Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82171
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王勝仕(Sheng-Shih Wang)
dc.contributor.authorYi-Syue Guoen
dc.contributor.author郭宜學zh_TW
dc.date.accessioned2022-11-25T06:33:09Z-
dc.date.copyright2021-11-11
dc.date.issued2021
dc.date.submitted2021-08-11
dc.identifier.citationVision impairment and blindness. World Health Organisation 2019; Available from: www.who.int/news-room/fact-sheets/detail/blindness-and-visual-impairment. 2. Hashemi, H., et al., Global and regional prevalence of age-related cataract: a comprehensive systematic review and meta-analysis. Eye, 2020. 34(8): p. 1357-1370. 3. Eckert, R., pH gating of lens fibre connexins. Pflügers Archiv, 2002. 443(5): p. 843-851. 4. Su, S.-P., et al., Truncation, cross-linking and interaction of crystallins and intermediate filament proteins in the aging human lens. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics, 2011. 1814(5): p. 647-656. 5. Karakosta, C., et al., Cataract in the human lens: a systematic review of proteomic studies. medRxiv, 2020: p. 19009035. 6. Vendra, V.P.R., et al., Gamma crystallins of the human eye lens. Biochimica et Biophysica Acta (BBA)-General Subjects, 2016. 1860(1): p. 333-343. 7. Avetisov, K., et al., Biomechanical properties of the lens capsule: A review. Journal of the mechanical behavior of biomedical materials, 2020. 103: p. 103600. 8. Wride, M.A., Lens fibre cell differentiation and organelle loss: many paths lead to clarity. Philosophical Transactions of the Royal Society B: Biological Sciences, 2011. 366(1568): p. 1219-1233. 9. Lim, J.C., et al., Age‐dependent changes in glutathione metabolism pathways in the lens: New insights into therapeutic strategies to prevent cataract formation—A review. Clinical Experimental Ophthalmology, 2020. 48(8): p. 1031-1042. 10. Chaudhury, S., et al., EGCG prevents tryptophan oxidation of cataractous ocular lens human γ-crystallin in presence of H2O2. International journal of biological macromolecules, 2015. 77: p. 287-292. 11. Forman, H.J., H. Zhang, and A. Rinna, Glutathione: overview of its protective roles, measurement, and biosynthesis. Molecular aspects of medicine, 2009. 30(1-2): p. 1-12. 12. Chaudhury, S., et al., Protection of human γB-crystallin from UV-induced damage by epigallocatechin gallate: spectroscopic and docking studies. Molecular BioSystems, 2016. 12(9): p. 2901-2909. 13. Vaghefi, E. and P.J. Donaldson, The lens internal microcirculation system delivers solutes to the lens core faster than would be predicted by passive diffusion. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 2018. 315(5): p. R994-R1002. 14. Messina-Baas, O. and S.A. Cuevas-Covarrubias, Inherited congenital cataract: a guide to suspect the genetic etiology in the cataract genesis. Molecular syndromology, 2017. 8(2): p. 58-78. 15. Lam, D., et al., Cataract. Nature reviews Disease primers, 2015. 1(1): p. 1-15. 16. Gali, H.E., R. Sella, and N.A. Afshari, Cataract grading systems: a review of past and present. Current opinion in ophthalmology, 2019. 30(1): p. 13-18. 17. Liu, Y.-C., et al., Cataracts. The Lancet, 2017. 390(10094): p. 600-612. 18. Rana, S., et al., Elucidation of molecular interactions between human γD-crystallin and quercetin, an inhibitor against tryptophan oxidation. Journal of Biomolecular Structure and Dynamics, 2020: p. 1-8. 19. Zhong, Z., et al., Novel mutations in CRYGC are associated with congenital cataracts in Chinese families. Scientific reports, 2017. 7(1): p. 1-7. 20. Surve, A., C. Dhull, and S.K. Khokhar, Metabolic Cataract, in Atlas of Pediatric Cataract. 2019, Springer. p. 35-40. 21. Shah, T.J., M.D. Conway, and G.A. Peyman, Intracameral dexamethasone injection in the treatment of cataract surgery induced inflammation: design, development, and place in therapy. Clinical Ophthalmology (Auckland, NZ), 2018. 12: p. 2223. 22. Auffarth, G.U. and D.J. Apple, The Evolution of Intraocular Lenses. Der Ophthalmologe, 2001. 98(11): p. 1017-1031. 23. Acar, B., I.M. Torun, and S. Acar, Evaluation of preloaded IOL delivery system and hydrophobic acrylic intraocular lens in cataract surgery. The open ophthalmology journal, 2018. 12: p. 94. 24. Kolb, C.M., et al., Comparison of femtosecond laser–assisted cataract surgery and conventional cataract surgery: a meta-analysis and systematic review. Journal of Cataract Refractive Surgery, 2020. 46(8): p. 1075-1085. 25. Lee, C.-Y., et al., Femtosecond laser-assisted cataract surgery in patients with phakic intraocular lenses and low endothelial cell counts: a case report. BMC ophthalmology, 2017. 17(1): p. 1-4. 26. Pierscionek, B.K. and J.W. Regini, The gradient index lens of the eye: an opto-biological synchrony. Progress in retinal and eye research, 2012. 31(4): p. 332-349. 27. de Jong, W.W. and N.H. Lubsen, Crystallins. eLS, 2011. 28. Moreau, K.L. and J.A. King, Protein misfolding and aggregation in cataract disease and prospects for prevention. Trends in molecular medicine, 2012. 18(5): p. 273-282. 29. Bloemendal, H., et al., Ageing and vision: structure, stability and function of lens crystallins. Progress in biophysics and molecular biology, 2004. 86(3): p. 407-485. 30. Anbarasu, K. and J. Sivakumar, Multidimensional significance of crystallin protein–protein interactions and their implications in various human diseases. Biochimica et Biophysica Acta (BBA)-General Subjects, 2016. 1860(1): p. 222-233. 31. Rivillas-Acevedo, L., A. Fernández-Silva, and C. Amero, Function, structure and stability of human gamma d crystallins: A review. Physical Biology of Proteins and Peptides, 2015: p. 81-98. 32. Hayashi, J. and J.A. Carver, The multifaceted nature of αB-crystallin. Cell Stress and Chaperones, 2020. 25: p. 639-654. 33. Xu, J., et al., Introduction of an extra tryptophan fluorophore by cataract-associating mutations destabilizes βB2-crystallin and promotes aggregation. Biochemical and biophysical research communications, 2018. 504(4): p. 851-856. 34. Serebryany, E. and J.A. King, The βγ-crystallins: Native state stability and pathways to aggregation. Progress in biophysics and molecular biology, 2014. 115(1): p. 32-41. 35. Acosta-Sampson, L. and J. King, Partially folded aggregation intermediates of human γD-, γC-, and γS-crystallin are recognized and bound by human αB-crystallin chaperone. Journal of molecular biology, 2010. 401(1): p. 134-152. 36. Li, X.Q., et al., A novel mutation impairing the tertiary structure and stability of γC‐crystallin (CRYGC) leads to cataract formation in humans and zebrafish lens. Human mutation, 2012. 33(2): p. 391-401. 37. Xi, Y.-B., et al., Congenital cataract-causing mutation G129C in γC-Crystallin promotes the accumulation of two distinct unfolding intermediates that form highly toxic aggregates. Journal of molecular biology, 2015. 427(17): p. 2765-2781. 38. Purkiss, A.G., et al., Biophysical properties of γC-crystallin in human and mouse eye lens: the role of molecular dipoles. Journal of molecular biology, 2007. 372(1): p. 205-222. 39. Dixit, K., et al., Nuclear magnetic resonance structure of a major lens protein, human γC-crystallin: role of the dipole moment in protein solubility. Biochemistry, 2016. 55(22): p. 3136-3149. 40. Kong, F. and J. King, Contributions of aromatic pairs to the folding and stability of long‐lived human γD‐crystallin. Protein Science, 2011. 20(3): p. 513-528. 41. Guo, Y., et al., A nonsense mutation of CRYGC associated with autosomal dominant congenital nuclear cataracts and microcornea in a Chinese pedigree. Molecular vision, 2012. 18: p. 1874. 42. Devi, R.R., et al., Crystallin gene mutations in Indian families with inherited pediatric cataract. Molecular vision, 2008. 14: p. 1157. 43. Fu, C., et al., Cataract-causing mutations L45P and Y46D promote γC-crystallin aggregation by disturbing hydrogen bonds network in the second Greek key motif. International Journal of Biological Macromolecules, 2021. 167: p. 470-478. 44. Fu, L. and J.J.-N. Liang, Unfolding of human lens recombinant βB2-and γC-crystallins. Journal of structural biology, 2002. 139(3): p. 191-198. 45. Mondal, B., J. Nagesh, and G. Reddy, Double Domain Swapping in Human γC and γD Crystallin Drives Early Stages of Aggregation. The Journal of Physical Chemistry B, 2021. 125(7): p. 1705-1715. 46. Zhao, W.-J. and Y.-B. Yan, Increasing susceptibility to oxidative stress by cataract-causing crystallin mutations. International journal of biological macromolecules, 2018. 108: p. 665-673. 47. Hains, P.G. and R.J. Truscott, Age-dependent deamidation of lifelong proteins in the human lens. Investigative ophthalmology visual science, 2010. 51(6): p. 3107-3114. 48. Srivastava, O., et al., Post-translationally modified human lens crystallin fragments show aggregation in vitro. Biochemistry and biophysics reports, 2017. 10: p. 94-131. 49. Kumar, M., et al., Mutation screening and genotype phenotype correlation of α-crystallin, γ-crystallin and GJA8 gene in congenital cataract. Molecular Vision, 2011. 17: p. 693. 50. González-Huerta, L.M., et al., A CRYGC gene mutation associated with autosomal dominant pulverulent cataract. Gene, 2013. 529(1): p. 181-185. 51. Pigaga, V. and R.A. Quinlan, Lenticular chaperones suppress the aggregation of the cataract-causing mutant T5P γC-crystallin. Experimental cell research, 2006. 312(1): p. 51-62. 52. Yao, K., et al., A nonsense mutation in CRYGC associated with autosomal dominant congenital nuclear cataract in a Chinese family. Molecular vision, 2008. 14: p. 1272. 53. Astiazarán, M.C., et al., Next generation sequencing‐based molecular diagnosis in familial congenital cataract expands the mutational spectrum in known congenital cataract genes. American Journal of Medical Genetics Part A, 2018. 176(12): p. 2637-2645. 54. Kandaswamy, D.K., et al., A novel CRYGC E128* mutation underlying an autosomal dominant nuclear cataract in a south Indian kindred. Ophthalmic Genetics, 2020. 41(6): p. 556-562. 55. Ma, Z., et al., Overexpression of human γC-crystallin 5 bp duplication disrupts lens morphology in transgenic mice. Investigative ophthalmology visual science, 2011. 52(8): p. 5369-5375. 56. Kondo, Y., et al., Pathogenic mutations in two families with congenital cataract identified with whole-exome sequencing. Molecular vision, 2013. 19: p. 384. 57. Sharma, V. and K.S. Ghosh, Inhibition of amyloid fibrillation and destabilization of fibrils of human γD-crystallin by direct red 80 and orange G. International journal of biological macromolecules, 2017. 105: p. 956-964. 58. Wang, Y., et al., Formation of amyloid fibrils in vitro from partially unfolded intermediates of human γC-crystallin. Investigative ophthalmology visual science, 2010. 51(2): p. 672-678. 59. Bettelheim, F.A., et al., Topographic correspondence between total and non-freezable water content and the appearance of cataract in human lenses. Current eye research, 1986. 5(12): p. 925-932. 60. Chang, C.-K., et al., Investigation of the early stages of human γD-crystallin aggregation process. Journal of Biomolecular Structure and Dynamics, 2017. 35(5): p. 1042-1054. 61. Meehan, S., et al., Amyloid fibril formation by lens crystallin proteins and its implications for cataract formation. Journal of Biological Chemistry, 2004. 279(5): p. 3413-3419. 62. Bera, S., et al., Organization of amino acids into layered supramolecular secondary structures. Accounts of chemical research, 2018. 51(9): p. 2187-2197. 63. Wu, J.W., et al., Comparative analysis of human γD-crystallin aggregation under physiological and low pH conditions. PLoS One, 2014. 9(11): p. e112309. 64. Fu, L. and J. Liang, Spectroscopic analysis of lens recombinant betaB2-and gammaC-crystallin. Mol Vis, 2001. 7: p. 178-183. 65. Fu, L. and J.J.-N. Liang, Conformational change and destabilization of cataract γC-crystallin T5P mutant. FEBS letters, 2002. 513(2-3): p. 213-216. 66. Wen, W.S., A study of expression, purification and aggregation behaviors of Human γD crystallin, in Department of Chmemical Engineering College of Engineering. 2012, National Taiwan University. 67. Lu, J.H., Exploring the Effects of Small Molecules on the Aggregation of Human γD-Crystallin Protein, in Department of Chmemical Engineering College of Engineering. 2019, National Taiwan University. 68. Hsieh, M.C., Expression and purification of Human γD crystallin, in Department of Chmemical Engineering College of Engineering. 2007, National Taiwan University. 69. Hamill, P.G., et al., Microbial lag phase can be indicative of, or independent from, cellular stress. Scientific reports, 2020. 10(1): p. 1-20. 70. He, F., Bradford protein assay. Bio-protocol, 2011: p. e45-e45. 71. He, F., BCA (bicinchoninic acid) protein assay. Bio-protocol, 2011. 101: p. e44. 72. Hill, H.D. and J.G. Straka, Protein determination using bicinchoninic acid in the presence of sulfhydryl reagents. Analytical biochemistry, 1988. 170(1): p. 203-208. 73. Sahin, E., et al., Comparative effects of pH and ionic strength on protein–protein interactions, unfolding, and aggregation for IgG1 antibodies. Journal of pharmaceutical sciences, 2010. 99(12): p. 4830-4848. 74. Boatz, J.C., et al., Cataract-associated P23T γD-crystallin retains a native-like fold in amorphous-looking aggregates formed at physiological pH. Nature communications, 2017. 8(1): p. 1-10. 75. Roskamp, K.W., et al., Multiple aggregation pathways in human γS-crystallin and its aggregation-prone G18V variant. Investigative ophthalmology visual science, 2017. 58(4): p. 2397-2405. 76. Song, I.-K., et al., Cataract-Associated New Mutants S175G/H181Q of βΒ2-Crystallin and P24S/S31G of γD-Crystallin Are Involved in Protein Aggregation by Structural Changes. International journal of molecular sciences, 2020. 21(18): p. 6504. 77. Kumarasamy, A., et al., Peptide-induced formation of protein aggregates and amyloid fibrils in human and guinea pig αA-crystallins under physiological conditions of temperature and pH. Experimental eye research, 2019. 179: p. 193. 78. Kaur, M., et al., Stability and cytotoxicity of crystallin amyloid nanofibrils. Nanoscale, 2014. 6(21): p. 13169-13178. 79. Du, X., et al., Tracking aggregation behaviour and gel properties induced by structural alterations in myofibrillar protein in mirror carp (Cyprinus carpio) under the synergistic effects of pH and heating. Food Chemistry, 2021. 362: p. 130222. 80. Bari, K.J., S. Sharma, and K.V. Chary, Structural and functional characterization of a missense mutant of human γS-crystallin associated with dominant infantile cataracts. Biochemical and biophysical research communications, 2018. 506(4): p. 862-867. 81. Abu-Hussien, M., et al., Inhibition of amyloid fibrillation of γD-crystallin model peptide by the cochineal Carmine. International Journal of Biological Macromolecules, 2021. 169: p. 342-351. 82. Gaspar, R., T. Garting, and A. Stradner, Eye lens crystallin proteins inhibit the autocatalytic amyloid amplification nature of mature α-synuclein fibrils. PloS one, 2020. 15(6): p. e0235198. 83. Liu, Z., et al., Mechanistic insights into the switch of αB-crystallin chaperone activity and self-multimerization. Journal of Biological Chemistry, 2018. 293(38): p. 14880-14890. 84. Binger, K.J., et al., Avoiding the oligomeric state: αB‐crystallin inhibits fragmentation and induces dissociation of apolipoprotein C‐II amyloid fibrils. The FASEB Journal, 2013. 27(3): p. 1214-1222. 85. Meisl, G., et al., Differences in nucleation behavior underlie the contrasting aggregation kinetics of the Aβ40 and Aβ42 peptides. Proceedings of the National Academy of Sciences, 2014. 111(26): p. 9384-9389. 86. Bartolini, M., et al., Kinetic characterization of amyloid-beta 1–42 aggregation with a multimethodological approach. Analytical biochemistry, 2011. 414(2): p. 215-225. 87. Gong, H., et al., Effects of several quinones on insulin aggregation. Scientific reports, 2014. 4(1): p. 1-8. 88. Wu, J.W., et al., Carnosine's effect on amyloid fibril formation and induced cytotoxicity of lysozyme. PloS one, 2013. 8(12): p. e81982. 89. Rana, S. and K.S. Ghosh, Inhibition of fibrillation of human γd-crystallin by a flavonoid morin. Journal of Biomolecular Structure and Dynamics, 2020: p. 1-11. 90. Sharma, V., et al., Inhibition of amyloid fibrillation of human γD-crystallin by gold nanoparticles: Studies at molecular level. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2020. 233: p. 118199. 91. Moran, S.D., S.M. Decatur, and M.T. Zanni, Structural and sequence analysis of the human γD-crystallin amyloid fibril core using 2D IR spectroscopy, segmental 13C labeling, and mass spectrometry. Journal of the American Chemical Society, 2012. 134(44): p. 18410-18416. 92. Moran, S.D., et al., Two-dimensional IR spectroscopy and segmental 13C labeling reveals the domain structure of human γD-crystallin amyloid fibrils. Proceedings of the National Academy of Sciences, 2012. 109(9): p. 3329-3334. 93. Kong, J. and S. Yu, Fourier transform infrared spectroscopic analysis of protein secondary structures. Acta biochimica et biophysica Sinica, 2007. 39(8): p. 549-559. 94. De Meutter, J. and E. Goormaghtigh, Amino acid side chain contribution to protein FTIR spectra: impact on secondary structure evaluation. European Biophysics Journal, 2021. 50(3): p. 641-651. 95. Barth, A., Infrared spectroscopy of proteins. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 2007. 1767(9): p. 1073-1101.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82171-
dc.description.abstract" 白內障全世界第三大宗的視力損傷疾病,起因為人類水晶體中的水晶體蛋白聚集。人類γ型水晶體蛋白為水晶體中的主要結構蛋白之一,被認為是白內障致病蛋白的主因之一,其中諸多γ類型的蛋白已研究多年,但人類γC型水晶體蛋白的相關研究相對較少,極具研究潛力。 人類γC型水晶體蛋白(Human γC Crystallin, HγCC)具有173個殘基,與人類γD型水晶體蛋白有71%的序列同一性,為富含β-sheet結構的結構域(domain)構成。本篇研究透過基因工程方式建立質體pEHisHγCC,轉入E.coli. BL21(DE3)系統進行表達,透過小量生產方式篩選出最適化的生產條件:30℃、0.5 mM IPTG、誘導前O.D.600 nm為1.5、誘導時間12小時,隨後以此條件進行大量生產,成功純化出帶有6×Histidine親和性標籤的HγCC,每100 ml培養液蛋白質產量為10.19±1.13 mg,並透過質譜分析與電泳分析確認分子量、純度達94.27%。 為了測定在不同條件下的HγCC聚集行為,我們透過濁度、ThT螢光光譜、ANS螢光光譜、Tryptophan螢光光譜、遠紫外光圓二色光譜與傅立葉轉換紅外線光譜等分析,證實pH 2酸性條件會誘導HγCC結構展開,錯誤摺疊而生成類澱粉纖維,整體二級結構比例變化趨勢為β-sheet下降、Random增加,再透過文獻模型擬和得到類澱粉纖維生長曲線,此外,也透過共軛聚焦顯微鏡與穿透式電子顯微鏡檢測聚集體的微觀型態,發現蛋白質會形成纖維網路結構,且55℃生成的結構相較37℃更為緊密;而在pH 7中性條件下,37℃培養後仍維持原態蛋白結構,而55℃培養後則會生成極少量的纖維網路,伴隨著些許的疏水區域裸露,但對整體三級結構與二級結構比例影響不大;最後,透過動態光散射法分析聚集物的尺寸分佈,發現酸性培養生成的聚集體尺寸遠大於中性培養生成的聚集體。 "zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-25T06:33:09Z (GMT). No. of bitstreams: 1
U0001-1008202113474800.pdf: 5188431 bytes, checksum: c41b52c6cd202cc85ab39a9e864914dc (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents"目錄 誌謝 I 摘要 II Abstract III 目錄 V 圖目錄 VIII 表目錄 X 第一章 緒論與研究動機 1 第二章 文獻回顧 3 2-1人類水晶體(Lens) 3 2-1-1 水晶體分化 3 2-1-2 水晶體抗氧化機制 4 2-2白內障(Cataract) 6 2-2-1 白內障成因與類型 7 2-2-2 白內障治療 13 2-3水晶體蛋白(Crystallins) 14 2-3-1 人類α型水晶體蛋白 16 2-3-2 人類β/γ型水晶體蛋白 18 2-3-3 人類γC型水晶體蛋白 20 2-4 pH值對水晶體蛋白(Crystallins)的聚集行為影響 30 2-5 溫度對水晶體蛋白(Crystallins)的聚集行為影響 31 第三章 實驗儀器、藥品與步驟 33 3-1 實驗儀器 33 3-2 菌株 34 3-3 質體與純化套組 34 3-4 實驗藥品 36 3-5 溶液配製 37 3-6 實驗步驟 39 3-6-1 pEHisHγCC質體表現與純化 39 3-6-1-1 製作勝任細胞(Competent cell) 39 3-6-1-2 pEHisHγCC質體轉殖 40 3-6-1-3 pEHisHγCC質體純化 40 3-6-1-4 HγCC蛋白質生產─試管測試[66] 41 3-6-1-5 HγCC蛋白質生產─大量生產 43 3-6-1-6 定性分析(SDS-PAGE) 46 3-6-1-7 定量分析(BCA assay) 46 3-6-2 pH值、溫度誘導HγCC展開及聚集[63] 47 3-6-2-1 樣品配置 47 3-6-2-2 濁度(turbidity)量測 47 3-6-2-3 Tryptophan螢光光譜 47 3-6-2-4 Thioflavin T(ThT)螢光光譜 48 3-6-2-5 8-Anilino-1-naphthalenesulfonic acid(ANS)螢光光譜 48 3-6-2-6 圓二色(Circular Dichroism, CD)光譜量測 49 3-6-2-7 傅立葉轉換紅外線(Fourier-Transform Infrared, FTIR)光譜量測 49 3-6-2-8 動態光散射(Dynamic Light Scattering, DLS)量測 49 3-6-2-9 共軛聚焦顯微鏡(Confocal Microscopy)分析 50 3-6-2-10 穿透式電子顯微鏡(Transmission Electron Microscopy, TEM)分析 50 第四章 結果與討論 51 4-1 pEHisHγCC建立與表達 51 4-2 HγCC產量初步最適化─試管測試 53 4-2-1 試管活化測試 53 4-2-2 誘導條件測試 54 4-3 HγCC產量最適化─大量生產 61 4-3-1 活化測試 61 4-3-2 定性分析 63 4-3-3 定量分析 64 4-3-4 最佳誘導條件 68 4-4 pH值、溫度誘導HγCC展開及聚集 69 4-4-1 濁度(Turbidity)分析 72 4-4-2 Thioflavin T(ThT)螢光光譜分析 73 4-4-3 ANS螢光光譜分析 77 4-4-4 Tryptophan螢光光譜分析 81 4-4-5 遠紫外光圓二色(Far Ultraviolet Circular Dichroism)光譜分析 83 4-4-6 動態光散射(DLS)分析 86 4-4-8 共軛聚焦顯微鏡分析 88 第五章 結論 90 第六章 未來展望 92 第七章 參考文獻 93 附錄 99 附錄一 pET30b(+)圖譜 99 附錄二 合成後6×His-HγCC基因片段定序 99 附錄三 質體純化後6×His-HγCC基因片段定序 100 附錄四 HγCC的純度分析(SDS-PAGE) 101 附錄五 HγCC在pH 2、不同溫度下之傅立葉轉換紅外光譜(FTIR)圖 103 附錄六 HγCC在不同pH、溫度下之穿透式電子顯微鏡(TEM)圖 104 圖目錄 Figure 2-1 人體眼球與水晶體剖面圖[7] 3 Figure 2-2 人類水晶體分化過程[8] 4 Figure 2-3 穀胱甘肽(GSH)與過氧化物反應機制示意圖(以superoxide為例) 5 Figure 2-4 成人白內障發病病理模型[15] 6 Figure 2-5 核型白內障水晶體透明度分類系統III [16] 7 Figure 2-6 核硬化患者患部圖 8 Figure 2-7 隨年紀增加的水晶體色素沉澱切片圖 9 Figure 2-8 核型(B)、皮質型(C)、後囊型(D)白內障患部圖[17] 9 Figure 2-9 遺傳性白內障例子:(A)前囊下型(anterior subcapsular)(B)胎兒核型(fetal nuclear)(C)皮質點狀型(punctate in cortex)(D)胚胎Y核型(embryonic nuclear Y-sutural)[14]。 10 Figure 2-10 飛秒雷射白內障手術[25]。 14 Figure 2-11 水晶體中蛋白質間的互相作用(protein-protein interaction)示意圖[30] 16 Figure 2-12 希臘之鑰模組(Greek key motif)示意圖[6] 18 Figure 2-13 人類βB3型水晶體蛋白─trimer(PDB:3QK3) 19 Figure 2-14 人類γS型水晶體蛋白(PDB:2M3T) 19 Figure 2-15 人類γC型水晶體蛋白(PDB:2NBR) 20 Figure 2-16 人類γC型水晶體蛋白2D拓譜圖(topology) 20 Figure 2-17 人類γC型水晶體蛋白二級結構序列圖。 21 Figure 2-18 HγDC的tyrosine corners和與其作用的殘基[6]。 23 Figure 2-19 HγCC的WT與W157X結構圖[41]。 24 Figure 2-20 HγCC在R168附近的結構圖[42]。 24 Figure 2-21 HγCC在Y46附近的氫鍵網路圖[43]。 25 Figure 2-22 HγCC重區域置換示意圖[45] 25 Figure 2-23 類澱粉纖維(amyloid fibrils)形成路徑示意圖[62] 30 Figure 2-24 F(XNtd, XC-td, Xint)投影到[XNtd, XC-td, Xint at T=TNtd][45]。 32 Figure 3-1 pUC57(HγCC)質體圖譜 35 Figure 3-2 pEHisHγCC質體圖譜 35 Figure 4-1 pEHisHγCC質體建立示意圖 51 Figure 4-2 隨時間測試勝任細胞經pEHisHγCC轉殖後的培養菌落外觀 52 Figure 4-3 IPTG誘導目標基因表達示意圖 53 Figure 4-4 pEHisHγCC E.coli BL21(DE3)活化生長曲線(5 ml LB、37°C、164 rpm) 54 Figure 4-5 HγCC試管誘導電泳圖(0 ~ 9 hrs) 55 Figure 4-6 HγCC試管誘導電泳圖之一(0 ~ 15 hrs) 57 Figure 4-7 HγCC試管誘導電泳圖之二(0 ~ 15 hrs) 59 Figure 4-8 pEHisHγCC E.coli BL21(DE3)活化生長曲線(50 ml LB、37°C、164 rpm) 62 Figure 4-9 HγCC大量誘導電泳圖 63 Figure 4-10 HγCC大量誘導質譜圖。 64 Figure 4-11 BCA protein assay檢量線(BSA protein為standard)。 66 Figure 4-12 A280 protein assay檢量線(HγCC(不含β-Me)為standard)。 66 Figure 4-13 透析β-Me前後對tryptophan螢光光譜的影響。 67 Figure 4-14 HγCC在不同pH值與不同溫度下之濁度隨時間變化圖。 73 Figure 4-15 HγCC在pH 2、不同溫度下之ThT螢光強度隨時間柱狀圖。 74 Figure 4-16 HγCC在pH 2、55°C下之ThT螢光強度隨時間動力學fitting。 75 Figure 4-17 HγCC在pH 7、不同溫度下之ThT螢光強度隨時間柱狀圖。 77 Figure 4-18 HγCC在pH 2、不同溫度下的ANS螢光光譜隨時間變化圖 78 Figure 4-19 HγCC在pH 7、不同溫度下的ANS螢光光譜隨時間變化圖 80 Figure 4-20 HγCC在pH 2、不同溫度下的Tryptophan螢光光譜隨時間變化圖 82 Figure 4-21 HγCC在pH 7、不同溫度下的Tryptophan螢光光譜隨時間變化圖 83 Figure 4-22 HγCC在不同pH、溫度下之遠紫外光圓二色光譜圖 84 Figure 4-23 HγCC在pH 2、溫度下之二級結構比例柱狀圖。 85 Figure 4-24 HγCC在pH 7、溫度下之二級結構比例柱狀圖。 85 Figure 4-25 HγCC在不同pH、溫度下動態光散射法的尺寸分布圖 87 Figure 4-26 HγCC在不同pH、溫度下共軛聚焦顯微鏡圖 88 Figure 5-1 HγCC在不同pH、溫度下的聚集行為示意圖 91 表目錄 Table 2-1 代謝型白內障隨年紀分類[20] 11 Table 2-2 白內障風險因素整理[17] 12 Table 2-3 白內障保護因素整理[17] 12 Table 2-4 人類水晶體蛋白基本資訊[27-29] 15 Table 2-5 熱休克蛋白(HSPs)基本資訊[32] 17 Table 2-6 人類β/γ水晶體蛋白與HγCC的序列同一性 22 Table 2-7 人類γC型水晶體蛋白的近年研究統整 27 Table 4-1 HγCC試管誘導image J電泳分析圖(0 ~ 9 hrs) 56 Table 4-2 HγCC試管誘導image J電泳分析圖之一(0 ~ 15 hrs) 58 Table 4-3 HγCC試管誘導image J電泳分析圖之二(0 ~ 15 hrs) 60 Table 4-4 還原劑β-Me對BCA protein assay的影響 65 Table 4-5 透析前HγCC(含β-Me)與透析後HγCC(不含β-Me)的蛋白質濃度 67 Table 4-6 HγCC不同O.D600下大量誘導產量 68 Table 4-7 HγCC不同O.D600及不同鹽類濃度保存測試 68 Table 4-8 探討不同環境條件下的蛋白質聚集相關文獻 70 Table 4-9 類澱粉纖維生長曲線的近年文獻整理 75 "
dc.language.isozh-TW
dc.subject類澱粉纖維zh_TW
dc.subject蛋白質表達zh_TW
dc.subject人類γC型水晶體蛋白zh_TW
dc.subject白內障zh_TW
dc.subject溫度zh_TW
dc.subject蛋白質聚集zh_TW
dc.subject酸性zh_TW
dc.subjectamyloid fibrilen
dc.subjectCataracten
dc.subjecthuman γC crystallinen
dc.subjectprotein expressionen
dc.subjectlow pHen
dc.subjecttemperatureen
dc.subjectprotein aggregationen
dc.title人類γC型水晶體蛋白聚集行為之研究zh_TW
dc.titleA Study of the Aggregation Behavior of Human γC Crystallin Proteinsen
dc.date.schoolyear109-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林達顯(Hsin-Tsai Liu),賴進此(Chih-Yang Tseng),侯劭毅,蔡伸隆,吳宛儒
dc.subject.keyword白內障,人類γC型水晶體蛋白,蛋白質表達,酸性,溫度,蛋白質聚集,類澱粉纖維,zh_TW
dc.subject.keywordCataract,human γC crystallin,protein expression,low pH,temperature,protein aggregation,amyloid fibril,en
dc.relation.page104
dc.identifier.doi10.6342/NTU202102244
dc.rights.note未授權
dc.date.accepted2021-08-11
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept化學工程學研究所zh_TW
dc.date.embargo-lift2026-08-10-
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
U0001-1008202113474800.pdf
  未授權公開取用
5.07 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved