Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 獸醫專業學院
  4. 獸醫學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82173
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蕭逸澤(Yi-Tse Hsiao)
dc.contributor.authorTing-Yen Leeen
dc.contributor.author李婷嫣zh_TW
dc.date.accessioned2022-11-25T06:33:11Z-
dc.date.copyright2021-11-09
dc.date.issued2021
dc.date.submitted2021-08-06
dc.identifier.citation1. Visser, E., et al., The course, prediction, and treatment of acute and posttraumatic stress in trauma patients: A systematic review. J Trauma Acute Care Surg, 2017. 82(6): p. 1158-1183. 2. Green, B.L., Posttraumatic stress disorder. Posttraumatic Stress Disorder: DSM-IV and Beyond, 1993: p. 75. 3. Richards, A., J.C. Kanady, and T.C. Neylan, Sleep disturbance in PTSD and other anxiety-related disorders: an updated review of clinical features, physiological characteristics, and psychological and neurobiological mechanisms. Neuropsychopharmacology, 2020. 45(1): p. 55-73. 4. Ross, R.J., et al., Sleep disturbance as the hallmark of posttraumatic stress disorder. The American journal of psychiatry, 1989. 5. American Psychiatric Association, A. and A.P. Association, Diagnostic and statistical manual of mental disorders: DSM-5. 2013, Washington, DC: American psychiatric association. 6. Fanai, M. and M.A.B. Khan, Acute Stress Disorder, in StatPearls. 2021, StatPearls Publishing Copyright © 2021, StatPearls Publishing LLC.: Treasure Island (FL). 7. Bryant, R.A., et al., A review of acute stress disorder in DSM-5. Depress Anxiety, 2011. 28(9): p. 802-17. 8. Pawlyk, A.C., et al., Stress-induced changes in sleep in rodents: models and mechanisms. Neurosci Biobehav Rev, 2008. 32(1): p. 99-117. 9. López, C.M., et al., Residual Sleep Problems Predict Reduced Response to Prolonged Exposure among Veterans with PTSD. J Psychopathol Behav Assess, 2017. 39(4): p. 755-763. 10. Colvonen, P.J., et al., A Review of the Relationship Between Emotional Learning and Memory, Sleep, and PTSD. Curr Psychiatry Rep, 2019. 21(1): p. 2. 11. Leskin, G.A., et al., Effects of comorbid diagnoses on sleep disturbance in PTSD. Journal of Psychiatric Research, 2002. 36(6): p. 449-452. 12. Mellman, T.A., et al., Dreams in the acute aftermath of trauma and their relationship to PTSD. Journal of Traumatic Stress, 2001. 14(1): p. 241-247. 13. de Dassel, T., et al., Association of posttraumatic nightmares and psychopathology in a military sample. Psychol Trauma, 2018. 10(4): p. 475-481. 14. Fanselow, M.S. and H.-W. Dong, Are the dorsal and ventral hippocampus functionally distinct structures? Neuron, 2010. 65(1): p. 7-19. 15. Kheirbek, M.A. and R. Hen, Dorsal vs ventral hippocampal neurogenesis: implications for cognition and mood. Neuropsychopharmacology, 2011. 36(1): p. 373-4. 16. Rogers, J.L., M.R. Hunsaker, and R.P. Kesner, Effects of ventral and dorsal CA1 subregional lesions on trace fear conditioning. Neurobiol Learn Mem, 2006. 86(1): p. 72-81. 17. Yoon, T. and T. Otto, Differential contributions of dorsal vs. ventral hippocampus to auditory trace fear conditioning. Neurobiol Learn Mem, 2007. 87(4): p. 464-75. 18. Janak, P.H. and K.M. Tye, From circuits to behaviour in the amygdala. Nature, 2015. 517(7534): p. 284-92. 19. Ressler, R.L. and S. Maren, Synaptic encoding of fear memories in the amygdala. Curr Opin Neurobiol, 2019. 54: p. 54-59. 20. Kim, W.B. and J.H. Cho, Synaptic Targeting of Double-Projecting Ventral CA1 Hippocampal Neurons to the Medial Prefrontal Cortex and Basal Amygdala. J Neurosci, 2017. 37(19): p. 4868-4882. 21. Pi, G., et al., Posterior basolateral amygdala to ventral hippocampal CA1 drives approach behaviour to exert an anxiolytic effect. Nat Commun, 2020. 11(1): p. 183. 22. Parfitt, G.M., et al., Bidirectional Control of Anxiety-Related Behaviors in Mice: Role of Inputs Arising from the Ventral Hippocampus to the Lateral Septum and Medial Prefrontal Cortex. Neuropsychopharmacology, 2017. 42(8): p. 1715-1728. 23. Jimenez, J.C., et al., Contextual fear memory retrieval by correlated ensembles of ventral CA1 neurons. Nature communications, 2020. 11(1): p. 1-11. 24. Jimenez, J.C., et al., Anxiety Cells in a Hippocampal-Hypothalamic Circuit. Neuron, 2018. 97(3): p. 670-683.e6. 25. Kim, W.B. and J.-H. Cho, Encoding of contextual fear memory in hippocampal–amygdala circuit. Nature communications, 2020. 11(1): p. 1-22. 26. Felix-Ortiz, A.C., et al., BLA to vHPC inputs modulate anxiety-related behaviors. Neuron, 2013. 79(4): p. 658-664. 27. Girardeau, G., I. Inema, and G. Buzsáki, Reactivations of emotional memory in the hippocampus–amygdala system during sleep. Nature neuroscience, 2017. 20(11): p. 1634. 28. Bergstrom, H.C., The neurocircuitry of remote cued fear memory. Neurosci Biobehav Rev, 2016. 71: p. 409-417. 29. Bergstrom, H.C., C.G. McDonald, and L.R. Johnson, Pavlovian fear conditioning activates a common pattern of neurons in the lateral amygdala of individual brains. PLoS One, 2011. 6(1): p. e15698. 30. Fanselow, M.S. and J.E. LeDoux, Why we think plasticity underlying Pavlovian fear conditioning occurs in the basolateral amygdala. Neuron, 1999. 23(2): p. 229-32. 31. Maren, S., Neurobiology of Pavlovian fear conditioning. Annu Rev Neurosci, 2001. 24: p. 897-931. 32. Sheng, M. and M.E. Greenberg, The regulation and function of c-fos and other immediate early genes in the nervous system. Neuron, 1990. 4(4): p. 477-485. 33. Schmued, L.C. and J.H. Fallon, Fluoro-Gold: a new fluorescent retrograde axonal tracer with numerous unique properties. Brain research, 1986. 377(1): p. 147-154. 34. Liu, X., et al., Optogenetic stimulation of a hippocampal engram activates fear memory recall. Nature, 2012. 484(7394): p. 381-5. 35. Yang, Y. and J.Z. Wang, From Structure to Behavior in Basolateral Amygdala-Hippocampus Circuits. Front Neural Circuits, 2017. 11: p. 86. 36. Yang, Y., et al., Opposite monosynaptic scaling of BLP-vCA1 inputs governs hopefulness- and helplessness-modulated spatial learning and memory. Nat Commun, 2016. 7: p. 11935. 37. Tonegawa, S., M.D. Morrissey, and T. Kitamura, The role of engram cells in the systems consolidation of memory. Nature Reviews Neuroscience, 2018. 19(8): p. 485-498. 38. Deisseroth, K., et al., Next-generation optical technologies for illuminating genetically targeted brain circuits. J Neurosci, 2006. 26(41): p. 10380-6. 39. Häusser, M., Optogenetics: the age of light. Nat Methods, 2014. 11(10): p. 1012-4. 40. Campbell, E.J. and N.J. Marchant, The use of chemogenetics in behavioural neuroscience: receptor variants, targeting approaches and caveats. Br J Pharmacol, 2018. 175(7): p. 994-1003. 41. Gomez, J.L., et al., Chemogenetics revealed: DREADD occupancy and activation via converted clozapine. Science, 2017. 357(6350): p. 503-507. 42. Madisen, L., et al., Transgenic mice for intersectional targeting of neural sensors and effectors with high specificity and performance. Neuron, 2015. 85(5): p. 942-58. 43. Krashes, M.J., et al., Rapid, reversible activation of AgRP neurons drives feeding behavior in mice. J Clin Invest, 2011. 121(4): p. 1424-8. 44. Wang, D.V., et al., Neurons in the amygdala with response-selectivity for anxiety in two ethologically based tests. PLoS One, 2011. 6(4): p. e18739. 45. Adhikari, A., M.A. Topiwala, and J.A. Gordon, Single units in the medial prefrontal cortex with anxiety-related firing patterns are preferentially influenced by ventral hippocampal activity. Neuron, 2011. 71(5): p. 898-910. 46. Adhikari, A., M.A. Topiwala, and J.A. Gordon, Synchronized activity between the ventral hippocampus and the medial prefrontal cortex during anxiety. Neuron, 2010. 65(2): p. 257-69. 47. Kitamura, T., et al., Engrams and circuits crucial for systems consolidation of a memory. Science, 2017. 356(6333): p. 73-78. 48. Diekelmann, S. and J. Born, The memory function of sleep. Nat Rev Neurosci, 2010. 11(2): p. 114-26. 49. Goldstein, A.N. and M.P. Walker, The role of sleep in emotional brain function. Annu Rev Clin Psychol, 2014. 10: p. 679-708. 50. Brown, W.J., et al., A review of sleep disturbance in children and adolescents with anxiety. J Sleep Res, 2018. 27(3): p. e12635. 51. Scammell, T.E., E. Arrigoni, and J.O. Lipton, Neural Circuitry of Wakefulness and Sleep. Neuron, 2017. 93(4): p. 747-765. 52. Ma, C., et al., Sleep Regulation by Neurotensinergic Neurons in a Thalamo-Amygdala Circuit. Neuron, 2019. 103(2): p. 323-334.e7. 53. Tang, Y.P., et al., Genetic enhancement of learning and memory in mice. Nature, 1999. 401(6748): p. 63-9. 54. Bi, G.Q. and M.M. Poo, Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type. J Neurosci, 1998. 18(24): p. 10464-72. 55. Whissell, P.D., S. Tohyama, and L.J. Martin, The Use of DREADDs to Deconstruct Behavior. Front Genet, 2016. 7: p. 70. 56. Muir, J., J. Lopez, and R.C. Bagot, Wiring the depressed brain: optogenetic and chemogenetic circuit interrogation in animal models of depression. Neuropsychopharmacology, 2019. 44(6): p. 1013-1026. 57. Josselyn, S.A., S. Köhler, and P.W. Frankland, Finding the engram. Nat Rev Neurosci, 2015. 16(9): p. 521-34. 58. Tonegawa, S., et al., Memory Engram Cells Have Come of Age. Neuron, 2015. 87(5): p. 918-31. 59. Semon, R., Mnemic psychology (B. Duffy, Trans.). Concord, ma: george allen unwin.(original work published 1909), 1923. 60. Josselyn, S.A., S. Köhler, and P.W. Frankland, Heroes of the engram. Journal of Neuroscience, 2017. 37(18): p. 4647-4657. 61. Poo, M.-m., et al., What is memory? The present state of the engram. BMC biology, 2016. 14(1): p. 1-18. 62. DeNardo, L. and L. Luo, Genetic strategies to access activated neurons. Current opinion in neurobiology, 2017. 45: p. 121-129. 63. Kim, C.K., A. Adhikari, and K. Deisseroth, Integration of optogenetics with complementary methodologies in systems neuroscience. Nat Rev Neurosci, 2017. 18(4): p. 222-235. 64. Zhang, Z., et al., Neuronal ensembles sufficient for recovery sleep and the sedative actions of α2 adrenergic agonists. Nat Neurosci, 2015. 18(4): p. 553-561. 65. Choi, J.H., et al., Interregional synaptic maps among engram cells underlie memory formation. Science, 2018. 360(6387): p. 430-435. 66. Kim, J.I., D.I. Choi, and B.K. Kaang, Strengthened connections between engrams encode specific memories. BMB Rep, 2018. 51(8): p. 369-370. 67. Butler, C.W., et al., Evidence that a defined population of neurons in lateral amygdala is directly involved in auditory fear learning and memory. Neurobiol Learn Mem, 2020. 168: p. 107139. 68. Butler, C.W., et al., Neurons Specifically Activated by Fear Learning in Lateral Amygdala Display Increased Synaptic Strength. eNeuro, 2018. 5(3). 69. Tonegawa, S., et al., Memory engram storage and retrieval. Curr Opin Neurobiol, 2015. 35: p. 101-9. 70. Pignatelli, M., et al., Engram Cell Excitability State Determines the Efficacy of Memory Retrieval. Neuron, 2019. 101(2): p. 274-284.e5. 71. Liu, X., S. Ramirez, and S. Tonegawa, Inception of a false memory by optogenetic manipulation of a hippocampal memory engram. Philos Trans R Soc Lond B Biol Sci, 2014. 369(1633): p. 20130142. 72. Ramirez, S., et al., Creating a false memory in the hippocampus. Science, 2013. 341(6144): p. 387-91.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82173-
dc.description.abstract"做惡夢以及睡眠障礙是作為一個診斷急性壓力疾病 (acute stress disorder) 以及創傷後壓力症候群 (posttraumatic stress disorder, PTSD) 的判斷依據,同時創傷的經驗往往在惡夢中重複出現。然而,在這行為下的神經機制仍尚未被表明,我們推測重複出現的恐懼記憶會導致睡眠障礙。過去文獻中顯示,在腹側海馬迴CA1的位置 (ventral CA1, vCA1) 至基底杏仁核 (basal amygdala, BA) 的神經路徑中有群神經細胞能儲存環境恐懼記憶 (contextual fear memory),而且當經歷壓力源刺激後這群細胞會在睡眠的時候再度活化 (reactivate)。我們假設在vCA1-BA神經路徑中對電腳刺激有反應的神經細胞能儲存恐懼記憶,當這些細胞被創傷事件刺激後再度被刺激時會引起小鼠的睡眠障礙。為了證實這個假說,我們運用回溯型神經染劑 (Fluoro-Gold, FG) 注射至下游BA,以及在小鼠睡眠時再度聽到與恐懼聯想的信號 (cue) 時的立即早期基因 (immediate early gene, IMG) cfos的表現,在上游vCA1去做觀察。我們的初步結果顯示在經歷過恐懼制約 (fear conditioning) 的組別有較高的cfos,顯示出vCA1-BA神經路徑的神經活性會參與在恐懼記憶回想 (memory retrieval) 行為中。 接著利用光遺傳學 (Optogenetics) 以及化學遺傳學 (Chemogenetics) 的方式測試vCA1-BA神經路徑以及睡眠障礙的因果關係。我們的結果顯示當在睡眠中主動活化vCA1-BA能夠喚醒老鼠,並且引起恐懼。另一方面,當vCA1-BA被抑制時可以緩解因恐懼而睡眠中斷的現象以及恐懼行為表現。 最後,為了模仿在睡眠中記憶的回想 (recall) ,我們利用神經活性依賴的標誌技術(activity-dependent labeling technique) – cFos-tTA去捕捉在vCA1-BA神經路徑中對電腳有反應的細胞並且使他們表現光通道蛋白 (channelrhodopsine) ,在睡眠時主動活化他們。我們的結果顯示光操弄這些在vCA1-BA神經路徑中的對電腳有反應的細胞,一樣能引起小鼠的睡眠障礙。 總結這份論文,我們發現在腹側海馬迴CA1區域至基底杏仁核之神經路徑中有群對急性壓力敏感的細胞,其活性對於恐懼引起的睡眠問題扮演著很重要的角色。藉由這個發現,我們期望能透過了解行為下的神經路徑,給予一個新的切入點在治療急性壓力引起的睡眠障礙症狀上。"zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-25T06:33:11Z (GMT). No. of bitstreams: 1
U0001-0608202115191000.pdf: 3497462 bytes, checksum: 9f4a536169a4efb08dbea4fe2cca2b22 (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents"口試審定書 i 誌謝 ii 中文摘要 iii 英文摘要 v General Introduction 1 Chapter 1 4 1.1 Abstract 4 1.2 Introduction 4 1.3 Material and Methods 5 1.3.1 Animals 5 1.3.2 Surgery 6 1.3.3 Experimental procedures and data collection 7 1.3.4 Immunohistochemistry 7 1.3.5 Microscopic imaging, and cell counting 8 1.3.6 Statistics 9 1.4 Results 10 1.4.1 vCA1-BA projection involves fear-related arousal 10 1.5 Discussion 11 1.6 Figure 12 Chapter 2 14 2.1 Abstract 14 2.2 Introduction 15 2.3 Material and Methods 16 2.3.1 Animals 16 2.3.2 Virus preparations 16 2.3.3 Surgery 17 2.3.4 Experimental procedures and data collection 18 2.3.5 Microscopic imaging 20 2.3.6 Data analysis 21 2.3.7 Statistics 22 2.4 Results 23 2.4.1 vCA1-BA activity contributes to fear-related arousal 23 2.4.2 Activating vCA1-BA pathway induced fear 23 2.4.3 The inhibition of vCA1-BA pathway relief wake-up ratio 24 2.4.4 Silencing vCA1-BA pathway alleviated freezing response 25 2.5 Discussion 26 2.5.1 The manipulation in the vCA1-BA circuit during sleep. 26 2.5.2 The manipulation in the vCA1-BA circuit altered the freezing response. 27 2.6 Figure 29 Chapter 3 40 3.1 Abstract 40 3.2 Introduction 41 3.3 Material and Methods 43 3.3.1 Animals 43 3.3.2 Virus preparations 43 3.3.3 Surgery 43 3.3.4 Experimental procedures and data collection 45 3.3.5 Immunohistochemistry 47 3.3.6 Microscopic imaging, and cell counting 47 3.3.6 Data analysis 48 3.3.7 Statistics 49 3.4 Results 50 3.4.1 Activating engrams in the vCA1-BA pathway aroused mice and induced a prominent freezing response 50 3.5 Discussion 51 3.6 Figure 53 Overall Conclusion 58 Supplementary data 60 References 64"
dc.language.isoen
dc.subject腹側海馬迴zh_TW
dc.subject睡眠障礙zh_TW
dc.subject杏仁核zh_TW
dc.subject恐懼記憶相關細胞zh_TW
dc.subject光遺傳學zh_TW
dc.subject化學遺傳學zh_TW
dc.subjectoptogeneticsen
dc.subjectfear-memory-associated neuronsen
dc.subjectsleep disturbanceen
dc.subjectbasal amygdalaen
dc.subjectventral hippocampusen
dc.subjectchemogeneticsen
dc.title在腹側海馬迴至杏仁核神經路徑中與恐懼記憶相關之神經細胞影響小鼠睡眠zh_TW
dc.titleFear-memory-associated neurons in ventral hippocampal-amygdala circuit disturb sleep in miceen
dc.date.schoolyear109-2
dc.description.degree碩士
dc.contributor.oralexamcommittee張芳嘉(Hsin-Tsai Liu),姚皓傑(Chih-Yang Tseng),周銘翊
dc.subject.keyword腹側海馬迴,杏仁核,睡眠障礙,恐懼記憶相關細胞,光遺傳學,化學遺傳學,zh_TW
dc.subject.keywordventral hippocampus,basal amygdala,sleep disturbance,fear-memory-associated neurons,optogenetics,chemogenetics,en
dc.relation.page70
dc.identifier.doi10.6342/NTU202102153
dc.rights.note未授權
dc.date.accepted2021-08-09
dc.contributor.author-college獸醫專業學院zh_TW
dc.contributor.author-dept獸醫學研究所zh_TW
dc.date.embargo-lift2026-08-06-
顯示於系所單位:獸醫學系

文件中的檔案:
檔案 大小格式 
U0001-0608202115191000.pdf
  未授權公開取用
3.42 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved