of bianisotropy in negative permeability and left-handed metamaterials,” Physical Review B, vol. 65, 2002. [30] R. Marques, F. Mesa, J. Martel, and F. Medina, “Comparative analysis of edge- and broadside- coupled split ring resonators for metamaterial design - theory and experiments,” IEEE Transactions on Antennas and Propagation, vol. 51, no. 10, pp. 2572-2581, 2003. [31] C. Saha, J. Y. Siddiqui, and Y. M. M. Antar, “Square split ring resonator backed coplanar waveguide for filter applications,” General Assembly and Scientific Symposium,2011 XXXth URSI, pp. 1-4, 2011. [32] F. E. Terman, Radio engineer's handbook, McGraw-Hill Book Company, Inc., New York, 1943. [33] C. Saha, and J. Siddiqui, “Versatile CAD formulation for estimation of the resonant frequency and magnetic polarizability of circular split ring resonators,” International Journal of RF and Microwave Computer‐Aided Engineering, vol. 21, pp. 432-438, 2011. [34] I. J. Bahl, and P. Bhartia, Microwave Solid State Circuit Design, 2nd ed. Hoboken, NJ: Wiley, 2003. [35] F. Bilotti, A. Toscano, L. Vegni, K. Aydin, K. B. Alici, and E. Ozbay, “Equivalent-circuit models for the design of metamaterials based on artificial magnetic inclusions,” IEEE Transactions on Microwave Theory and Techniques, vol. 55, no. 12, pp. 2865-2873, 2007. [36] Y. Kane, “Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media,” IEEE Transactions on Antennas and Propagation, vol. 14, no. 3, pp. 302-307, 1966. [37] O. C. Zienkiewicz, R. L. Taylor, P. Nithiarasu, and J. Zhu, The Finite Element Method, 3rd ed. London: McGraw-hill, 1977. [38] T. Hayajneh, G. Almashaqbeh, S. Ullah, and A. Vasilakos, “A survey of wireless technologies coexistence in WBAN: Analysis and open research issues,” Wireless Networks, vol. 20, pp. 2165-2199, 2014. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82183 | - |
| dc.description.abstract | 裂環共振器因為具有負折射率材料的特性,是一種常被使用超穎材料的元件,其作用原理是透過外加磁場產生電磁感應激發出共振模態,此外,裂環共振器結構又可以被視為一個 LC 電路,根據不同目的設計出相對應的共振頻率;裂環共振器從二十世紀末發展至今已相當成熟,從微波、兆赫波到紅外線都有所應用,除了常見的濾波器、吸收器和相位調制器之外,近年來討論度很高的隱形斗篷也可以透過 裂環共振器的陣列結構來達成。 本研究利用數值模擬方法設計矩形裂環共振器,成功設計一組針對 Wi-Fi2.4GHz 頻段之串接三個方形雙裂環共振器,與使用一個矩形單裂環共振器相比,基板尺寸減少 10%,而且-10 dB、-15 dB 頻寬分別變成兩倍及三倍。接著,我們將作用於 Wi-Fi 2.4 GHz 及 Wi-Fi 5 GHz 頻段的方形雙裂環共振器串接在一起,由於彼此間的耦合作用會增加頻寬,僅使用兩大兩小的結構就足以涵蓋這兩個頻段,於-10 dB、-15 dB 頻端都有不錯的表現。根據模擬結果,我們成功設計出一組同時滿足 Wi-Fi 2.4 GHz 及 Wi-Fi 5 GHz 頻段的多頻濾波器。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-25T06:33:20Z (GMT). No. of bitstreams: 1 U0001-3007202110271600.pdf: 6471355 bytes, checksum: e9fc1825bf13c122aa20cb33f55960ce (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | "口試委員會審定書........................................................................................................... i 誌謝.................................................................................................................................. ii 中文摘要......................................................................................................................... iii ABSTRACT .................................................................................................................... iv 目錄...................................................................................................................................v 圖目錄............................................................................................................................ vii 表目錄...............................................................................................................................x 第一章 緒論............................................................................................................1 1.1 文獻回顧......................................................................................................1 1.2 研究動機....................................................................................................18 1.3 論文架構....................................................................................................19 第二章 基本原理與研究方法 .............................................................................20 2.1 超穎材料(Metamaterial)............................................................................20 2.2 裂環共振器................................................................................................21 2.2.1 單裂環共振器(Circular S-SRR).........................................................21 2.2.2 矩形雙裂環共振器(Square D-SRR) ..................................................23 2.2.3 圓形雙裂環共振器(Circular D-SRR) ................................................28 2.2.4 六邊形雙裂環共振器(Hexagonal D-SRR)........................................29 2.2.5 螺旋共振器.........................................................................................30 2.3 電磁模擬軟體............................................................................................32 第三章 裂環共振器設計與模擬 .........................................................................34 3.1 設計流程....................................................................................................34 3.2 矩形單裂環共振器(Rectangular S-SRR)..................................................36 3.2.1 單裂環共振器邊長2 < 2 ..............................................................39 3.2.2 單裂環共振器邊長2 = 2 ..............................................................40 3.2.3 單裂環共振器邊長2 > 2 ..............................................................41 3.2.4 結果討論.............................................................................................43 3.3 裂環共振器之縮小化................................................................................45 vi 3.3.1 雙裂環共振器(D-SRR) ......................................................................45 3.3.2 三裂環共振器(Triple SRR, T-SRR)...................................................51 3.3.3 結果討論.............................................................................................55 第四章 串接雙裂環共振器 .................................................................................57 4.1 串接雙裂環共振器(Wi-Fi 2.4 GHz) .........................................................57 4.1.1 串接兩個雙裂環共振器(Wi-Fi 2.4 GHz) ..........................................57 4.1.2 串接三個雙裂環共振器(Wi-Fi 2.4 GHz) ..........................................61 4.1.3 結果討論.............................................................................................63 4.2 串接雙裂環共振器(Wi-Fi 5 GHz) ............................................................64 4.2.1 雙裂環共振器(Wi-Fi 5 GHz) .............................................................65 4.2.2 串接兩個雙裂環共振器(Wi-Fi 5 GHz) .............................................67 4.2.3 串接三個雙裂環共振器(Wi-Fi 5 GHz) .............................................68 4.2.4 串接四個雙裂環共振器(Wi-Fi 5 GHz) .............................................70 4.2.5 結果討論.............................................................................................71 4.3 多頻之串接雙裂環共振器(Wi-Fi 2.4 GHz 5 GHz)..............................73 4.3.1 串接兩個雙裂環共振器.....................................................................73 4.3.2 串接三個雙裂環共振器.....................................................................79 4.3.3 串接四個雙裂環共振器.....................................................................84 4.3.4 結果討論.............................................................................................87 第五章 結論..........................................................................................................89 參考文獻...........................................................................................90" | |
| dc.language.iso | zh-TW | |
| dc.subject | 矩形單裂環共振器 | zh_TW |
| dc.subject | 電磁干擾 | zh_TW |
| dc.subject | 超穎材料 | zh_TW |
| dc.subject | 方形雙裂環共振器 | zh_TW |
| dc.subject | Electromagnetic interference(EMI) | en |
| dc.subject | Double square split ring resonator(D-SRR) | en |
| dc.subject | Single split ring resonator(S-SRR) | en |
| dc.subject | Metamaterial | en |
| dc.title | 利用雙裂環共振器以有效抑制電纜線上之Wi-Fi雜訊 | zh_TW |
| dc.title | Efficient Suppression of Wi-Fi Noise on Cable with Double-Split-Ring Resonators | en |
| dc.date.schoolyear | 109-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 賴志賢(Hsin-Tsai Liu),蕭惠心(Chih-Yang Tseng) | |
| dc.subject.keyword | 電磁干擾,超穎材料,矩形單裂環共振器,方形雙裂環共振器, | zh_TW |
| dc.subject.keyword | Electromagnetic interference(EMI),Metamaterial,Single split ring resonator(S-SRR),Double square split ring resonator(D-SRR), | en |
| dc.relation.page | 92 | |
| dc.identifier.doi | 10.6342/NTU202101922 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2021-08-02 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| dc.date.embargo-lift | 2026-08-02 | - |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-3007202110271600.pdf 未授權公開取用 | 6.32 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
