請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82155完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 詹東榮(Tong-Rong Jan) | |
| dc.contributor.author | Ching-Hua Chuang | en |
| dc.contributor.author | 莊靖樺 | zh_TW |
| dc.date.accessioned | 2022-11-25T06:32:56Z | - |
| dc.date.copyright | 2021-11-11 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-08-23 | |
| dc.identifier.citation | 1. Bai, X., et al., The Basic Properties of Gold Nanoparticles and their Applications in Tumor Diagnosis and Treatment. Int J Mol Sci, 2020. 21(7). 2. Sutton, B.M., Gold Compounds for Rheumatoid Arthritis. Gold Bull., 1986. 19. 3. Vines, J.B., et al., Gold Nanoparticles for Photothermal Cancer Therapy. Front Chem, 2019. 7: p. 167. 4. Norouzi, M., Gold Nanoparticles in Glioma Theranostics. Pharmacol Res, 2020. 156: p. 104753. 5. Aminabad, N.S., M. Farshbaf, and A. Akbarzadeh, Recent Advances of Gold Nanoparticles in Biomedical Applications: State of the Art. Cell Biochem Biophys, 2019. 77(2): p. 123-137. 6. Stefaan J. Soenen, B.M., Jose´ Maria Montenegro Faheem Amin, Bjo¨ rn Meermann, and M.C. Toke Thiron, Frank Vanhaecke, Shareen Doak, Wolfgang J. Parak, Stefaan De Smedt, and Kevin Braeckmans, Cytotoxic Effects of Gold Nanoparticles: A Multiparametric Study. ACS nano, 2012. 6(7): p. 5767–5783. 7. B. Devika Chithrani, A.A.G., and Warren C. W. Chan, Determining the Size and Shape Dependence of Gold Nanoparticle Uptake into Mammalian Cells. Nano Letters, 2006. 6(4): p. 662-668. 8. Walkey, C.D., et al., Nanoparticle size and surface chemistry determine serum protein adsorption and macrophage uptake. J Am Chem Soc, 2012. 134(4): p. 2139-47. 9. Bhamidipati, M. and L. Fabris, Multiparametric Assessment of Gold Nanoparticle Cytotoxicity in Cancerous and Healthy Cells: The Role of Size, Shape, and Surface Chemistry. Bioconjug Chem, 2017. 28(2): p. 449-460. 10. Chen, X. and C. Gao, Influences of size and surface coating of gold nanoparticles on inflammatory activation of macrophages. Colloids Surf B Biointerfaces, 2017. 160: p. 372-380. 11. Kreyling, W.G., et al., In vivo integrity of polymer-coated gold nanoparticles. Nat Nanotechnol, 2015. 10(7): p. 619-23. 12. Kharazian, B., et al., Bare surface of gold nanoparticle induces inflammation through unfolding of plasma fibrinogen. Sci Rep, 2018. 8(1): p. 12557. 13. Xia, Q., et al., The effect of particle size on the genotoxicity of gold nanoparticles. J Biomed Mater Res A, 2017. 105(3): p. 710-719. 14. Lopez-Chaves, C., et al., Gold nanoparticles: Distribution, bioaccumulation and toxicity. In vitro and in vivo studies. Nanomedicine, 2018. 14(1): p. 1-12. 15. Li, X., et al., The systematic evaluation of size-dependent toxicity and multi-time biodistribution of gold nanoparticles. Colloids Surf B Biointerfaces, 2018. 167: p. 260-266. 16. Xia, Q., et al., Size- and cell type-dependent cellular uptake, cytotoxicity and in vivo distribution of gold nanoparticles. Int J Nanomedicine, 2019. 14: p. 6957-6970. 17. Sani, A., C. Cao, and D. Cui, Toxicity of gold nanoparticles (AuNPs): A review. Biochem Biophys Rep, 2021. 26: p. 100991. 18. Ibrahim, K.E., et al., Histopathology of the Liver, Kidney, and Spleen of Mice Exposed to Gold Nanoparticles. Molecules, 2018. 23(8). 19. Zhang, X.D., et al., Size-dependent in vivo toxicity of PEG-coated gold nanoparticles. Int J Nanomedicine, 2011. 6: p. 2071-81. 20. Khalid Elfaki Ibrahim, A.O.B., Maaweya Elaeed Awadalla Haseeb Ahmad Khan, A priming dose protects against gold nanoparticles-induced proinflammatory cytokines mRNA expression in mice. Nanomedicine (Lond.), 2017. 13: p. 313-323. 21. Dmitry I. Gabrilovich, V.B., Shu-Hsia Chen, Mario P Colombo, Augusto Ochoa, Suzanne Ostrand-Rosenberg, and Hans Schreiber, The terminology issue for myeloid-derived suppressor cells. Cancer Res., 2007. 67: p. 425-426. 22. Bronte, V., et al., Recommendations for myeloid-derived suppressor cell nomenclature and characterization standards. Nat Commun, 2016. 7: p. 12150. 23. Gabrilovich, D.I., Myeloid-Derived Suppressor Cells. Cancer Immunol Res, 2017. 5(1): p. 3-8. 24. Gabrilovich, D.I., S. Ostrand-Rosenberg, and V. Bronte, Coordinated regulation of myeloid cells by tumours. Nat Rev Immunol, 2012. 12(4): p. 253-68. 25. Ostrand-Rosenberg, S. and P. Sinha, Myeloid-derived suppressor cells: linking inflammation and cancer. J Immunol, 2009. 182(8): p. 4499-506. 26. Wang, C.C., et al., Areca-nut extract modulates antigen-specific immunity and augments inflammation in ovalbumin-sensitized mice. Immunopharmacol Immunotoxicol, 2011. 33(2): p. 315-22. 27. Wang, C.C., et al., Areca nut extracts enhance the development of CD11b(+) Gr-1(+) cells with the characteristics of myeloid-derived suppressor cells in antigen-stimulated mice. J Oral Pathol Med, 2011. 40(10): p. 769-77. 28. Wang, C.C., M.C. Deng, and T.R. Jan, Areca Nut Extracts Attenuated Interferon-γ and Antigen-specific IgM Production in BALB/c Mice. Journal of Food and Drug Analysis, 2011. 19: p. 252-258. 29. Almeida, J.P., et al., In vivo immune cell distribution of gold nanoparticles in naive and tumor bearing mice. Small, 2014. 10(4): p. 812-9. 30. Wu, C., et al., The influence of tumor-induced immune dysfunction on the immune cell distribution of gold nanoparticles in vivo. Biomater Sci, 2017. 5(8): p. 1531-1536. 31. Lucinda beck, H.L.S., The Polyclonal and Antigen-Specific IgE and IgG Subclass Response of Mice Injected with Ovalbumin in Alum or Complete Freund’s Adjuvant. CELLULAR IMMUNOLOGY, 1989. 123: p. 1-8. 32. Tatsuaki Morokata, J.I., Toshimitsu Yamada, Antigen dose defines T helper 1 and T helper 2 responses in the lungs of C57BL/6 and BALB/c mice independently of splenic responses. Immunology Letters, 2000. 72: p. 119–126. 33. Peter A. Bretscher, G.W., Juthika N. Menon, Helle Bielefeldt-Ohmann, Establishment of Stable, Cell-Mediated Immunity That Makes 'Susceptible' Mice Resistant to Leishmania major. Science, 1992. 257: p. 539-542. 34. Bretscher, J.N.M.a.P.A., Parasite dose determines the Th1/Th2 nature of the response to Leishmania major independently of infection route and strain of host or parasite. Eur. J. Immunol., 1998. 28: p. 4020–4028. 35. Kazuo Kobayashi, K.k., and Tsuyoshi kasama, Immunopathogenesis of Delayed-Type Hypersensitivity. MICROSCOPY RESEARCH AND TECHNIQUE, 2001. 53: p. 241–245. 36. D J Cher and T.R. Mosmann, Delayed-type hypersensitivity is mediated by Two types of murine helper T cell clone. II. TH1 clones. J Immunol 1987. 138: p. 3688-3694. 37. T A Fong and T.R. Mosmann, The role of IFN-gamma in delayed-type hypersensitivity mediated by Th1 clones. J Immunol, 1989. 143: p. 2887-2893. 38. Almeida, J.P., E.R. Figueroa, and R.A. Drezek, Gold nanoparticle mediated cancer immunotherapy. Nanomedicine, 2014. 10(3): p. 503-14. 39. Kawamoto, H. and N. Minato, Myeloid cells. Int J Biochem Cell Biol, 2004. 36(8): p. 1374-9. 40. Khan, H.A., et al., Effects of naked gold nanoparticles on proinflammatory cytokines mRNA expression in rat liver and kidney. Biomed Res Int, 2013. 2013: p. 590730. 41. Khan, H.A., et al., Transient increase in IL-1beta, IL-6 and TNF-alpha gene expression in rat liver exposed to gold nanoparticles. Genet Mol Res, 2013. 12(4): p. 5851-7. 42. Kenichi Niikura, T.M., Tadaki Suzuki, Shintaro Kobayashi, Hiroki Yamaguchi, Yasuko Orba, Akira Kawaguchi, Hideki Hasegawa, Kiichi Kajino, Takafumi Ninomiya, Kuniharu Ijiro, Hirofumi Sawa, Gold Nanoparticles as a Vaccine Platform: Influence of Size and Shape on Immunological Responses in Vitro and in Vivo. ACS Nano, 2013. 7(5): p. 3926-38. 43. Sade-Feldman, M., et al., Tumor necrosis factor-alpha blocks differentiation and enhances suppressive activity of immature myeloid cells during chronic inflammation. Immunity, 2013. 38(3): p. 541-54. 44. Gabrilovich, D.I. and S. Nagaraj, Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol, 2009. 9(3): p. 162-74. 45. Musolino, C., et al., Immature myeloid-derived suppressor cells: A bridge between inflammation and cancer (Review). Oncol Rep, 2017. 37(2): p. 671-683. 46. Tu, S., et al., Overexpression of interleukin-1beta induces gastric inflammation and cancer and mobilizes myeloid-derived suppressor cells in mice. Cancer Cell, 2008. 14(5): p. 408-19. 47. Gallina, G., et al., Tumors induce a subset of inflammatory monocytes with immunosuppressive activity on CD8+ T cells. J Clin Invest, 2006. 116(10): p. 2777-90. 48. Vinuesa, C.G., et al., Follicular B helper T cells in antibody responses and autoimmunity. Nat Rev Immunol, 2005. 5(11): p. 853-65. 49. McHeyzer-Williams, L.J. and M.G. McHeyzer-Williams, Antigen-specific memory B cell development. Annu Rev Immunol, 2005. 23: p. 487-513. 50. Kanhere, A., et al., T-bet and GATA3 orchestrate Th1 and Th2 differentiation through lineage-specific targeting of distal regulatory elements. Nat Commun, 2012. 3: p. 1268. 51. Susanne J. Szabo, S.T.K., Gina L. Costa, Xiankui Zhang, C. Garrison Fathman, and Laurie H. Glimcher, A Novel Transcription Factor, T-bet, Directs Th1 Lineage Commitment. Cell, 2000. 100: p. 655–669. 52. Kidd, P., Th1/Th2 Balance: The Hypothesis, its Limitations, and Implications for Health and Disease. Altern Med Rev, 2003. 8: p. 223-246. 53. Movahedi, K., et al., Identification of discrete tumor-induced myeloid-derived suppressor cell subpopulations with distinct T cell-suppressive activity. Blood, 2008. 111(8): p. 4233-44. 54. Markus Munder, K.E., José M. Morán, Francisco Centeno, Germán Soler and Manuel Modolell, Th1/Th2-Regulated Expression of Arginase Isoforms in Murine Macrophages and Dendritic Cells. J Immunol, 1999. 163: p. 3771-7. 55. Huang, D., et al., The cytotoxicity of gold nanoparticles is dispersity-dependent. Dalton Trans, 2015. 44(41): p. 17911-5. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82155 | - |
| dc.description.abstract | "由於奈米金 (AuNPs) 具有良好的生物相容性及抗腫瘤活性,使其被廣泛應用於藥物傳遞與癌症免疫治療。先前的研究證實奈米金經由靜脈注射後,主要累積於脾臟中並會誘導發炎細胞激素的生成。此外,奈米金分布於脾臟的免疫細胞內,包括B細胞、T細胞和骨髓衍生抑制型細胞 (MDSC)。特別是骨髓衍生抑制型細胞是攝取奈米金的重要細胞之一。儘管已知單核吞噬細胞系統 (MPS) 在清除奈米金的過程中扮演關鍵角色,奈米金對免疫細胞可能具有潛在的影響,然而奈米金與免疫系統的相互作用尚未徹底了解。因此,本論文主要研究奈米金對於卵白蛋白 (ovalbumin ; OVA) 免疫小鼠抗原專一性免疫反應之影響,以及奈米金誘發之骨髓衍生抑制型細胞於遲發性過敏反應 (DTH) 小鼠中之功能性,並且探討奈米金粒徑大小對免疫反應之影響。實驗分為三大部分,第一部分:BALB/c小鼠於第1至12天,每天以靜脈注射方式投予奈米金 (0.4 mg/kg) 或磷酸鹽緩衝生理食鹽水 (PBS) 作為對照組,在試驗第2天及第12天腹腔注射OVA進行免疫,在第13天犧牲並採集各組別小鼠之血清與脾臟進行後續實驗。實驗結果顯示,奈米金顯著增加了脾臟指數 (spleen index) 及脾臟中CD11b+Gr-1+細胞族群 (MDSC之細胞表面標記)。奈米金並沒有影響脾臟細胞之代謝活性,但促進脂多醣 (LPS) 刺激之脾臟細胞生成腫瘤壞死因子-α (TNF-α) 與介白素-10 (IL-10),以及刀豆蛋白A (ConA) 或OVA刺激之脾臟細胞生成干擾素-γ (IFN-γ),並且增強OVA免疫小鼠抗原專一性之抗體IgG2a。第二部分:小鼠分別於第1天及第9天經由腹腔注射與後腳掌皮下注射OVA誘導遲發性過敏反應,並在第9天進行皮下注射前尾靜脈注射奈米金組別小鼠之脾臟細胞,測量其腳掌腫脹程度。其結果表明,接受奈米金小鼠脾臟細胞之小鼠組別顯著降低腳掌腫脹程度。第三部分:小鼠於第1至8天,每天靜脈注射不同粒徑大小 (10 nm, 50 nm, 100 nm) 之奈米金 (0.5 mg/kg) 或0.1 mM生理食鹽水 (PBS) 作為對照組,於第9天犧牲。在不同尺寸之奈米金組別中,10 nm與50 nm奈米金皆增加了脾臟指數,50 nm奈米金使脾臟中MDSC細胞族群比例上升,但是不同粒徑大小奈米金所產生之發炎細胞激素表現並不具尺寸相關性。整體來說,本研究結果證實奈米金會增強抗原專一性免疫反應及第一型輔助T細胞(Th1) 之免疫,並且誘導脾臟中具有抑制活性之骨髓衍生抑制型細胞。" | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-25T06:32:56Z (GMT). No. of bitstreams: 1 U0001-2008202120262700.pdf: 4504234 bytes, checksum: 0d8121736f0e51bc054a83663d0e82ed (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | 口試委員會審定書 II 致謝 III 中文摘要 IV Abstract VI Contents VIII Figures XI Tables XII Abbreviations XIII Chapter 1 Introduction 1 1.1 Gold nanoparticles (AuNPs) 1 1.2 Myeloid-derived suppressor cells (MDSC) 4 1.3 Ovalbumin (OVA)-sensitized murine model 7 1.4 Delayed-type hypersensitivity (DTH) 8 1.5 Rationale 9 Chapter 2 Materials and Methods 11 2.1 Reagents 11 2.2 Gold nanoparticles (AuNPs) 12 2.2.1 Preparation of 50 nm AuNPs in OVA sensitization model 12 2.2.2 Preparation of different size AuNPs 13 2.2.3 Characterization of AuNPs 14 2.3 Animals 14 2.4 Protocol of AuNPs administration and murine model 15 2.4.1 Ovalbumin (OVA) sensitization model 15 2.4.2 Delayed‐type hypersensitivity (DTH) model 15 2.4.3 Effects of different particles size of AuNPs on immune responses 17 2.5 Measurement of spleen enlargement 21 2.6 Splenocytes isolation and culture 21 2.7 MDSC (CD11b+Gr1+ cells) isolation 22 2.8 Analysis of the cellularity of splenocytes 22 2.9 Measurement of metabolic activity by MTT assay 23 2.10 Enzyme-linked immunosorbent assay (ELISA) 24 2.10.1 Measurement of OVA-specific antibodies 24 2.10.2 Measurement of cytokine 25 2.11 RNA isolation and cDNA synthesis 26 2.12 Quantitative real-time polymerase chain reaction (qPCR) assay 27 2.13 Immunohistochemistry (IHC) staining 29 2.13.1 Single staining 29 2.13.2 Double staining 30 2.14 Statistical analysis 31 Chapter 3 Results 32 3.1 The morphology and size of AuNPs 32 3.2 The effect of AuNPs on antigen-specific immune response in OVA-sensitized mice 32 3.2.1 AuNPs increased the spleen index 32 3.2.2 AuNPs enhanced the population of CD11b+ Gr-1+ cells in splenocytes 33 3.2.3 AuNPs did not alter the metabolic activity of splenocytes 33 3.2.4 AuNPs augmented the serum level of OVA-specific IgG2a 34 3.2.5 AuNPs increased the production of TNF-α and IL-10 by LPS-induced splenocytes 34 3.2.6 AuNPs reciprocally modulated the production of IFN-γ and IL-4 by ConA-stimulated splenocytes 35 3.2.7 AuNPs increased the production of OVA-specific IFN-γ and IL-2 by splenocytes 35 3.2.8 AuNPs enhanced the infiltration of Gr-1+ cells expressing IL-10 in the spleen 36 3.2.9 AuNPs elevated the expression of iNOS in splenocytes 36 3.3 The functionality of MDSC on antigen-specific responses in DTH mice 37 3.3.1 AuNPs increased the spleen index in naïve mice 37 3.3.2 The splenic MDSC isolated from AuNP-treated mice suppressed DTH reactions 37 3.4 The influence of particle sizes of AuNPs on the immune response in non-sensitized mice 38 3.4.1 AuNPs increased the spleen index and the population of CD11b+ Gr-1+ cells in splenocytes 38 3.4.2 AuNPs did not alter the metabolic activity of splenocytes in naïve mice 39 3.4.3 AuNPs did not affect the production of cytokines by splenocytes 39 3.4.4 AuNPs enhanced the production of IL-10 by the MDSC isolation from splencytes 39 Chapter 4 Discussion 61 References 68 | |
| dc.language.iso | en | |
| dc.subject | 第一型輔助T細胞 | zh_TW |
| dc.subject | 奈米金 | zh_TW |
| dc.subject | 發炎反應 | zh_TW |
| dc.subject | 抗原專一性 | zh_TW |
| dc.subject | 骨髓衍生抑制型細胞 | zh_TW |
| dc.subject | gold nanoparticles | en |
| dc.subject | antigen-specific immunity | en |
| dc.subject | myeloid-derived suppressor cells | en |
| dc.subject | T Helper 1 cells | en |
| dc.subject | inflammatory response | en |
| dc.title | 奈米金在卵白蛋白免疫小鼠中增強抗原特異性IgG2a的生成以及誘導骨髓衍生抑制型細胞 | zh_TW |
| dc.title | Gold Nanoparticles Enhance Antigen-Specific IgG2a Production and Induce the Myeloid-Derived Suppressor Cells in Ovalbumin-Sensitized Mice | en |
| dc.date.schoolyear | 109-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 王家琪(Chia-Chi Wang) | |
| dc.contributor.oralexamcommittee | 梁有志(Hsin-Tsai Liu),童俊維(Chih-Yang Tseng),林英琦 | |
| dc.subject.keyword | 奈米金,發炎反應,抗原專一性,骨髓衍生抑制型細胞,第一型輔助T細胞, | zh_TW |
| dc.subject.keyword | gold nanoparticles,inflammatory response,antigen-specific immunity,myeloid-derived suppressor cells,T Helper 1 cells, | en |
| dc.relation.page | 75 | |
| dc.identifier.doi | 10.6342/NTU202102561 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2021-08-24 | |
| dc.contributor.author-college | 獸醫專業學院 | zh_TW |
| dc.contributor.author-dept | 獸醫學研究所 | zh_TW |
| dc.date.embargo-lift | 2026-08-26 | - |
| 顯示於系所單位: | 獸醫學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2008202120262700.pdf 未授權公開取用 | 4.4 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
