請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82172完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 劉興華(Shing-Hwa Liu) | |
| dc.contributor.author | Pei-Chen Chen | en |
| dc.contributor.author | 陳珮甄 | zh_TW |
| dc.date.accessioned | 2022-11-25T06:33:10Z | - |
| dc.date.copyright | 2021-08-31 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-08-09 | |
| dc.identifier.citation | 1. K. K. Sindhu, 'Uremic toxins: some thoughts on acrolein and spermine,' Ren Fail, vol. 38, no. 10, pp. 1755-1758, 2016. 2. C. Leuchtenberger, R. Leuchtenberger, and I. Zbinden, 'Gas vapour phase constituents and SH reactivity of cigarette smoke influence lung cultures,' Nature, vol. 247, no. 5442, pp. 565-7, 1974. 3. D. M. Comer, J. S. Elborn, and M. Ennis, 'Inflammatory and cytotoxic effects of acrolein, nicotine, acetylaldehyde and cigarette smoke extract on human nasal epithelial cells,' BMC Pulm Med, vol. 14, pp. 32, 2014. 4. A. Tanel, P. Pallepati, A. Bettaieb, P. Morin, and D. A. Averill-Bates, 'Acrolein activates cell survival and apoptotic death responses involving the endoplasmic reticulum in A549 lung cells,' Biochim Biophys Acta, vol. 1843, no. 5, pp. 827-35, 2014. 5. E. I. Finkelstein, M. Nardini, and A. van der Vliet, 'Inhibition of neutrophil apoptosis by acrolein: a mechanism of tobacco-related lung disease?,' Am J Physiol Lung Cell Mol Physiol, vol. 281, no. 3, pp. L732-9, 2001. 6. G. J. Jakab, 'Adverse effect of a cigarette smoke component, acrolein, on pulmonary antibacterial defenses and on viral-bacterial interactions in the lung,' Am Rev Respir Dis, vol. 115, no. 1, pp. 33-8, 1977. 7. L. Li, and A. Holian, 'Acrolein: a respiratory toxin that suppresses pulmonary host defense,' Rev Environ Health, vol. 13, no. 1-2, pp. 99-108, 1998. 8. D. L. Costa, R. S. Kutzman, J. R. Lehmann, and R. T. Drew, 'Altered lung function and structure in the rat after subchronic exposure to acrolein,' Am Rev Respir Dis, vol. 133, no. 2, pp. 286-91, 1986. 9. A. Tanel, and D. A. Averill-Bates, 'Activation of the death receptor pathway of apoptosis by the aldehyde acrolein,' Free Radic Biol Med, vol. 42, no. 6, pp. 798-810, 2007. 10. X. He, W. Song, C. Liu, S. Chen, and J. Hua, 'Rapamycin inhibits acrolein-induced apoptosis by alleviating ROS-driven mitochondrial dysfunction in male germ cells,' Cell Prolif, vol. 47, no. 2, pp. 161-71, 2014. 11. A. Korkmaz, T. Topal, and S. Oter, 'Pathophysiological aspects of cyclophosphamide and ifosfamide induced hemorrhagic cystitis; implication of reactive oxygen and nitrogen species as well as PARP activation,' Cell Biol Toxicol, vol. 23, no. 5, pp. 303-12, 2007. 12. K. A. Mills, R. Chess-Williams, and C. McDermott, 'Novel insights into the mechanism of cyclophosphamide-induced bladder toxicity: chloroacetaldehyde's contribution to urothelial dysfunction in vitro,' Arch Toxicol, vol. 93, no. 11, pp. 3291-3303, 2019. 13. K. Kurauchi, T. Nishikawa, E. Miyahara, Y. Okamoto, and Y. Kawano, 'Role of metabolites of cyclophosphamide in cardiotoxicity,' BMC Res Notes, vol. 10, no. 1, pp. 406, 2017. 14. A. Gugliucci, N. Lunceford, E. Kinugasa, H. Ogata, J. Schulze, and S. Kimura, 'Acrolein inactivates paraoxonase 1: changes in free acrolein levels after hemodialysis correlate with increases in paraoxonase 1 activity in chronic renal failure patients,' Clin Chim Acta, vol. 384, no. 1-2, pp. 105-12, 2007. 15. C. Jösch, L. O. Klotz, and H. Sies, 'Identification of cytosolic leucyl aminopeptidase (EC 3.4.11.1) as the major cysteinylglycine-hydrolysing activity in rat liver,' Biol Chem, vol. 384, no. 2, pp. 213-8, 2003. 16. M. W. Lieberman, R. Barrios, B. Z. Carter, G. M. Habib, R. M. Lebovitz, S. Rajagopalan, A. R. Sepulveda, Z. Z. Shi, and D. F. Wan, 'gamma-Glutamyl transpeptidase. What does the organization and expression of a multipromoter gene tell us about its functions?,' Am J Pathol, vol. 147, no. 5, pp. 1175-85, 1995. 17. S. G. Carmella, M. Chen, Y. Zhang, S. Zhang, D. K. Hatsukami, and S. S. Hecht, 'Quantitation of acrolein-derived (3-hydroxypropyl)mercapturic acid in human urine by liquid chromatography-atmospheric pressure chemical ionization tandem mass spectrometry: effects of cigarette smoking,' Chem Res Toxicol, vol. 20, no. 7, pp. 986-90, 2007. 18. F. Lehmann, 'evolution of nitrogen-based alkylating anticancer agents,' Processes, 2021. 19. A. Gęgotek, and E. Skrzydlewska, 'Biological effect of protein modifications by lipid peroxidation products,' Chem Phys Lipids, vol. 221, pp. 46-52, 2019. 20. J. Ou, J. Zheng, J. Huang, C. T. Ho, and S. Ou, 'Interaction of Acrylamide, Acrolein, and 5-Hydroxymethylfurfural with Amino Acids and DNA,' J Agric Food Chem, vol. 68, no. 18, pp. 5039-5048, 2020. 21. K. Jiang, Z. Yin, P. Zhou, H. Guo, C. Huang, G. Zhang, W. Hu, S. Ou, and J. Ou, 'The scavenging capacity of γ-aminobutyric acid for acrolein and the cytotoxicity of the formed adduct,' Food Funct, vol. 11, no. 9, pp. 7736-7747, 2020. 22. R. A. Kowluru, and M. Mishra, 'Oxidative stress, mitochondrial damage and diabetic retinopathy,' Biochim Biophys Acta, vol. 1852, no. 11, pp. 2474-83, 2015. 23. Y. T. Wang, H. C. Lin, W. Z. Zhao, H. J. Huang, Y. L. Lo, H. T. Wang, and A. M. Lin, 'Acrolein acts as a neurotoxin in the nigrostriatal dopaminergic system of rat: involvement of α-synuclein aggregation and programmed cell death,' Sci Rep, vol. 7, pp. 45741, 2017. 24. Dmitriy Matveychuk, Serdar M. Dursun, Paul L. Wood, and Glen B. Baker, 'Reactive Aldehydes and Neurodegenerative Disorders ' Bulletin of Clinical Psychopharmacology, 2011. 25. R. J. Henning, G. T. Johnson, J. P. Coyle, and R. D. Harbison, 'Acrolein Can Cause Cardiovascular Disease: A Review,' Cardiovasc Toxicol, vol. 17, no. 3, pp. 227-236, 2017. 26. A. G. Feroe, R. Attanasio, and F. Scinicariello, 'Acrolein metabolites, diabetes and insulin resistance,' Environ Res, vol. 148, pp. 1-6, 2016. 27. S. M. Cohen, E. M. Garland, M. St John, T. Okamura, and R. A. Smith, 'Acrolein initiates rat urinary bladder carcinogenesis,' Cancer Res, vol. 52, no. 13, pp. 3577-81, 1992. 28. P. A. Monach, L. M. Arnold, and P. A. Merkel, 'Incidence and prevention of bladder toxicity from cyclophosphamide in the treatment of rheumatic diseases: a data-driven review,' Arthritis Rheum, vol. 62, no. 1, pp. 9-21, 2010. 29. A. Moghe, S. Ghare, B. Lamoreau, M. Mohammad, S. Barve, C. McClain, and S. Joshi-Barve, 'Molecular mechanisms of acrolein toxicity: relevance to human disease,' Toxicol Sci, vol. 143, no. 2, pp. 242-55, 2015. 30. R. Vanholder, A. Argilés, U. Baurmeister, P. Brunet, W. Clark, G. Cohen, P. P. De Deyn, R. Deppisch, B. Descamps-Latscha, T. Henle, A. Jorres, Z. A. Massy, M. Rodriguez, B. Stegmayr, P. Stenvinkel, and M. L. Wratten, 'Uremic toxicity: present state of the art,' Int J Artif Organs, vol. 24, no. 10, pp. 695-725, 2001. 31. K. Sakata, K. Kashiwagi, S. Sharmin, S. Ueda, and K. Igarashi, 'Acrolein produced from polyamines as one of the uraemic toxins,' Biochem Soc Trans, vol. 31, no. 2, pp. 371-4, 2003. 32. K. Igarashi, T. Uemura, and K. Kashiwagi, 'Acrolein: An Effective Biomarker for Tissue Damage Produced from Polyamines,' Methods Mol Biol, vol. 1694, pp. 459-468, 2018. 33. J. H. Hong, P. A. H. Lee, Y. C. Lu, C. Y. Huang, C. H. Chen, C. H. Chiang, P. M. Chow, F. S. Jaw, C. C. Wang, C. Y. Huang, T. W. Wang, J. H. Liu, and H. T. Wang, 'Acrolein contributes to urothelial carcinomas in patients with chronic kidney disease,' Urol Oncol, vol. 38, no. 5, pp. 465-475, 2020. 34. M. S. Ahmed, H. Langer, M. Abed, J. Voelkl, and F. Lang, 'The uremic toxin acrolein promotes suicidal erythrocyte death,' Kidney Blood Press Res, vol. 37, no. 2-3, pp. 158-67, 2013. 35. J. J. Creely, S. J. DiMari, A. M. Howe, and M. A. Haralson, 'Effects of transforming growth factor-beta on collagen synthesis by normal rat kidney epithelial cells,' Am J Pathol, vol. 140, no. 1, pp. 45-55, 1992. 36. Y. Hu, M. A. Benedict, D. Wu, N. Inohara, and G. Núñez, 'Bcl-XL interacts with Apaf-1 and inhibits Apaf-1-dependent caspase-9 activation,' Proc Natl Acad Sci U S A, vol. 95, no. 8, pp. 4386-91, 1998. 37. J. C. Kern, and J. P. Kehrer, 'Acrolein-induced cell death: a caspase-influenced decision between apoptosis and oncosis/necrosis,' Chem Biol Interact, vol. 139, no. 1, pp. 79-95, 2002. 38. A. Tanel, and D. A. Averill-Bates, 'Inhibition of acrolein-induced apoptosis by the antioxidant N-acetylcysteine,' J Pharmacol Exp Ther, vol. 321, no. 1, pp. 73-83, 2007. 39. K. Takeuchi, M. Kato, H. Suzuki, A. A. Akhand, J. Wu, K. Hossain, T. Miyata, Y. Matsumoto, Y. Nimura, and I. Nakashima, 'Acrolein induces activation of the epidermal growth factor receptor of human keratinocytes for cell death,' J Cell Biochem, vol. 81, no. 4, pp. 679-88, 2001. 40. A. Tanel, and D. A. Averill-Bates, 'The aldehyde acrolein induces apoptosis via activation of the mitochondrial pathway,' Biochim Biophys Acta, vol. 1743, no. 3, pp. 255-67, 2005. 41. P. Haberzettl, E. Vladykovskaya, S. Srivastava, and A. Bhatnagar, 'Role of endoplasmic reticulum stress in acrolein-induced endothelial activation,' Toxicol Appl Pharmacol, vol. 234, no. 1, pp. 14-24, 2009. 42. B. G. Hill, P. Haberzettl, Y. Ahmed, S. Srivastava, and A. Bhatnagar, 'Unsaturated lipid peroxidation-derived aldehydes activate autophagy in vascular smooth-muscle cells,' Biochem J, vol. 410, no. 3, pp. 525-34, 2008. 43. N. Rout-Pitt, N. Farrow, D. Parsons, and M. Donnelley, 'Epithelial mesenchymal transition (EMT): a universal process in lung diseases with implications for cystic fibrosis pathophysiology,' Respir Res, vol. 19, no. 1, pp. 136, 2018. 44. R. C. Stone, I. Pastar, N. Ojeh, V. Chen, S. Liu, K. I. Garzon, and M. Tomic-Canic, 'Epithelial-mesenchymal transition in tissue repair and fibrosis,' Cell Tissue Res, vol. 365, no. 3, pp. 495-506, 2016. 45. R. Kalluri, and E. G. Neilson, 'Epithelial-mesenchymal transition and its implications for fibrosis,' J Clin Invest, vol. 112, no. 12, pp. 1776-84, 2003. 46. S. E. Lee, and Y. S. Park, 'Role of lipid peroxidation-derived α, β-unsaturated aldehydes in vascular dysfunction,' Oxid Med Cell Longev, vol. 2013, pp. 629028, 2013. 47. S. Pizzimenti, E. Ciamporcero, M. Daga, P. Pettazzoni, A. Arcaro, G. Cetrangolo, R. Minelli, C. Dianzani, A. Lepore, F. Gentile, and G. Barrera, 'Interaction of aldehydes derived from lipid peroxidation and membrane proteins,' Front Physiol, vol. 4, pp. 242, 2013. 48. K. Uchida, 'Current status of acrolein as a lipid peroxidation product,' Trends Cardiovasc Med, vol. 9, no. 5, pp. 109-13, 1999. 49. K. Uchida, M. Kanematsu, Y. Morimitsu, T. Osawa, N. Noguchi, and E. Niki, 'Acrolein is a product of lipid peroxidation reaction. Formation of free acrolein and its conjugate with lysine residues in oxidized low density lipoproteins,' J Biol Chem, vol. 273, no. 26, pp. 16058-66, 1998. 50. R. Inagi, Y. Ishimoto, and M. Nangaku, 'Proteostasis in endoplasmic reticulum--new mechanisms in kidney disease,' Nat Rev Nephrol, vol. 10, no. 7, pp. 369-78, 2014. 51. M. Yan, S. Shu, C. Guo, C. Tang, and Z. Dong, 'Endoplasmic reticulum stress in ischemic and nephrotoxic acute kidney injury,' Ann Med, vol. 50, no. 5, pp. 381-390, 2018. 52. A. V. Cybulsky, 'Endoplasmic reticulum stress, the unfolded protein response and autophagy in kidney diseases,' Nat Rev Nephrol, vol. 13, no. 11, pp. 681-696, 2017. 53. A. Baisantry, S. Bhayana, S. Rong, E. Ermeling, C. Wrede, J. Hegermann, P. Pennekamp, I. Sörensen-Zender, H. Haller, A. Melk, and R. Schmitt, 'Autophagy Induces Prosenescent Changes in Proximal Tubular S3 Segments,' J Am Soc Nephrol, vol. 27, no. 6, pp. 1609-16, 2016. 54. M. J. Livingston, H. F. Ding, S. Huang, J. A. Hill, X. M. Yin, and Z. Dong, 'Persistent activation of autophagy in kidney tubular cells promotes renal interstitial fibrosis during unilateral ureteral obstruction,' Autophagy, vol. 12, no. 6, pp. 976-98, 2016. 55. S. Shu, J. Zhu, Z. Liu, C. Tang, J. Cai, and Z. Dong, 'Endoplasmic reticulum stress is activated in post-ischemic kidneys to promote chronic kidney disease,' EBioMedicine, vol. 37, pp. 269-280, 2018. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82172 | - |
| dc.description.abstract | "丙烯醛是個無所不在的環境汙染物,人類的暴露途徑通常是從飲食、抽菸、汽車廢氣以及體內脂質過氧化,丙烯醛也是化療藥物Cyclophosphamide 的代謝產物之一,其引發的嚴重副作用,例如:出血性膀胱炎、腎盂炎、輸尿管炎及血尿等,先前研究指出丙烯醛是個內源性的尿毒症毒素,會促使慢性腎臟病患者發生泌尿道上皮細胞癌,但目前鮮少研究針對丙烯醛造成腎臟形態與功能的影響,因此本篇研究欲探討丙烯醛是否會使腎臟產生毒性反應與潛在的作用機制為何。首先,細胞實驗中以丙烯醛10, 15, 20 μM培養大鼠腎小管上皮細胞NRK-52E細胞,經24小時後結果顯示會造成細胞凋亡以及蛋白水解酶活化,也會刺激氧化壓力產生並引起內質網壓力,其作用機制為上游的Bip蛋白表現增加,進而活化下游的IRE1α‑XBP1和eIF2α‐ATF4‐CHOP訊號途徑;另外也觀察到SMAD 2/3途徑被活化,轉錄因子Snail進入細胞核,造成細胞上皮間質轉化(epithelial-mesenchymal transition, EMT)的相關蛋白E-cadherin表現量下降、N-cadherin、Fibronectin、α-SMA、Vimentin表現量增加,加入2 mM抗氧化劑N acetyl cysteine (NAC),預處理2.5小時後再加入acrolein,可觀察到與內質網壓力相關的訊號途徑皆被抑制。動物實驗中,給予五週齡ICR公鼠2.5, 5, 10 mg/kg/day的丙烯醛,另外三組再給予NAC,此外還有一組只給予純水當作控制組,總共七組,以管餵的方式連續給藥一個月,每週秤重兩次,四周後收集腎臟組織,以西方點墨法結果再次驗證細胞實驗,而給予丙烯醛的組別中,老鼠的血清具有較高的空腹血糖值、胰島素、三酸甘油脂以及脂質過氧化代謝物。除此之外,在組織學分析結果中,丙烯醛引起腎小球和腎小管的形態改變、腎臟纖維化,並呈現劑量依賴性,且有給予NAC的組別中皆被抑制。藉由本研究希望瞭解丙烯醛對於腎臟細胞及功能損傷之作用及可能機轉。" | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-25T06:33:10Z (GMT). No. of bitstreams: 1 U0001-0908202111110900.pdf: 6311136 bytes, checksum: cdf27482a0a5db39c164d556b22b6fa3 (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | "口試委員會審定書(I) 誌謝(II) 中文摘要(III) Abstract(IV) Contents(VI) List of abbreviation(VIII) Part 1: Introduction(1) 1.1 Exposure routes and metabolism of acrolein(1) 1.2 Acrolein-related toxicity and diseases(2) 1.3 Effects of acrolein on kidney(4) 1.4 Aims(5) Part 2: Materials and methods(6) 2.1 Cell culture(6) 2.2 Acrolein treatment(6) 2.3 MTT cell proliferation assay(6) 2.4 DCFDA cellular ROS detection assay(7) 2.5 Western blot analysis(7) 2.6 Animal treatment(9) 2.7 Oral glucose tolerance test (OGTT) (9) 2.8 Measurements of insulin and TBARS level in serum samples(10) 2.9 Histological staining(10) 2.10 Statistics(11) Part 3: Results(12) 3.1 Effects of cytotoxicity and apoptosis induced by acrolein in NRK-52E cells.(12) 3.2 Investigation into the mechanisms of acrolein-induced cell apoptosis.(13) 3.2.1 Acrolein causes ROS generation through the ER-mediated pathway.(13) 3.2.2 NAC inhibits acrolein-triggered ER stress.(13) 4.1 Effects of acrolein on body weight, organ weight and blood glucose in mice.(15) 4.2 Investigation into the results of ER stress in kidney after exposed to acrolein. (16) 4.3 Pathological changes caused by exposure to acrolein in mice.(16) Part 4: Discussion(18) Part 5: Conclusion(23) Part 6: Figures(24) Part 7: References(48)" | |
| dc.language.iso | en | |
| dc.subject | 氧化壓力 | zh_TW |
| dc.subject | NRK-52E | zh_TW |
| dc.subject | 丙烯醛 | zh_TW |
| dc.subject | 醛類 | zh_TW |
| dc.subject | 內質網壓力 | zh_TW |
| dc.subject | 腎上皮細胞 | zh_TW |
| dc.subject | endoplasmic reticulum stress | en |
| dc.subject | NRK-52E | en |
| dc.subject | renal epithelial cell | en |
| dc.subject | acrolein | en |
| dc.subject | aldehydes | en |
| dc.subject | oxidative stress | en |
| dc.title | 探討體內/體外丙烯醛對腎近端小管上皮細胞生長及功能的毒理作用與機制 | zh_TW |
| dc.title | Toxicological Effects and Mechanisms of Acrolein on Renal Proximal Tubular Epithelial Cell Growth and Function in vitro and in vivo | en |
| dc.date.schoolyear | 109-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 姜至剛(Hsin-Tsai Liu),洪冠予(Chih-Yang Tseng) | |
| dc.subject.keyword | 丙烯醛,醛類,內質網壓力,氧化壓力,腎上皮細胞,NRK-52E, | zh_TW |
| dc.subject.keyword | acrolein,aldehydes,endoplasmic reticulum stress,oxidative stress,renal epithelial cell,NRK-52E, | en |
| dc.relation.page | 57 | |
| dc.identifier.doi | 10.6342/NTU202102200 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2021-08-09 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 毒理學研究所 | zh_TW |
| dc.date.embargo-lift | 2023-09-01 | - |
| 顯示於系所單位: | 毒理學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-0908202111110900.pdf 未授權公開取用 | 6.16 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
