Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 獸醫專業學院
  4. 獸醫學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82178
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蔡沛學(Pei-Shiue Tsai)
dc.contributor.authorTse-En Wangen
dc.contributor.author汪澤恩zh_TW
dc.date.accessioned2022-11-25T06:33:16Z-
dc.date.copyright2021-08-20
dc.date.issued2021
dc.date.submitted2021-08-05
dc.identifier.citationChapter I 1 Oakberg, E. F. Duration of spermatogenesis in the mouse and timing of stages of the cycle of the seminiferous epithelium. Am J Anat. 99, 507-516 (1956). 2 Meistrich, M. L., Hess, R. A. Assessment of spermatogenesis through staging of seminiferous tubules. Methods Mol Biol 927, 299-307, doi:10.1007/978-1-62703-038-0_27 (2013). 3 Yoshida, S. Elucidating the identity and behavior of spermatogenic stem cells in the mouse testis. Reproduction 144, 293-302, doi:10.1530/REP-11-0320 (2012). 4 Lin, F. J., Shen, L., Jang, C. W., Falnes, P. O. Zhang, Y. Ikbkap/Elp1 deficiency causes male infertility by disrupting meiotic progression. PLoS Genet 9, e1003516, doi:10.1371/journal.pgen.1003516 (2013). 5 Vogl, A. W., Young, J. S. Du, M. New insights into roles of tubulobulbar complexes in sperm release and turnover of blood-testis barrier. Int Rev Cell Mol Biol 303, 319-355, doi:10.1016/B978-0-12-407697-6.00008-8 (2013). 6 Lerer-Goldshtein T, B. S., Shpungin S, Pery E, Motro B, Goldstein RS, Bar-Sheshet SI, Breitbart H, Nir U. TMF/ARA160: A key regulator of sperm development. Dev Biol 348(1), 12-21 (2010). 7 Berruti G, P. C. Acrosome biogenesis: Revisiting old questions to yield new insights. . Spermatogenesis 1(2), 95-98 (2011). 8 Yoshinaga, K. Toshimori, K. Organization and modifications of sperm acrosomal molecules during spermatogenesis and epididymal maturation. Microsc Res Tech 61, 39-45, doi:10.1002/jemt.10315 (2003). 9 Berruti, G. Paiardi, C. Acrosome biogenesis: Revisiting old questions to yield new insights. Spermatogenesis 1, 95-98, doi:10.4161/spmg.1.2.16820 (2011). 10 L., O. D. Mechanisms of spermiogenesis and spermiation and how they are disturbed. . Spermatogenesis 26, 4 (2015). 11 Kierszenbaum AL, T. L., Rivkin E, Kang-Decker N, van Deursen JM. . The acroplaxome is the docking site of Golgi-derived myosin Va/Rab27a/b- containing proacrosomal vesicles in wild-type and Hrb mutant mouse spermatids. Biol Reprod 70(5), 1400-1410 (2004). 12 Barral, S. et al. Histone Variant H2A.L.2 Guides Transition Protein-Dependent Protamine Assembly in Male Germ Cells. Mol Cell 66, 89-101 e108, doi:10.1016/j.molcel.2017.02.025 (2017). 13 Zhao, M. et al. Transition nuclear proteins are required for normal chromatin condensation and functional sperm development. Genesis 38, 200-213, doi:10.1002/gene.20019 (2004). 14 Talebi AR, K. M., Vahidi S, Ghasemzadeh J, Tabibnejad N. Sperm chromatin condensation, DNA integrity, and apoptosis in men with spinal cord injury. J Spinal Cord Med 36(2), 140-146 (2013). 15 Joseph, A., Shur, B. D. Hess, R. A. Estrogen, efferent ductules, and the epididymis. Biol Reprod 84, 207-217, doi:10.1095/biolreprod.110.087353 (2011). 16 Cornwall, G. A. New insights into epididymal biology and function. Hum Reprod Update 15, 213-227, doi:10.1093/humupd/dmn055 (2009). 17 Lybaert, P. et al. KATP channel subunits are expressed in the epididymal epithelium in several mammalian species. Biol Reprod 79, 253-261, doi:10.1095/biolreprod.107.064659 (2008). 18 Skerget, S., Rosenow, M. A., Petritis, K. Karr, T. L. Sperm Proteome Maturation in the Mouse Epididymis. PLoS One 10, e0140650, doi:10.1371/journal.pone.0140650 (2015). 19 Ijiri, T. W., Merdiushev, T., Cao, W. Gerton, G. L. Identification and validation of mouse sperm proteins correlated with epididymal maturation. Proteomics 11, 4047-4062, doi:10.1002/pmic.201100075 (2011). 20 Adamali HI, H. L. Apical and narrow cells are distinct cell types differing in their structure, distribution, and functions in the adult rat epididymis. J Androl 17(3), 208-222 (1996). 21 Han, S. Y. Lee, K. H. Expressional Changes of Water Transport-related Molecules in the Efferent Ductules and Initial Segment of Mouse Treated with Bisphenol A-Containing Drinking Water for Two Generations. Dev Reprod 17, 289-297, doi:10.12717/DR.2013.17.3.289 (2013). 22 Dey S, B. C., Vijayaraghavan S. Signaling Enzymes Required for Sperm Maturation and Fertilization in Mammals. Front Cell Dev Biol. 7, 341 (2019). 23 Rana AP, M. G., Misra S, Ghosh A. Lipid changes of goat sperm plasma membrane during epididymal maturation. Biochim Biophys Acta. 1061(2), 185-196 (1991). 24 Ijiri TW, V. M., Huang AP, Lin AM, Levin LR, Buck J, Gerton GL. . Thiol changes during epididymal maturation: a link to flagellar angulation in mouse spermatozoa? Andrology 2, 65-75, doi:10.1111/j.2047-2927.2013.00147.x (2014). 25 Seligman, J., Newton, G. L., Fahey, R. C., Shalgi, R. Kosower, N. S. Nonprotein thiols and disulfides in rat epididymal spermatozoa and epididymal fluid: role of gamma-glutamyl-transpeptidase in sperm maturation. J Androl 26, 629-637; discussion 638-640, doi:10.2164/jandrol.05040 (2005). 26 O'Flaherty, C. Orchestrating the antioxidant defenses in the epididymis. Andrology 7, 662-668, doi:10.1111/andr.12630 (2019). 27 Koziorowska-Gilun, M., Koziorowski, M., Fraser, L. Strzezek, J. Antioxidant defence system of boar cauda epididymidal spermatozoa and reproductive tract fluids. Reprod Domest Anim 46, 527-533, doi:10.1111/j.1439-0531.2010.01701.x (2011). 28 Zaneveld LJ, D. J. C., Anderson RA, Mack SR. Human sperm capacitation and the acrosome reaction. Hum Reprod 6(9), 1265-1274 (1991). 29 BM., G. Dynamic regulation of sperm interactions with the zona pellucida prior to and after fertilisation. Reprod Fertil Dev 25(1), 26-37 (2012). 30 Noda, T. Ikawa, M. Physiological function of seminal vesicle secretions on male fecundity. Reprod Med Biol 18, 241-246, doi:10.1002/rmb2.12282 (2019). 31 Noda T, F. Y., Matsumura T, Oura S, Kobayashi S, Ikawa M. Seminal vesicle secretory protein 7, PATE4, is not required for sperm function but for copulatory plug formation to ensure fecundity. Biol Reprod 100(4), 1035-1045 (2019). 32 Huang, Y. H. et al. Signals of seminal vesicle autoantigen suppresses bovine serum albumin-induced capacitation in mouse sperm. Biochem Biophys Res Commun 338, 1564-1571, doi:10.1016/j.bbrc.2005.10.120 (2005). 33 Araki N, K. N., Kang W, Miyado K, Yoshida K, Yoshida M. Seminal vesicle proteins SVS3 and SVS4 facilitate SVS2 effect on sperm capacitation. Reproduction 152(4), 313-321 (2016). 34 L., V. Immunological properties of seminal vesicle fluid. Arch Androl 7(1), 1-7 (1981). 35 Dacheux JL, G. J., Dacheux F. Contribution of epididymal secretory proteins for spermatozoa maturation. Microsc Res Tech 61(1), 7-17 (2003). 36 Ijiri TW, M. T., Cao W, Gerton GL. . 2011 Oct;11(20):4047-62. doi: 10.1002/pmic.201100075. Epub 2011 Aug 30. PMID: 21805633; PMCID: PMC3517136. Identification and validation of mouse sperm proteins correlated with epididymal maturation. . Proteomics 11(20), 4047-4062 (2011). 37 Reilly, J. N. et al. Characterisation of mouse epididymosomes reveals a complex profile of microRNAs and a potential mechanism for modification of the sperm epigenome. Sci Rep 6, 31794, doi:10.1038/srep31794 (2016). 38 Hermo, L. Jacks, D. Nature's ingenuity: bypassing the classical secretory route via apocrine secretion. Mol Reprod Dev 63, 394-410, doi:10.1002/mrd.90023 (2002). 39 James, E. R. et al. The Role of the Epididymis and the Contribution of Epididymosomes to Mammalian Reproduction. Int J Mol Sci 21, doi:10.3390/ijms21155377 (2020). 40 Girouard, J., Frenette, G. Sullivan, R. Compartmentalization of proteins in epididymosomes coordinates the association of epididymal proteins with the different functional structures of bovine spermatozoa. Biol Reprod 80, 965-972, doi:10.1095/biolreprod.108.073551 (2009). 41 Jean-Faucher, C. et al. Regional differences in the testosterone to dihydrotestosterone ratio in the epididymis and vas deferens of adult mice. J Reprod Fertil 76, 537-543, doi:10.1530/jrf.0.0760537 (1986). 42 Bell, M. R. Comparing Postnatal Development of Gonadal Hormones and Associated Social Behaviors in Rats, Mice, and Humans. Endocrinology 159, 2596-2613, doi:10.1210/en.2018-00220 (2018). 43 Turner T T , E. L. L., Jones C E , Howards S S , Zegeye B Androgens in Male Rat Reproductive Tract Fluids: Hypophysectomy and Steroid Replacement. Am J Physiol. 248, 274-280 (1985). 44 Hu, S. et al. Research resource: Genome-wide mapping of in vivo androgen receptor binding sites in mouse epididymis. Mol Endocrinol 24, 2392-2405, doi:10.1210/me.2010-0226 (2010). 45 O'Hara L, W. M., Saunders PT, Smith LB. Androgen receptor expression in the caput epididymal epithelium is essential for development of the initial segment and epididymal spermatozoa transit. Endocrinology 152, 718-729, doi:10.1210/en.2010-0928 (2011). 46 Hamzeh, M. R., B. Effect of testosterone on epithelial cell proliferation in the regressed rat epididymis. J Androl 30, 200-212, doi:10.2164/jandrol.108.006171 (2009). 47 R S Viger, B. R. Expression of 4-ene steroid 5 alpha-reductase messenger ribonucleic acid in the rat epididymis during postnatal development. Endocrinology 131, 1534-1540 (1992). 48 Robaire, B. Henderson, N. A. Actions of 5alpha-reductase inhibitors on the epididymis. Mol Cell Endocrinol 250, 190-195, doi:10.1016/j.mce.2005.12.044 (2006). 49 Scheer, H. Robaire, B. Steroid delta 4-5 alpha-reductase and 3 alpha-hydroxysteroid dehydrogenase in the rat epididymis during development. Endocrinology 107, 948-953, doi:10.1210/endo-107-4-948 (1980). 50 Smith, L. B. Nonclassical Testosterone Signaling: A New Pathway Controlling Spermatogenesis? Biol Reprod 94, 43, doi:10.1095/biolreprod.115.137950 (2016). 51 Hamzeh, M. Robaire, B. Androgens activate mitogen-activated protein kinase via epidermal growth factor receptor/insulin-like growth factor 1 receptor in the mouse PC-1 cell line. J Endocrinol 209, 55-64, doi:10.1530/JOE-10-0223 (2011). 52 Pablo E. Visconti, G. S. K. Regulation of Protein Phosphorylation during Sperm Capacitation. Biol Reprod 59, 1-6 (1998). 53 Carlos Agustín I. Alonso, C. E. O.-S., Luciana Castellano, Andreína Cesari, Nicolás Di Siervi, Adrián Mutto, Anders Johannisson, Jane M. Morrell, Carlos Davio, Silvina Perez-Martinez,, Molecular Human Reproduction, Volume 23, Issue 8, August 2017, Pages 521–534,. Extracellular cAMP activates molecular signalling pathways associated with sperm capacitation in bovines. Mol Hum Reprod 23, 521-534 (2017). 54 Lewis B, A. R. Impact of epididymal maturation on the tyrosine phosphorylation patterns exhibited by rat spermatozoa. Biol Reprod 64, 1545-1556 (2001). 55 Park, Y. J. Pang, M. G. Mitochondrial Functionality in Male Fertility: From Spermatogenesis to Fertilization. Antioxidants (Basel) 10, doi:10.3390/antiox10010098 (2021). 56 Srivastava, A. a. O., G.E. Glycoprotein changes in the rat sperm plasma membrane during maturation in the epididymis. Mol. Reprod. 29, 357-364 (1991). 57 Griffiths, G. S., Galileo, D. S., Aravindan, R. G. Martin-DeLeon, P. A. Clusterin facilitates exchange of glycosyl phosphatidylinositol-linked SPAM1 between reproductive luminal fluids and mouse and human sperm membranes. Biol Reprod 81, 562-570, doi:10.1095/biolreprod.108.075739 (2009). 58 Martin-DeLeon, P. A. Epididymosomes: transfer of fertility-modulating proteins to the sperm surface. Asian J Androl 17, 720-725, doi:10.4103/1008-682X.155538 (2015). 59 Shalgi R, S. J., Kosower NS. . Dynamics of the thiol status of rat spermatozoa during maturation: analysis with the fluorescent labeling agent monobromobimane. Biol Reprod 40(5), 1037-1045 (1989). 60 Sally D. Perreault, R. A. W., Barry R. Zirkin. The role of disulfide bond reduction during mammalian sperm nuclear decondensation in vivo. Dev Biol 101, 160-167 (1984). 61 Chabory, E. et al. Epididymis seleno-independent glutathione peroxidase 5 maintains sperm DNA integrity in mice. J Clin Invest 119, 2074-2085, doi:10.1172/JCI38940 (2009). 62 Ostrowski MC, K. W., Williams-Ashman HG. A flavoprotein responsible for the intense sulfhydryl oxidase activity of rat seminal vesicle secretion. Biochem Biophys Res Commun. 87, 171-176 (1979). 63 Mairet-Coello, G. et al. FAD-linked sulfhydryl oxidase QSOX: topographic, cellular, and subcellular immunolocalization in adult rat central nervous system. J Comp Neurol 473, 334-363, doi:10.1002/cne.20126 (2004). 64 Heckler, E. J., Rancy, P. C., Kodali, V. K. Thorpe, C. Generating disulfides with the Quiescin-sulfhydryl oxidases. Biochim Biophys Acta 1783, 567-577, doi:10.1016/j.bbamcr.2007.10.002 (2008). 65 Sarah E Hunt, W. M., Laurent Gil, Anja Thormann, Helen Schuilenburg, Dan Sheppard, Andrew Parton, Irina M Armean, Stephen J Trevanion, Paul Flicek, Fiona Cunningham,. Ensembl variation resources. Database (2019). 66 Consortium, T. U. UniProt: the universal protein knowledgebase in 2021. Nucleic Acids Research 49, 480-489 (2021). 67 Tury, A. et al. Cell-specific localization of the sulphydryl oxidase QSOX in rat peripheral tissues. Cell Tissue Res 323, 91-103, doi:10.1007/s00441-005-0043-x (2006). 68 Kuo, Y. W. et al. Identification, characterization and purification of porcine Quiescin Q6-Sulfydryl Oxidase 2 protein. BMC Vet Res 13, 205, doi:10.1186/s12917-017-1125-1 (2017). 69 Mairet-Coello, G., Tury, A., Fellmann, D., Risold, P. Y. Griffond, B. Ontogenesis of the sulfhydryl oxidase QSOX expression in rat brain. J Comp Neurol 484, 403-417, doi:10.1002/cne.20411 (2005). 70 Tury, A. et al. QSOX sulfhydryl oxidase in rat adenohypophysis: localization and regulation by estrogens. J Endocrinol 183, 353-363, doi:10.1677/joe.1.05842 (2004). 71 Zhan YA, A. R., Li Y, Yuan J, Zeng L, Dang J, Martinez MC, Wang Z, Mikol J, Lehmann S, Bu S, Steyaert J, Cui L, Petersen RB, Kong Q, Wang GX, Wohlkonig A, Zou WQ. Quiescin-sulfhydryl oxidase inhibits prion formation in vitro. Aging 8, 3419-3429, doi:10.18632/aging.101132 (2016). 72 Grossman, I., Alon, A., Ilani, T. Fass, D. An inhibitory antibody blocks the first step in the dithiol/disulfide relay mechanism of the enzyme QSOX1. J Mol Biol 425, 4366-4378, doi:10.1016/j.jmb.2013.07.011 (2013). 73 Horowitz, B. et al. Quiescin sulfhydryl oxidase 1 (QSOX1) glycosite mutation perturbs secretion but not Golgi localization. Glycobiology 28, 580-591, doi:10.1093/glycob/cwy044 (2018). 74 Morel, C. et al. Involvement of sulfhydryl oxidase QSOX1 in the protection of cells against oxidative stress-induced apoptosis. Exp Cell Res 313, 3971-3982, doi:10.1016/j.yexcr.2007.09.003 (2007). 75 Veal, E. A., Day, A. M. Morgan, B. A. Hydrogen peroxide sensing and signaling. Mol Cell 26, 1-14, doi:10.1016/j.molcel.2007.03.016 (2007). 76 Caillard, A. et al. QSOX1, a novel actor of cardiac protection upon acute stress in mice. J Mol Cell Cardiol 119, 75-86, doi:10.1016/j.yjmcc.2018.04.014 (2018). 77 Franca, K. C. et al. Quiescin/sulfhydryl oxidase 1b (QSOX1b) induces migration and proliferation of vascular smooth muscle cells by distinct redox pathways. Arch Biochem Biophys 679, 108220, doi:10.1016/j.abb.2019.108220 (2020). Chapter II 1 Cooper, T. G. Sperm maturation in the epididymis: a new look at an old problem. Asian J Androl 9, 533-539, doi:10.1111/j.1745-7262.2007.00285.x (2007). 2 Dacheux, J. L. C., S. Gatti, J. L. Dacheux, F. Epididymal cell secretory activities and the role of proteins in boar sperm maturation. Theriogenology 63, 319-341, doi:10.1016/j.theriogenology.2004.09.015 (2005). 3 Shum, W. W., Da Silva, N., Brown, D. Breton, S. Regulation of luminal acidification in the male reproductive tract via cell-cell crosstalk. J Exp Biol 212, 1753-1761, doi:10.1242/jeb.027284 (2009). 4 Dacheux, J. L., Gatti, J. L. Dacheux, F. Contribution of epididymal secretory proteins for spermatozoa maturation. Microsc Res Tech 61, 7-17, doi:10.1002/jemt.10312 (2003). 5 Cornwall, G. A. New insights into epididymal biology and function. Hum Reprod Update 15, 213-227, doi:10.1093/humupd/dmn055 (2009). 6 Hermo, L. Jacks, D. Nature's ingenuity: bypassing the classical secretory route via apocrine secretion. Mol Reprod Dev 63, 394-410, doi:10.1002/mrd.90023 (2002). 7 Samanta, L., Swain, N., Ayaz, A., Venugopal, V. Agarwal, A. Post-Translational Modifications in sperm Proteome: The Chemistry of Proteome diversifications in the Pathophysiology of male factor infertility. Biochim Biophys Acta 1860, 1450-1465, doi:10.1016/j.bbagen.2016.04.001 (2016). 8 Cornwall, G. A. Role of Posttranslational Protein Modifications in Epididymal Sperm Maturation and Extracellular Quality Control. Vol. 759 (2014). 9 Martin-DeLeon, P. A. Epididymosomes: transfer of fertility-modulating proteins to the sperm surface. Asian J Androl 17, 720-725, doi:10.4103/1008-682X.155538 (2015). 10 Lodish, H. Molecular Cell Biology. (2016). 11 Seligman, J., Zipser, Y. Kosower, N. S. Tyrosine phosphorylation, thiol status, and protein tyrosine phosphatase in rat epididymal spermatozoa. Biol Reprod 71, 1009-1015, doi:10.1095/biolreprod.104.028035 (2004). 12 Huret, J. L. Nuclear Chromatin Decondensation of Human Sperm: A Review. Archives of Andrology 16, 97-109, doi:10.3109/01485018608986928 (2009). 13 Ijiri, T. W. et al. Thiol changes during epididymal maturation: a link to flagellar angulation in mouse spermatozoa? Andrology 2, 65-75, doi:10.1111/j.2047-2927.2013.00147.x (2014). 14 J. Seligman, N. S. K., R. Weissenberg and R. Shalgi. thiol disulfide status of human sperm proteins. journal of reproductive and fertility, 435-443 (1994). 15 Shalgi R, S. J., Kosower NS. . Dynamics of the thiol status of rat spermatozoa during maturation: analysis with the fluorescent labeling agent monobromobimane. Biol Reprod 40(5), 1037-1045 (1989). 16 Israel, B. A., Jiang, L., Gannon, S. A. Thorpe, C. Disulfide bond generation in mammalian blood serum: detection and purification of quiescin-sulfhydryl oxidase. Free Radic Biol Med 69, 129-135, doi:10.1016/j.freeradbiomed.2014.01.020 (2014). 17 Kuo, Y. W. et al. Identification, characterization and purification of porcine Quiescin Q6-Sulfydryl Oxidase 2 protein. BMC Vet Res 13, 205, doi:10.1186/s12917-017-1125-1 (2017). 18 Holt, J. E., Stanger, S. J., Nixon, B. McLaughlin, E. A. Non-coding RNA in Spermatogenesis and Epididymal Maturation. Adv Exp Med Biol 886, 95-120, doi:10.1007/978-94-017-7417-8_6 (2016). 19 Vandavasi, V. G. et al. A Structural Study of CESA1 Catalytic Domain of Arabidopsis Cellulose Synthesis Complex: Evidence for CESA Trimers. Plant Physiol 170, 123-135, doi:10.1104/pp.15.01356 (2016). 20 Carole Morela, P. A., Jean-François Musardb, Dominique Duvalc, Jean Radoma, Michèle Jouvenota,. Involvement of sulfhydryl oxidase QSOX1 in the protection of cells against oxidative stress-induced apoptosis. EXPERIMENTAL CELL RESEARCH 313, 3971 – 3982, doi:doi:10.1016/j.yexcr.2007.09.003 (2007). 21 Li, S. H., Lee, R. K., Hsiao, Y. L. Chen, Y. H. Demonstration of a glycoprotein derived from the Ceacam10 gene in mouse seminal vesicle secretions. Biology of reproduction 73, 546-553, doi:10.1095/biolreprod.105.039651 (2005). 22 Reilly, J. N. et al. Characterisation of mouse epididymosomes reveals a complex profile of microRNAs and a potential mechanism for modification of the sperm epigenome. Sci Rep 6, 31794, doi:10.1038/srep31794 (2016). 23 Anderson, A. L. et al. Assessment of microRNA expression in mouse epididymal epithelial cells and spermatozoa by next generation sequencing. Genom Data 6, 208-211, doi:10.1016/j.gdata.2015.09.012 (2015). 24 Biggers, J. D. W., W.K.; Whittingham, D.G. Methods in Mammalian Embryology. (Freeman Press,, 1971). 25 Ng, Y. H. et al. Endometrial exosomes/microvesicles in the uterine microenvironment: a new paradigm for embryo-endometrial cross talk at implantation. PloS one 8, e58502, doi:10.1371/journal.pone.0058502 (2013). 26 Principe, S. et al. In-depth proteomic analyses of exosomes isolated from expressed prostatic secretions in urine. Proteomics 13, 1667-1671, doi:10.1002/pmic.201200561 (2013). 27 Sullivan, R. Epididymosomes: a heterogeneous population of microvesicles with multiple functions in sperm maturation and storage. Asian J Androl 17, 726-729, doi:10.4103/1008-682X.155255 (2015). 28 Tury, A. et al. Cell-specific localization of the sulphydryl oxidase QSOX in rat peripheral tissues. Cell Tissue Res 323, 91-103, doi:10.1007/s00441-005-0043-x (2006). 29 ZIRKIN, T. S. K. C. a. B. R. Distribution of Sulfhydryl Oxidase Activity in the Rat and Hamster Male Reproductive Tract. Biology of reproduction 17, 745-748 (1978). 30 Sophie Fouche ́court, S. M. t., Alain Locatelli, Franc ̧oise Dacheux, and Jean-Louis Dacheux2. Stallion Epididymal Fluid Proteome: Qualitative and Quantitative Characterization; Secretion and Dynamic Changes of Major Proteins1. BIOLOGY OF REPRODUCfION 62, 1790-1803 (2000). 31 Schorr-Lenz, A. M. et al. GnRH immunization alters the expression and distribution of protein disulfide isomerases in the epididymis. Andrology 4, 957-963, doi:10.1111/andr.12205 (2016). 32 Akama, K. et al. Protein disulfide isomerase-P5, down-regulated in the final stage of boar epididymal sperm maturation, catalyzes disulfide formation to inhibit protein function in oxidative refolding of reduced denatured lysozyme. Biochim Biophys Acta 1804, 1272-1284, doi:10.1016/j.bbapap.2010.02.004 (2010). 33 Liu, Y. et al. Increased expression of ERp57 in rat oocytes during meiotic maturation is associated with sperm-egg fusion. Mol Reprod Dev 81, 315-325, doi:10.1002/mrd.22300 (2014). 34 Sipila, P. Bjorkgren, I. Segment-specific regulation of epididymal gene expression. Reproduction 152, R91-99, doi:10.1530/REP-15-0533 (2016). 35 Jones, R. C. Murdoch, R. N. Regulation of the motility and metabolism of spermatozoa for storage in the epididymis of eutherian and marsupial mammals. Reproduction, Fertility and Development 8, doi:10.1071/rd9960553 (1996). 36 Ijiri, T. W., Merdiushev, T., Cao, W. Gerton, G. L. Identification and validation of mouse sperm proteins correlated with epididymal maturation. Proteomics 11, 4047-4062, doi:10.1002/pmic.201100075 (2011). 37 Kameshwari, D. B. et al. Glucose-regulated protein precursor (GRP78) and tumor rejection antigen (GP96) are unique to hamster caput epididymal spermatozoa. Asian J Androl 12, 344-355, doi:10.1038/aja.2010.19 (2010). 38 Sutovsky, P. Ubiquitin-dependent proteolysis in mammalian spermatogenesis, fertilization, and sperm quality control: killing three birds with one stone. Microsc Res Tech 61, 88-102, doi:10.1002/jemt.10319 (2003). 39 Girouard, J., Frenette, G. Sullivan, R. Comparative proteome and lipid profiles of bovine epididymosomes collected in the intraluminal compartment of the caput and cauda epididymidis. Int J Androl 34, e475-486, doi:10.1111/j.1365-2605.2011.01203.x (2011). 40 Srivastav, A. et al. Partial characterization, sperm association and significance of N- and O-linked glycoproteins in epididymal fluid of rhesus monkeys (Macaca mulatta). Reproduction 127, 343-357, doi:10.1530/rep.1.00119 (2004). 41 Wang, P., Ng, Y. H. Amal, R. Embedment of anodized p-type Cu(2)O thin films with CuO nanowires for improvement in photoelectrochemical stability. Nanoscale 5, 2952-2958, doi:10.1039/c3nr34012k (2013). 42 Simerly, C. et al. Post-Testicular Sperm Maturation: Centriole Pairs, Found in Upper Epididymis, are Destroyed Prior to Sperm's Release at Ejaculation. Sci Rep 6, 31816, doi:10.1038/srep31816 (2016). 43 Chemes, H. E. in The Centrosome Ch. Chapter 2, 33-48 (2012). 44 Vernet, P., Fulton, N., Wallace, C. Aitken, R. J. Analysis of reactive oxygen species generating systems in rat epididymal spermatozoa. Biology of reproduction 65, 1102-1113 (2001). 45 Vernet, P., Aitken, R. J. Drevet, J. R. Antioxidant strategies in the epididymis. Mol Cell Endocrinol 216, 31-39, doi:10.1016/j.mce.2003.10.069 (2004). 46 Morel, C. et al. Involvement of sulfhydryl oxidase QSOX1 in the protection of cells against oxidative stress-induced apoptosis. Exp Cell Res 313, 3971-3982, doi:10.1016/j.yexcr.2007.09.003 (2007). 47 Biegler BE, A. D., George BC, Poirier GR. Induction of physiological acrosome reactions in caput epididymal spermatozoa of mice. Journal of reproduction and fertility 1, 219-224 (1994). 48 Ellerman, D. A., Myles, D. G. Primakoff, P. A role for sperm surface protein disulfide isomerase activity in gamete fusion: evidence for the participation of ERp57. Dev Cell 10, 831-837, doi:10.1016/j.devcel.2006.03.011 (2006). 49 Sullivan, R. Saez, F. Epididymosomes, prostasomes, and liposomes: their roles in mammalian male reproductive physiology. Reproduction 146, R21-35, doi:10.1530/REP-13-0058 (2013). 50 Griffiths, G. S., Galileo, D. S., Reese, K. Martin-Deleon, P. A. Investigating the role of murine epididymosomes and uterosomes in GPI-linked protein transfer to sperm using SPAM1 as a model. Mol Reprod Dev 75, 1627-1636, doi:10.1002/mrd.20907 (2008). 51 Paunescu, T. G. et al. High-resolution helium ion microscopy of epididymal epithelial cells and their interaction with spermatozoa. Molecular human reproduction 20, 929-937, doi:10.1093/molehr/gau052 (2014). 52 Sullivan, R., Frenette G, Girouard J. Epididymosomes are involved in the acquasition of new sperm proteins during epididymal transit. Asian J Androl 9, 483-491 (2007). 53 Girouard, J., Frenette, G. Sullivan, R. Compartmentalization of proteins in epididymosomes coordinates the association of epididymal proteins with the different functional structures of bovine spermatozoa. Biol Reprod 80, 965-972, doi:10.1095/biolreprod.108.073551 (2009). 54 Eickhoff R, W. B., Renneberg H, Wennemuth G, Bacher M, Linder D, Bucala R, Seitz J, Meinhardt A. Purification and characterization of macrophage migration inhibitory factor as a secretory protein from rat epididymis: evidences for alternative release and transfer to spermatozoa. Mol Med. 7, 27-35 (2001). 55 Sullivan, R. Male fertility markers, myth or reality. Anim Reprod Sci 82-83, 341-347, doi:10.1016/j.anireprosci.2004.05.007 (2004). 56 Hughes, J. R. Berger, T. Regulation of apical blebbing in the porcine epididymis. J Anat, doi:10.1111/joa.12755 (2017). Chapter III 1 Gadella, B. M. Reproductive tract modifications of the boar sperm surface. Mol Reprod Dev 84, 822-831, doi:10.1002/mrd.22821 (2017). 2 Kuo, Y. W., Li, S. H., Maeda, K., Gadella, B. M. Tsai, P. S. Roles of the reproductive tract in modifications of the sperm membrane surface. J Reprod Dev 62, 337-343, doi:10.1262/jrd.2016-028 (2016). 3 Ostrowski, M. C., Kistler, M. K. Kistler, W. S. Purification and cell-free synthesis of a major protein from rat seminal vesicle secretion. A potential marker for androgen action. J Biol Chem 254, 383-390 (1979). 4 Chakravarthi, S., Jessop, C. E., Willer, M., Stirling, C. J. Bulleid, N. J. Intracellular catalysis of disulfide bond formation by the human sulfhydryl oxidase, QSOX1. Biochem J 404, 403-411, doi:10.1042/BJ20061510 (2007). 5 Kodali, V. K. Thorpe, C. Oxidative protein folding and the Quiescin-sulfhydryl oxidase family of flavoproteins. Antioxid Redox Signal 13, 1217-1230, doi:10.1089/ars.2010.3098 (2010). 6 Caillard, A. et al. QSOX1, a novel actor of cardiac protection upon acute stress in mice. J Mol Cell Cardiol 119, 75-86, doi:10.1016/j.yjmcc.2018.04.014 (2018). 7 Fifield, A. L. et al. Molecular Inhibitor of QSOX1 Suppresses Tumor Growth In Vivo. Mol Cancer Ther 19, 112-122, doi:10.1158/1535-7163.MCT-19-0233 (2020). 8 Knutsvik, G., Collett, K., Arnes, J., Akslen, L. A. Stefansson, I. M. QSOX1 expression is associated with aggressive tumor features and reduced survival in breast carcinomas. Mod Pathol 29, 1485-1491, doi:10.1038/modpathol.2016.148 (2016). 9 Sung, H. J. et al. Quiescin Sulfhydryl Oxidase 1 (QSOX1) Secreted by Lung Cancer Cells Promotes Cancer Metastasis. Int J Mol Sci 19, doi:10.3390/ijms19103213 (2018). 10 Lake, D. F. Faigel, D. O. The emerging role of QSOX1 in cancer. Antioxid Redox Signal 21, 485-496, doi:10.1089/ars.2013.5572 (2014). 11 Portes, K. F. et al. Tissue distribution of quiescin Q6/sulfhydryl oxidase (QSOX) in developing mouse. J Mol Histol 39, 217-225, doi:10.1007/s10735-007-9156-8 (2008). 12 Tury, A. et al. Cell-specific localization of the sulphydryl oxidase QSOX in rat peripheral tissues. Cell Tissue Res 323, 91-103, doi:10.1007/s00441-005-0043-x (2006). 13 Wang, T. E. et al. Mouse quiescin sulfhydryl oxidases exhibit distinct epididymal luminal distribution with segment-specific sperm surface associations. Biol Reprod 99, 1022-1033, doi:10.1093/biolre/ioy125 (2018). 14 Cooper, T. G. et al. World Health Organization reference values for human semen characteristics. Hum Reprod Update 16, 231-245, doi:10.1093/humupd/dmp048 (2010). 15 Li, S. H., Lee, R. K., Hsiao, Y. L. Chen, Y. H. Demonstration of a glycoprotein derived from the Ceacam10 gene in mouse seminal vesicle secretions. Biol Reprod 73, 546-553, doi:10.1095/biolreprod.105.039651 (2005). 16 Kuo, Y. W. et al. Identification, characterization and purification of porcine Quiescin Q6-Sulfydryl Oxidase 2 protein. BMC Vet Res 13, 205, doi:10.1186/s12917-017-1125-1 (2017). 17 Ou, C. M. et al. A mouse seminal vesicle-secreted lysozyme c-like protein modulates sperm capacitation. J Cell Biochem, doi:10.1002/jcb.29894 (2021). 18 Ostrowski, M. C., Kistler, W. S. Williams-Ashman, H. G. A flavoprotein responsible for the intense sulfhydryl oxidase activity of rat seminal vesicle secretion. Biochem Biophys Res Commun 87, 171-176, doi:10.1016/0006-291x(79)91662-0 (1979). 19 Dohle, G. R., Smit, M. Weber, R. F. Androgens and male fertility. World J Urol 21, 341-345, doi:10.1007/s00345-003-0365-9 (2003). 20 Robaire, B. Hamzeh, M. Androgen action in the epididymis. J Androl 32, 592-599, doi:10.2164/jandrol.111.014266 (2011). 21 Turner, T. T., Ewing, L. L., Jones, C. E., Howards, S. S. Zegeye, B. Androgens in various fluid compartments of the rat testis and epididymis after hypophysectomy and gonadotropin supplementation. J Androl 6, 353-358, doi:10.1002/j.1939-4640.1985.tb03292.x (1985). 22 Takeshima, T. et al. Oxidative stress and male infertility. Reprod Med Biol 20, 41-52, doi:10.1002/rmb2.12353 (2021). 23 Ostrowski, M. C. Kistler, W. S. Properties of a flavoprotein sulfhydryl oxidase from rat seminal vesicle secretion. Biochemistry 19, 2639-2645, doi:10.1021/bi00553a016 (1980). 24 Rudolf, J., Pringle, M. A. Bulleid, N. J. Proteolytic processing of QSOX1A ensures efficient secretion of a potent disulfide catalyst. Biochem J 454, 181-190, doi:10.1042/BJ20130360 (2013). 25 Sobral, A. C. et al. Immunohistochemical expression of sulfhydryl oxidase (QSOX1) in pediatric medulloblastomas. Diagn Pathol 10, 37, doi:10.1186/s13000-015-0268-2 (2015). 26 Fisher, H. S. Hoekstra, H. E. Competition drives cooperation among closely related sperm of deer mice. Nature 463, 801-803, doi:10.1038/nature08736 (2010). 27 Monclus, M. A. Fornes, M. W. Sperm conjugation in mammal reproductive function: Different names for the same phenomenon? Mol Reprod Dev 83, 884-896, doi:10.1002/mrd.22636 (2016). 28 Suarez, S. S. Pacey, A. A. Sperm transport in the female reproductive tract. Hum Reprod Update 12, 23-37, doi:10.1093/humupd/dmi047 (2006). 29 Gomez Montoto, L. et al. Sperm competition, sperm numbers and sperm quality in muroid rodents. PLoS One 6, e18173, doi:10.1371/journal.pone.0018173 (2011). 30 Suarez, S. S. Mammalian sperm interactions with the female reproductive tract. Cell Tissue Res 363, 185-194, doi:10.1007/s00441-015-2244-2 (2016). 31 Tourmente, M., Gomendio, M. Roldan, E. R. Sperm competition and the evolution of sperm design in mammals. BMC Evol Biol 11, 12, doi:10.1186/1471-2148-11-12 (2011). 32 Taggart, D. A., Johnson, J. L., O'Brien, H. P. Moore, H. D. Why do spermatozoa of American marsupials form pairs? A clue from the analysis of sperm-pairing in the epididymis of the grey short-tailed opossum, Monodelphis domestica. Anat Rec 236, 465-478, doi:10.1002/ar.1092360307 (1993). 33 Grossman, I., Alon, A., Ilani, T. Fass, D. An inhibitory antibody blocks the first step in the dithiol/disulfide relay mechanism of the enzyme QSOX1. J Mol Biol 425, 4366-4378, doi:10.1016/j.jmb.2013.07.011 (2013). 34 Robertson, S. A. Seminal fluid signaling in the female reproductive tract: lessons from rodents and pigs. J Anim Sci 85, E36-44, doi:10.2527/jas.2006………
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82178-
dc.description.abstract精母細胞生成於睪丸中,但其需要歷經一系列的發育與成熟化過程以具備成整的受精能力,進而與卵子結合完成受精之使命。在生精作用後期,高度濃縮的染色質使得精子喪失轉錄功能,因此,精子高度仰賴著後轉錄/譯修飾調控機制,以完成發育與獲能。早在西元1989年,硫基的氧化作用(sulfhydryl oxidation)已被指出其高度反應於精子成熟化過程,然而,其中的分子機制仍未被全面的了解。此論文將針對一特殊的硫氫氧化酶家族稱Quiescin Sulfhydryl Oxidases簡稱QSOXs對於精子生理影響、精子成熟化微環境的佈局以及其上游調控機制的探討。 首先,我們發現了亞型QSOX1c和QSOX2分別在附睪有著特殊的組織分佈、分泌機制和與精子的交互作用。QSOX1c均勻散佈於附睪中後段的上皮細胞內與細胞外管腔中,而大部分的QSOX2蛋白質則高度表現於附睪前段的高基氏體中,顯示恰為相反的組織分佈。另外,獨有QSOX2在附睪小囊泡(epididymosome)被發現,闡明出QSOX2透過非典型的分泌系統頂端分泌(apocrine secretion)以釋出於附睪管腔中。最後利用免疫螢光表面標的技術發現,QSOX1c於精子的頂體與尾部有著特殊的黏附,而QSOX2於精子頭部尾端的植入窩(implantation fossa)有著特定的親和。綜合以上的發現,我們首度揭露了QSOX1c和QSOX2分別對附睪精子成熟化的潛在功能。 另外,QSOX1c也大量的表現於儲精囊中,因此,我們試著從儲精囊液中純化QSOX1c以建立體外的精子培養系統,以更近一步探討QSOX1c對於精子之影響。結果顯示,當精子培養於QSOX1c添加培養液中,可預防早發性的獲能反應和頂體反應。另外一方面,QSOX1c能促進精子聚集的發生,其中,被凝集的精子為大量表現游離硫醇、受到自由基攻擊或是凋亡的不健康精子,此現象也在小鼠與人類活體取得的精子凝集得到相同的證實。這「QSOX1c調節天然的精子篩選平台」期待能應用在臨床上的精子評估系統,進而為繁殖障礙者帶來新的醫療策略。 對於QSOX2的功能性探討,我們利用Cre ERT/LoxP基因剔除技術建立QSOX2剔除小鼠模型。首先,在QSOX2剔除小鼠中,我們發現較小的男性生殖器官包含了睪丸、附睪和儲精囊,而非男性生殖器官如腎臟並沒有發現此差異。經更近一步的生化分析,發現QSOX2剔除小鼠的附睪有著氧化壓力低下的表徵如過低的脂質氧化程度和弱化的穀胱甘肽過氧化物(glutathione peroxidase簡稱GPX)活性,反而硫基的氧化狀態沒有程度上差異,這說明了QSOX2可能主要調節附睪氧化壓力平衡而非硫基的氧化作用。另外一方面,我們藉由體外平台測試GPX對於附睪上皮細胞中QSOX2的影響, 結果顯示GPX的抑制下調了QSOX2的表現量。此研究,從體外與體內研究平台揭示出QSOX2和GPX的相互調節關係,為附睪氧化壓力調節系統加上了新的篇章。另外,在我們先前的研究中顯示在附睪組織發育過程中,QSOX2表現量的高低變化與睪固酮的波動呈正相關,因此,我們建立了不同的動物模型如去勢小鼠、Kiss1基因剔除大鼠,以驗證睪固酮對QSOX2的調節。結果顯示出睪固酮確實對QSOX2有個著正向的調節作用,此外,透過高通量技術與二維的細胞培養平台,我們揭露出睪固酮對於QSOX2的上調必須與足夠的麩胺酸(glutamate)進行協同作用。 結語,此博士論文研究,全面地探討QSOXs對精子生理學的功能影響和首次揭示了於男性繁殖道中非典型的性賀爾蒙調節機制,冀這些發現能奠基繁殖生物學上的認知,也期待為繁殖障礙醫學開啟新的視野。zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-25T06:33:16Z (GMT). No. of bitstreams: 1
U0001-0208202113242800.pdf: 10022673 bytes, checksum: b608b88b140da88d2369bf28cf23bdcc (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents中文摘要 i Abstract iii Chapter I General Introduction 1 Developmental processes of sperm 2 Regulatory machineries upon sperm maturation in the epididymis 6 Post-translational modifications upon epididymal transit 8 Introduction of Quiescin Sulfhydryl Oxidase (QSOX) protein family 10 References 15 Chapter II Mouse Quiescin Sulfhydryl Oxidases Exhibit Distinct Epididymal Luminal Distribution with Segment-Specific Sperm Surface Associations 21 Abstract 24 Introduction 24 Materials and Methods 26 Results 33 Discussion 39 Figure legend 45 References 57 Chapter III Secretory Mouse Quiescin Sulfhydryl Oxidase 1 Aggregates Defected Human and Mouse Spermatozoa in vitro and in vivo 61 Abstract 63 Introduction 63 Materials and Methods 65 Results 75 Discussion 80 Figure legend 84 References 99 Chapter IV Testosterone Regulation on Quiescin Sulfhydryl Oxidase 2 Synthesis in the Epididymis 102 Abstract 104 Introduction 104 Materials and Methods 106 Results 114 Discussion 117 Figure legend 121 References 133 Chapter V Reciprocal Regulatory Relationship Between Quiescin Sulfhydryl Oxidase 2 and Glutathione Peroxidases Modulates Oxidative Homeostasis in Male Reproductive Tract 137 Abstract 139 Introduction 139 Materials and Methods 141 Results 146 Discussion 149 Figure legend 153 References 162 Chapter VI General Discussion 165 Summary 166 Effect of sulfhydryl oxidation on the functional state of sperm proteins 167 Effect of sulfhydryl oxidation on the regulation of molecular oxygen 168 Testosterone regulation on epididymal physiology 169 Testosterone regulation upon epididymal glutamate homeostasis 170 Conclusion and Future work 172 References 175 Chapter VI Pertinent Publications 178
dc.language.isoen
dc.subject不孕症zh_TW
dc.subject睪固酮zh_TW
dc.subject硫基的氧化zh_TW
dc.subject精子成熟化zh_TW
dc.subject硫氫氧化酶zh_TW
dc.subject氧化還原平衡zh_TW
dc.subjectQSOXen
dc.subjectredox homeostasisen
dc.subjectfertilityen
dc.subjectsulfhydryl oxidationen
dc.subjectsperm maturationen
dc.subjecttestosteroneen
dc.title探討硫氫氧化酶對於男性⽣殖功能之影響與調控機制zh_TW
dc.titleRegulation and Function of Quiescin Sulfhydryl Oxidases on Male Reproductionen
dc.date.schoolyear109-2
dc.description.degree博士
dc.contributor.author-orcid0000-0002-4254-6234
dc.contributor.oralexamcommittee李勝祥(Hsin-Tsai Liu),詹東榮(Chih-Yang Tseng),張惠雯,林盈宏,林甫容
dc.subject.keyword硫氫氧化酶,精子成熟化,硫基的氧化,氧化還原平衡,睪固酮,不孕症,zh_TW
dc.subject.keywordQSOX,sperm maturation,sulfhydryl oxidation,redox homeostasis,testosterone,fertility,en
dc.relation.page180
dc.identifier.doi10.6342/NTU202101992
dc.rights.note未授權
dc.date.accepted2021-08-05
dc.contributor.author-college獸醫專業學院zh_TW
dc.contributor.author-dept獸醫學研究所zh_TW
dc.date.embargo-lift2026-08-05-
顯示於系所單位:獸醫學系

文件中的檔案:
檔案 大小格式 
U0001-0208202113242800.pdf
  未授權公開取用
9.79 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved