Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物環境系統工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82181
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor范致豪(Chihhao Fan)
dc.contributor.authorDai-Ming Lien
dc.contributor.author李岱洺zh_TW
dc.date.accessioned2022-11-25T06:33:19Z-
dc.date.copyright2022-02-18
dc.date.issued2022
dc.date.submitted2022-02-08
dc.identifier.citationAit-Mouheb, N., Bahri, A., Thayer, B. B., Benyahia, B., Bourrié, G., Cherki, B., Condom, N., Declercq, R., Gunes, A., Héran, M., Kitir, N., Molle, B., Patureau, D., Pollice, A., Rapaport, A., Renault, P., Riahi, K., Romagny, B., Sari, T., . . . Harmand, J. (2018). The reuse of reclaimed water for irrigation around the Mediterranean Rim: a step towards a more virtuous cycle? Regional Environmental Change, 18(3), 693-705. https://doi.org/10.1007/s10113-018-1292-z Allaoui, M., Schmitz, T., Campbell, D., de la Porte, A. (2015). Good practices for regulating wastewater treatment: legislation, policies and standards. Programme UNE, editor. Allemand, R. (2010). La gestion durable des ressources en eau en milieu agricole: réflexions générales et applications dans le bassin versant de la Moselle. La gestion durable des ressources en eau en milieu agricole, 1-177. Alyaseri, I., Zhou, J. (2017). Towards better environmental performance of wastewater sludge treatment using endpoint approach in LCA methodology. Heliyon, 3(3), e00268. https://doi.org/https://doi.org/10.1016/j.heliyon.2017.e00268 Alyaseri, I., Zhou, J. (2019). Handling uncertainties inherited in life cycle inventory and life cycle impact assessment method for improved life cycle assessment of wastewater sludge treatment. Heliyon, 5(11), e02793. https://doi.org/10.1016/j.heliyon.2019.e02793 Bare, J. (2011). TRACI 2.0: the tool for the reduction and assessment of chemical and other environmental impacts 2.0. Clean Technologies and Environmental Policy, 13(5), 687-696. Bare, J. C. (2002). TRACI: The tool for the reduction and assessment of chemical and other environmental impacts. Journal of industrial ecology, 6(3‐4), 49-78. Boulay, A.-M., Lathuillière, M. J. (2017). Water use LCA—Methodology. Bouwman, A., Beusen, A., Billen, G. (2009). Human alteration of the global nitrogen and phosphorus soil balances for the period 1970–2050. Global Biogeochemical Cycles - GLOBAL BIOGEOCHEM CYCLE, 23. https://doi.org/10.1029/2009GB003576 Canaj, K., Mehmeti, A., Morrone, D., Toma, P., Todorović, M. (2021). Life cycle-based evaluation of environmental impacts and external costs of treated wastewater reuse for irrigation: A case study in southern Italy. Journal of Cleaner Production, 293, 126142. https://doi.org/https://doi.org/10.1016/j.jclepro.2021.126142 Cartes, J., Neumann, P., Hospido, A., Vidal, G. (2018). Life cycle assessment of management alternatives for sludge from sewage treatment plants in Chile: does advanced anaerobic digestion improve environmental performance compared to current practices? Journal of Material Cycles and Waste Management, 20(3), 1530-1540. CDPH. (2014). Regulations Related to Recycled Water—June 18, 2014 (revisions effective on 6/18/14). In: CDPH Sacramento, CA. Cenian, K. (2019). Calculate the costs of pollution in SimaPro with Environmental Prices. Commission, E.-E. (2010). International reference life cycle data system (ILCD) handbook e general guide for life cycle assessment e detailed guidance. Institute for Environment and sustainability. Corominas, L., Byrne, D. M., Guest, J. S., Hospido, A., Roux, P., Shaw, A., Short, M. D. (2020). The application of life cycle assessment (LCA) to wastewater treatment: A best practice guide and critical review. Water Res, 184, 116058. https://doi.org/10.1016/j.watres.2020.116058 Corominas, L., Foley, J., Guest, J. S., Hospido, A., Larsen, H. F., Morera, S., Shaw, A. (2013). Life cycle assessment applied to wastewater treatment: State of the art. Water Research, 47(15), 5480-5492. https://doi.org/https://doi.org/10.1016/j.watres.2013.06.049 Deviatkin, I., Lyu, L., Chen, S., Havukainen, J., Wang, F., Horttanainen, M., Mänttäri, M. (2019). Technical implications and global warming potential of recovering nitrogen released during continuous thermal drying of sewage sludge. Waste Management, 90, 132-140. https://doi.org/https://doi.org/10.1016/j.wasman.2019.04.031 Ding, A., Zhang, R., Ngo, H. H., He, X., Ma, J., Nan, J., Li, G. (2021). Life cycle assessment of sewage sludge treatment and disposal based on nutrient and energy recovery: A review. Science of The Total Environment, 769, 144451. https://doi.org/https://doi.org/10.1016/j.scitotenv.2020.144451 Dong, J., Jeswani, H. K., Nzihou, A., Azapagic, A. (2020). The environmental cost of recovering energy from municipal solid waste. Applied Energy, 267, 114792. https://doi.org/https://doi.org/10.1016/j.apenergy.2020.114792 FAO. (2016). AQUASTAT website. Food and Agriculture Organization of the United Nations (FAO). Fijoł, N., Aguilar-Sánchez, A., Mathew, A. P. (2022). 3D-printable biopolymer-based materials for water treatment: A review. Chemical Engineering Journal, 430, 132964. https://doi.org/https://doi.org/10.1016/j.cej.2021.132964 Foteinis, S., Borthwick, A. G., Frontistis, Z., Mantzavinos, D., Chatzisymeon, E. (2018). Environmental sustainability of light-driven processes for wastewater treatment applications. Journal of Cleaner Production, 182, 8-15. Goedkoop, M., Heijungs, R., Huijbregts, M., Schryver, A., Struijs, J., Zelm, R. (2008). ReCiPE 2008: A life cycle impact assessment method which comprises harmonised category indicators at the midpoint and the endpoint level. Grobelak, A., Grosser, A., Kacprzak, M., Kamizela, T. (2019). Sewage sludge processing and management in small and medium-sized municipal wastewater treatment plant-new technical solution. Journal of Environmental Management, 234, 90-96. https://doi.org/https://doi.org/10.1016/j.jenvman.2018.12.111 Guclu, S., Kizildag, N., Dizman, B., Unal, S. (2022). Solvent-based recovery of high purity polysulfone and polyester from end-of-life reverse osmosis membranes. Sustainable Materials and Technologies, 31, e00358. https://doi.org/https://doi.org/10.1016/j.susmat.2021.e00358 Hong, J., Hong, J., Otaki, M., Jolliet, O. (2009). Environmental and economic life cycle assessment for sewage sludge treatment processes in Japan. Waste Manag, 29(2), 696-703. https://doi.org/10.1016/j.wasman.2008.03.026 Hong, J., Hong, J., Otaki, M., Jolliet, O. (2009). Environmental and economic life cycle assessment for sewage sludge treatment processes in Japan. Waste Management, 29(2), 696-703. https://doi.org/https://doi.org/10.1016/j.wasman.2008.03.026 Hospido, A., Moreira, M., Martin, M., Rigola, M., Feijoo, G. (2005). Environmental Evaluation of Different Treatment Processes for Sludge from Urban Wastewater Treatments: Anaerobic Digestion Versus Thermal Processes. The International Journal of Life Cycle Assessment, 10, 336-345. https://doi.org/10.1065/lca2005.05.210 Hsien, C., Choong Low, J. S., Chan Fuchen, S., Han, T. W. (2019). Life cycle assessment of water supply in Singapore — A water-scarce urban city with multiple water sources. Resources, Conservation and Recycling, 151, 104476. https://doi.org/https://doi.org/10.1016/j.resconrec.2019.104476 Huijbregts, M. A. (1998). Application of uncertainty and variability in LCA. The International Journal of Life Cycle Assessment, 3(5), 273-280. Huijbregts, M. A., Steinmann, Z. J., Elshout, P. M., Stam, G., Verones, F., Vieira, M., Zijp, M., Hollander, A., Van Zelm, R. (2017). ReCiPe2016: a harmonised life cycle impact assessment method at midpoint and endpoint level. The International Journal of Life Cycle Assessment, 22(2), 138-147. Kraus, F. S., W.; Remy, C.; Rustler, M.; Jubany i Guell, I.; Espi, J. J.; Clarens, F. (2016). Deliverable D3.2: Show case of the environmental benefits and risk assessment of reuse schemes. (Kompetenzzentrum Wasser Berlin gGmbH) Larsen, J. D., ten Hoeve, M., Nielsen, S., Scheutz, C. (2018). Life cycle assessment comparing the treatment of surplus activated sludge in a sludge treatment reed bed system with mechanical treatment on centrifuge. Journal of Cleaner Production, 185, 148-156. Lazarova, V. (2012). Water-Energy Interactions in Water Reuse. Water Intelligence Online, 11. https://doi.org/10.2166/9781780400662 Leclerc, A., Sala, S., Secchi, M., Laurent, A. (2019). Building national emission inventories of toxic pollutants in Europe. Environment International, 130, 104785. https://doi.org/https://doi.org/10.1016/j.envint.2019.03.077 Leonel, L. P., Tonetti, A. L. (2021). Wastewater reuse for crop irrigation: Crop yield, soil and human health implications based on giardiasis epidemiology. Science of The Total Environment, 775, 145833. https://doi.org/https://doi.org/10.1016/j.scitotenv.2021.145833 Liang, Q., Gao, R., Xi, B., Zhang, Y., Zhang, H. (2014). Long-term effects of irrigation using water from the river receiving treated industrial wastewater on soil organic carbon fractions and enzyme activities. Agricultural Water Management, 135, 100-108. https://doi.org/https://doi.org/10.1016/j.agwat.2014.01.003 Lundin, M., Bengtsson, M., Molander, S. (2000). Life cycle assessment of wastewater systems: influence of system boundaries and scale on calculated environmental loads. Environmental science technology, 34(1), 180-186. Lyu, S., Chen, W., Zhang, W., Fan, Y., Jiao, W. (2016). Wastewater reclamation and reuse in China: opportunities and challenges. Journal of Environmental Sciences, 39, 86-96. MARINO, Y. M. R. Y., ESP, D. (2010). Guía para la Aplicación del RD 1620/2007 por el que se establece el Régimen Jurídico de la Reutilización de las Aguas Depuradas. Mark Goedkoop, M. O., Jorrit Leijting, Tommie Ponsioen, Ellen Meijer. (2013). Introduction to LCA with SimaPro. Mayer, B. K., Baker, L. A., Boyer, T. H., Drechsel, P., Gifford, M., Hanjra, M. A., Parameswaran, P., Stoltzfus, J., Westerhoff, P., Rittmann, B. E. (2016). Total value of phosphorus recovery. Environmental science technology, 50(13), 6606-6620. Mekonnen, M. M., Hoekstra, A. Y. (2016). Four billion people facing severe water scarcity. Science Advances, 2(2), e1500323. https://doi.org/doi:10.1126/sciadv.1500323 Morera, S., Corominas, L., Rigola, M., Poch, M., Comas, J. (2017). Using a detailed inventory of a large wastewater treatment plant to estimate the relative importance of construction to the overall environmental impacts. Water Research, 122. https://doi.org/10.1016/j.watres.2017.05.069 Moretti, M., Van Passel, S., Camposeo, S., Pedrero, F., Dogot, T., Lebailly, P., Vivaldi, G. (2019). Modelling environmental impacts of treated municipal wastewater reuse for tree crops irrigation in the Mediterranean coastal region. Science of The Total Environment, 660, 1513-1521. Munoz, I., Rodriguez, A., Rosal, R., Fernandez-Alba, A. R. (2009). Life cycle assessment of urban wastewater reuse with ozonation as tertiary treatment: a focus on toxicity-related impacts. Science of The Total Environment, 407(4), 1245-1256. Murray, A., Horvath, A., Nelson, K. L. (2008). Hybrid life-cycle environmental and cost inventory of sewage sludge treatment and end-use scenarios: a case study from China. Environ Sci Technol, 42(9), 3163-3169. https://doi.org/10.1021/es702256w Navarro, T. (2018). Water reuse and desalination in Spain–challenges and opportunities. Journal of Water Reuse and Desalination, 8(2), 153-168. Nrmmc, E. (2006). Australian guidelines for water recycling: managing health and environmental risks (Phase 1). Natural Resource Management Ministerial Committee, Environment Protection and Heritage Council, and the Australian Health Ministers’ Conference, Australia, Olivier, J. G., Schure, K., Peters, J. (2017). Trends in global CO2 and total greenhouse gas emissions. PBL Netherlands Environmental Assessment Agency, 5. Opher, T., Friedler, E. (2016). Comparative LCA of decentralized wastewater treatment alternatives for non-potable urban reuse. Journal of Environmental Management, 182, 464-476. https://doi.org/https://doi.org/10.1016/j.jenvman.2016.07.080 Ortiz, M., Raluy, R. G., Serra, L. (2007). Life cycle assessment of water treatment technologies: wastewater and water-reuse in a small town. Desalination, 204(1), 121-131. https://doi.org/https://doi.org/10.1016/j.desal.2006.04.026 Padilla-Rivera, A., Güereca, L. P. (2019). A proposal metric for sustainability evaluations of wastewater treatment systems (SEWATS). Ecological indicators, 103, 22-33. Paranychianakis, N. V., Salgot, M., Snyder, S. A., Angelakis, A. N. (2015). Water Reuse in EU States: Necessity for Uniform Criteria to Mitigate Human and Environmental Risks. Critical Reviews in Environmental Science and Technology, 45(13), 1409-1468. https://doi.org/10.1080/10643389.2014.955629 Pintilie, L., Torres Costa, C., Teodosiu, C., Castells, F. (2016). Urban wastewater reclamation for industrial reuse: An LCA case study. Journal of Cleaner Production, 139, 1-14. https://doi.org/10.1016/j.jclepro.2016.07.209 Pomianowski, M. Z., Johra, H., Marszal-Pomianowska, A., Zhang, C. (2020). Sustainable and energy-efficient domestic hot water systems: A review. Renewable and Sustainable Energy Reviews, 128, 109900. https://doi.org/https://doi.org/10.1016/j.rser.2020.109900 Ponsioen, T., Nuhoff-Isakhanyan, G., Vellinga, T., Baltussen, W., Boone, K., Woltjer, G. (2020). Monetisation of sustainability impacts of food production and consumption. Wageningen Economic Research. PRé. (2013). SimaPro Database Manual Methods library. Raluy, R. G., Dias, A. C. (2021). Domestic hot water systems: Environmental performance from a life cycle assessment perspective. Sustainable Production and Consumption, 26, 1011-1020. https://doi.org/https://doi.org/10.1016/j.spc.2021.01.005 Remy, C., Seis, W., Miehe, U., Orsoni, J., Bortoli, J. (2019). Risk management and environmental benefits of a prospective system for indirect potable reuse of municipal wastewater in France. Water Supply, 19(5), 1533-1540. Sander de Bruyn, M. B., Lonneke de Graaff, Ellen Schep, Arno Schroten, Robert Vergeer, and Saliha Ahdour. (2018). Environmental Prices Handbook. Santana, M. V., Cornejo, P. K., Rodríguez-Roda, I., Buttiglieri, G., Corominas, L. (2019). Holistic life cycle assessment of water reuse in a tourist-based community. Journal of Cleaner Production, 233, 743-752. Seis, W. a. R., C. and Ackermann, R. (2013). Appropriate and User Friendly Methodologies for Risk Assess- Ment , Life Cycle Assessment , and Water Footprinting. Shoushtarian, F., Negahban-Azar, M. (2020). Worldwide Regulations and Guidelines for Agricultural Water Reuse: A Critical Review. Water, 12(4), 971. https://www.mdpi.com/2073-4441/12/4/971 Singh, A., Kamble, S. J., Sawant, M., Chakravarthy, Y., Kazmi, A., Aymerich, E., Starkl, M., Ghangrekar, M., Philip, L. (2018). Technical, hygiene, economic, and life cycle assessment of full-scale moving bed biofilm reactors for wastewater treatment in India. Environmental Science and Pollution Research, 25(3), 2552-2569. Sleeswijk, A. W., van Oers, L. F. C. M., Guinée, J. B., Struijs, J., Huijbregts, M. A. J. (2008). Normalisation in product life cycle assessment: An LCA of the global and European economic systems in the year 2000. Science of The Total Environment, 390(1), 227-240. https://doi.org/https://doi.org/10.1016/j.scitotenv.2007.09.040 Tal, A. (2016). Rethinking the sustainability of Israel's irrigation practices in the Drylands. Water Research, 90, 387-394. https://doi.org/https://doi.org/10.1016/j.watres.2015.12.016 Tangsubkul, N., Parameshwaran, K., Lundie, S., Fane, A. G., Waite, T. (2006). Environmental life cycle assessment of the microfiltration process. Journal of Membrane Science, 284, 214-226. https://doi.org/10.1016/j.memsci.2006.07.047 USEPA, S. (2012). Guidelines for water reuse. Special Restricted Crop Area in Mendoza, Argentina. WHO, A. (2006). compendium of standards for wastewater reuse in the Eastern Mediterranean Region. Regional Office for the Eastern Mediterranean, Cairo, Egypt. Yi, L., Jiao, W., Chen, X., Chen, W. (2011). An overview of reclaimed water reuse in China. Journal of Environmental Sciences, 23(10), 1585-1593. https://doi.org/https://doi.org/10.1016/S1001-0742(10)60627-4 Yoshida, H., Christensen, T. H., Scheutz, C. (2013). Life cycle assessment of sewage sludge management: a review. Waste Management Research, 31(11), 1083-1101. Zang, Y., Li, Y., Wang, C., Zhang, W., Xiong, W. (2015). Towards more accurate life cycle assessment of biological wastewater treatment plants: a review. Journal of Cleaner Production, 107, 676-692. Zanni, S., Cipolla, S., Fusco, E., Lenci, A., Altobelli, M., Currado, A., Maglionico, M., Bonoli, A. (2018). Modeling for sustainability: Life cycle assessment application to evaluate environmental performance of water recycling solutions at the dwelling level. Sustainable Production and Consumption, 17. https://doi.org/10.1016/j.spc.2018.09.002
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82181-
dc.description.abstract由於近年來全球用水需求不斷增加,水資源短缺已成為永續發展的嚴重威脅。為加強供水的穩定性,開發除自然水體以外的水資源,是亟待解決的問題。本研究的目的是量化工業廢水處理廠(WWTP)的系統再生水對環境影響的相對貢獻,將工業區內綜合污水處理廠二級放流水回收,經過高級處理後,分別利用於農業、工業和民生等使用環境。 為了估計其影響性,透過生命週期評估方法(Life Cycle Assessment),以本地定期監測數據、法規標準及相關文獻的蒐集作為盤查清單,並將關聯參數轉換為功能單位(1m3 treated wastewater)。本研究中,以生命週期評估軟體SimaPro進行操作,並選用ReCiPe作為分析影響的評估方法。情境假設有三種再利用方案,農用方案為:將處理後放流水作為灌溉水源,污泥則回收,經過濃縮、乾燥及堆肥後作為肥料再利用;工業利用方案:以再生水作為製程用水使用,並將污泥焚燒作為能源的補充來源,剩餘灰燼經掩埋處理;民生利用方面:則將目標水源水質設定為符合自來水用水標準,污泥處理同前述工業再利用方案,經濃縮、脫水乾燥和焚化後,熱能為燃料的補充再利用,灰燼進行掩埋。其中,以工業區綜合污水處理廠的二級放流水,為模擬比較的基礎方案。 計算結果分別從以對環境形成問題的中點指標和對環境造成損害的終端指標進行分析,中點類別的評估結果揭示了用水量減少、營養物質的流動,以及高級處理對能源額外的消耗,彼此之間是會互相制衡、影響的。另一方面,從終端類別結果發現,經過後續高級處理的廢水再利用方案,在生態系統多樣性和資源可獲得性這兩項指標有正面效益,係因處理過程帶來了額外的資源需求,從而對人體毒性、環境毒性和土地利用類別,產生了部分的負面影響。 在評估指標中的大多數環境影響類別,主要是來自能源消耗、物質元素的流動和水的消耗。從單一環境衝擊值計算結果表明,雖二級放流水的再利用對整體環境有許多正面效果,能夠降低環境衝擊,考量人體健康、生態系統多樣性和資源可獲得性的重要性,經過權重計算,農用方案的單一衝擊值為5.53E-03;工業再利用方案為4.38E-01,民生再利用方案則為-6.91E-05,與二級放流水直接排放至海洋,沒有再利用的方案相比,農業再利用核工業再利用較其4.03E-04來的高一些,而民生再利用則可以相對降低117%的環境衝擊值。 以能源消耗±20%為範圍的敏感度分析,則發現關於燃料資源、氣候變遷與臭氧相關參數有較大的變動率,是因為這些項目的參數較為短缺,其資料庫亦較難量化。本研究得證明經過高級處理的二級放流水,在水資源利用與永續發展方面,有其正面的影響性,即便有部分負面衝擊,但得從各項指標考量再生水處理方式。其中民生再利用方案於中端影響類別、終端衝擊指標和單一衝擊值的分析,都有優於不再利用方案的結果。不過由於各項參數因應環境不同,有不同設定,評估模型的建立需要綜合考量實廠的條件,才能在相關決策提供更完整的建議。zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-25T06:33:19Z (GMT). No. of bitstreams: 1
U0001-2701202200472100.pdf: 26183419 bytes, checksum: 6686ad21a5f0b454eee64d41f1211d54 (MD5)
Previous issue date: 2022
en
dc.description.tableofcontentsAcknowledgments I 中文摘要 II Abstract IV Table of Contents VII List of Figures X List of Tables XIV Chapter 1 Introduction 1 1-1 Background 1 1-2 The objectives of this study 5 Chapter 2 Literature review 7 2-1 General WWTP process 7 2-2 Water use information of Taichung industrial park 10 2-3 Reuse of wastewater and sludge 13 2-3-1 Reuse of wastewater 14 2-3-2 Reuse of sludge 25 2-4 Life cycle assessment 27 2-4-1 Conduction of LCA to WWTPs 29 2-4-2 Sensitivity analysis and uncertainty analysis 35 2-4-3 Compilation of common LCIA 38 2-4-4 Information of factors from LCA 41 Chapter 3 Materials and method 43 3-1 Life cycle assessment 43 3-1-1 Goal and scope of definition 44 3-1-2 The assumption of Inventory 46 3-1-3 Inventory analysis 49 3-1-4 Impact assessment 66 3-2 Sensitivity analysis 73 Chapter 4 Results and discussion 74 4-1 Impact assessment at the midpoint level 74 4-2 Impact assessment at the endpoint level 99 4-3 Single-score assessment 105 4-4 Sensitivity analysis 107 4-5 Other situations assessed 109 4-6 Overall discussion 119 4-6-1 Study assumptions 119 4-6-2 Avoided burden 121 4-6-3 Suggestions for decisions making 122 Chapter 5 Conclusions 132 Appendices 134 Uncertainty analysis 134 Inventory database 164 Impact network 174 References 181
dc.language.isoen
dc.subject生命週期評估zh_TW
dc.subject再生水zh_TW
dc.subject系統工業廢水zh_TW
dc.subject用水量zh_TW
dc.subject環境衝擊值zh_TW
dc.subjectenvironmental impact valueen
dc.subjectlife cycle assessmenten
dc.subjectreclaimed wateren
dc.subjectsystematic industrial wastewateren
dc.subjectwater consumptionen
dc.title以生命週期評估方法探討工業區系統再生水利用效益及環境衝擊zh_TW
dc.titleEvaluation of Environmental Benefits and Impacts of Industrial Systemic Reclaimed Water Using Life Cycle Assessmenten
dc.date.schoolyear110-1
dc.description.degree碩士
dc.contributor.oralexamcommittee江莉琦(Forng-Chen Chiu),潘述元(Maoh-Chin Jiang),(Ching-Kuo Lin)
dc.subject.keyword生命週期評估,再生水,系統工業廢水,用水量,環境衝擊值,zh_TW
dc.subject.keywordlife cycle assessment,reclaimed water,systematic industrial wastewater,water consumption,environmental impact value,en
dc.relation.page187
dc.identifier.doi10.6342/NTU202200224
dc.rights.note未授權
dc.date.accepted2022-02-10
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept生物環境系統工程學研究所zh_TW
dc.date.embargo-lift2024-02-08-
顯示於系所單位:生物環境系統工程學系

文件中的檔案:
檔案 大小格式 
U0001-2701202200472100.pdf
  未授權公開取用
25.57 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved