Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 公共衛生學院
  3. 環境與職業健康科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82138
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王根樹(Gen-Shuh Wang)
dc.contributor.authorYu-Hsin Hungen
dc.contributor.author洪郁欣zh_TW
dc.date.accessioned2022-11-25T05:36:41Z-
dc.date.available2026-10-05
dc.date.copyright2021-11-09
dc.date.issued2021
dc.date.submitted2021-10-06
dc.identifier.citationBogosian, G., Bourneuf, E. V. (2001). A matter of bacterial life and death. EMBO reports, 2(9), 770-774. Bond, T., Goslan, E. H., Parsons, S. A., Jefferson, B. (2012). A critical review of trihalomethane and haloacetic acid formation from natural organic matter surrogates. Environmental Technology Reviews, 1(1), 93-113. Bond, T., Henriet, O., Goslan, E., Parsons, S., Jefferson, B. (2009). Disinfection byproduct formation and fractionation behavior of natural organic matter surrogates. Environmental science technology, 43(15), 5982-5989. Bosire, G. O., Ngila, J. C. (2016). Assessment of photo-oxidative alterations to natural organic matter in water using fluorescence excitation emission matrices and liquid chromatography-organic carbon detection techniques. Analytical Methods, 8(6), 1415-1424. doi:10.1039/c5ay02086g Bridier, A., Briandet, R., Thomas, V., Dubois-Brissonnet, F. (2011). Resistance of bacterial biofilms to disinfectants: a review. Biofouling, 27(9), 1017-1032. doi:10.1080/08927014.2011.626899 Chen, B. (2011). Hydrolytic Stabilities of Halogenated Disinfection Byproducts: Review and Rate Constant Quantitative Structure–Property Relationship Analysis. Environmental Engineering Science, 28(6), 385-394. doi:10.1089/ees.2010.0196 Cloete, T. E. (2003). Resistance mechanisms of bacteria to antimicrobial compounds. International Biodeterioration Biodegradation, 51(4), 277-282. doi:10.1016/s0964-8305(03)00042-8 Costa, O. Y. A., Raaijmakers, J. M., Kuramae, E. E. (2018). Microbial Extracellular Polymeric Substances: Ecological Function and Impact on Soil Aggregation. Front Microbiol, 9, 1636. doi:10.3389/fmicb.2018.01636 Crawford, R. L. (2011). Biodegradation. In Comprehensive Biotechnology (pp. 3-13). Cruz, L. F., Cobine, P. A., De La Fuente, L. (2012). Calcium increases Xylella fastidiosa surface attachment, biofilm formation, and twitching motility. Appl Environ Microbiol, 78(5), 1321-1331. doi:10.1128/AEM.06501-11 Cuny, C., Dukan, L., Fraysse, L., Ballesteros, M., Dukan, S. (2005). Investigation of the first events leading to loss of culturability during Escherichia coli starvation: future nonculturable bacteria form a subpopulation. J Bacteriol, 187(7), 2244-2248. doi:10.1128/JB.187.7.2244-2248.2005 Das, T., Sehar, S., Koop, L., Wong, Y. K., Ahmed, S., Siddiqui, K. S., Manefield, M. (2014). Influence of calcium in extracellular DNA mediated bacterial aggregation and biofilm formation. PLoS One, 9(3), e91935. doi:10.1371/journal.pone.0091935 Das, T., Sehar, S., Manefield, M. (2013). The roles of extracellular DNA in the structural integrity of extracellular polymeric substance and bacterial biofilm development. Environ Microbiol Rep, 5(6), 778-786. doi:10.1111/1758-2229.12085 Dominguez, D. C. (2004). Calcium signalling in bacteria. Molecular microbiology, 54(2), 291-297. Flemming, H. C., Wingender, J. (2010). The biofilm matrix. Nat Rev Microbiol, 8(9), 623-633. doi:10.1038/nrmicro2415 Fonseca, P., Moreno, R., Rojo, F. (2011). Growth of Pseudomonas putida at low temperature: global transcriptomic and proteomic analyses. Environ Microbiol Rep, 3(3), 329-339. doi:10.1111/j.1758-2229.2010.00229.x Garrett, T. R., Bhakoo, M., Zhang, Z. (2008). Bacterial adhesion and biofilms on surfaces. Progress in Natural Science, 18(9), 1049-1056. doi:10.1016/j.pnsc.2008.04.001 Grellier, J., Rushton, L., Briggs, D. J., Nieuwenhuijsen, M. J. (2015). Assessing the human health impacts of exposure to disinfection by-products—A critical review of concepts and methods. Environment International, 78, 61-81. Guo, Y., Liu, C., Ye, R., Duan, Q. (2020). Advances on Water Quality Detection by UV-Vis Spectroscopy. Applied Sciences, 10(19). doi:10.3390/app10196874 Habimana, O., Steenkeste, K., Fontaine-Aupart, M. P., Bellon-Fontaine, M. N., Kulakauskas, S., Briandet, R. (2011). Diffusion of nanoparticles in biofilms is altered by bacterial cell wall hydrophobicity. Appl Environ Microbiol, 77(1), 367-368. doi:10.1128/AEM.02163-10 Herzsprung, P., Wentzky, V., Kamjunke, N., von Tumpling, W., Wilske, C., Friese, K., . . . Lechtenfeld, O. J. (2020). Improved Understanding of Dissolved Organic Matter Processing in Freshwater Using Complementary Experimental and Machine Learning Approaches. Environ Sci Technol, 54(21), 13556-13565. doi:10.1021/acs.est.0c02383 Huang, C. H., Chen, C. Y., Wang, G. S. (2019). Temperature dependence of characteristics of organic precursors, bromide, and disinfection byproduct formation. Sci Total Environ, 662, 746-754. doi:10.1016/j.scitotenv.2019.01.239 Lemus Perez, M. F., Rodriguez Susa, M. (2017). Exopolymeric substances from drinking water biofilms: Dynamics of production and relation with disinfection by products. Water Res, 116, 304-315. doi:10.1016/j.watres.2017.03.036 Liu, C., Olivares, C. I., Pinto, A. J., Lauderdale, C. V., Brown, J., Selbes, M., Karanfil, T. (2017). The control of disinfection byproducts and their precursors in biologically active filtration processes. Water Res, 124, 630-653. doi:10.1016/j.watres.2017.07.080 Liu, J. L., Li, X. Y., Xie, Y. F., Tang, H. (2014). Characterization of soluble microbial products as precursors of disinfection byproducts in drinking water supply. Sci Total Environ, 472, 818-824. doi:10.1016/j.scitotenv.2013.11.139 Madigan, M. T., Martinko, J. M., Parker, J. (2003). Microbial growth. Brock biology of microorganisms, 137-166. Maier, R. M., Pepper, I. L. (2015). Bacterial growth. In Environmental microbiology (pp. 37-56): Elsevier. Martinez-Gil, M., Romero, D., Kolter, R., Espinosa-Urgel, M. (2012). Calcium causes multimerization of the large adhesin LapF and modulates biofilm formation by Pseudomonas putida. J Bacteriol, 194(24), 6782-6789. doi:10.1128/JB.01094-12 Morimatsu, K., Eguchi, K., Hamanaka, D., Tanaka, F., Uchino, T. (2012). Effects of temperature and nutrient conditions on biofilm formation of Pseudomonas putida. Food Science and Technology Research, 18(6), 879-883. Muellner, M. G., Wagner, E. D., McCalla, K., Richardson, S. D., Woo, Y.-T., Plewa, M. J. (2007). Haloacetonitriles vs. regulated haloacetic acids: are nitrogen-containing DBPs more toxic? Environmental science technology, 41(2), 645-651. Munna, M. S., Zeba, Z., Noor, R. (2015). Influence of temperature on the growth of Pseudomonas putida. Stamford journal of microbiology, 5(1), 9-12. Nebbioso, A., Piccolo, A. (2013). Molecular characterization of dissolved organic matter (DOM): a critical review. Anal Bioanal Chem, 405(1), 109-124. doi:10.1007/s00216-012-6363-2 Ng, T., Li, B., Chow, A., Wong, P. (2015). Formation of disinfection by-products from bacterial disinfection. In Recent Advances in Disinfection By-Products (pp. 235-250): ACS Publications. Nieuwenhuijsen, M. J., Toledano, M. B., Eaton, N. E., Fawell, J., Elliott, P. (2000). Chlorination disinfection byproducts in water and their association with adverse reproductive outcomes: a review. Occupational and environmental medicine, 57(2), 73-85. Nikolaou, A. D., Lekkas, T. D., Kostopoulou, M. N., Golfinopoulos, S. K. (2001). Investigation of the behaviour of haloketones in water samples. Chemosphere, 44(5), 907-912. Nishikawa, M., Kobayashi, K. (2021). Calcium prevents biofilm dispersion in Bacillus subtilis. Journal of Bacteriology, JB. 00114-00121. Noble, J. E., Bailey, M. J. A. (2009). Chapter 8 Quantitation of Protein. In Guide to Protein Purification, 2nd Edition (pp. 73-95). Organization, W. H. (2010). Hardness in drinking-water: Background document for development of WHO guidelines for drinking-water quality. Retrieved from Perdue, E., Ritchie, J. (2003). Dissolved organic matter in freshwaters. Treatise on geochemistry, 5, 605. Petrova, O. E., Sauer, K. (2016). Escaping the biofilm in more than one way: desorption, detachment or dispersion. Curr Opin Microbiol, 30, 67-78. doi:10.1016/j.mib.2016.01.004 Richardson, S. D., Plewa, M. J., Wagner, E. D., Schoeny, R., Demarini, D. M. (2007). Occurrence, genotoxicity, and carcinogenicity of regulated and emerging disinfection by-products in drinking water: a review and roadmap for research. Mutat Res, 636(1-3), 178-242. doi:10.1016/j.mrrev.2007.09.001 Richardson, S. D., Postigo, C. (2011). Drinking water disinfection by-products. In Emerging organic contaminants and human health (pp. 93-137): Springer. Sarkisova, S., Patrauchan, M. A., Berglund, D., Nivens, D. E., Franklin, M. J. (2005). Calcium-induced virulence factors associated with the extracellular matrix of mucoid Pseudomonas aeruginosa biofilms. J Bacteriol, 187(13), 4327-4337. doi:10.1128/JB.187.13.4327-4337.2005 Schiraldi, C., De Rosa, M. (2016). Mesophilic Organisms. In E. Drioli L. Giorno (Eds.), Encyclopedia of Membranes (pp. 1-2). Berlin, Heidelberg: Springer Berlin Heidelberg. Stepanović, S., Ćirković, I., Mijač, V., Švabić-Vlahović, M. (2003). Influence of the incubation temperature, atmosphere and dynamic conditions on biofilm formation by Salmonella spp. Food Microbiology, 20(3), 339-343. doi:10.1016/s0740-0020(02)00123-5 Villanueva, C. M., Cordier, S., Font-Ribera, L., Salas, L. A., Levallois, P. (2015). Overview of Disinfection By-products and Associated Health Effects. Curr Environ Health Rep, 2(1), 107-115. doi:10.1007/s40572-014-0032-x Wang, J. J., Liu, X., Ng, T. W., Xiao, J. W., Chow, A. T., Wong, P. K. (2013). Disinfection byproduct formation from chlorination of pure bacterial cells and pipeline biofilms. Water Res, 47(8), 2701-2709. doi:10.1016/j.watres.2013.02.038 Wang, T., Flint, S., Palmer, J. (2019). Magnesium and calcium ions: roles in bacterial cell attachment and biofilm structure maturation. Biofouling, 35(9), 959-974. doi:10.1080/08927014.2019.1674811 Wang, Z., Choi, O., Seo, Y. (2013). Relative contribution of biomolecules in bacterial extracellular polymeric substances to disinfection byproduct formation. Environ Sci Technol, 47(17), 9764-9773. doi:10.1021/es402067g Wang, Z., Kim, J., Seo, Y. (2012). Influence of bacterial extracellular polymeric substances on the formation of carbonaceous and nitrogenous disinfection byproducts. Environ Sci Technol, 46(20), 11361-11369. doi:10.1021/es301905n Wang, Z., Wu, Z. (2009). Distribution and transformation of molecular weight of organic matters in membrane bioreactor and conventional activated sludge process. Chemical Engineering Journal, 150(2-3), 396-402. doi:10.1016/j.cej.2009.01.018 Wei, Y. Y., Liu, Y., Zhang, Y., Dai, R. H., Liu, X., Wu, J. J., Zhang, Q. (2011). Influence of soluble microbial products (SMP) on wastewater disinfection byproducts: trihalomethanes and haloacetic acid species from the chlorination of SMP. Environ Sci Pollut Res Int, 18(1), 46-50. doi:10.1007/s11356-010-0356-5 Xing, X., Wang, H., Hu, C., Liu, L. (2018). Effects of phosphate-enhanced ozone/biofiltration on formation of disinfection byproducts and occurrence of opportunistic pathogens in drinking water distribution systems. Water Res, 139, 168-176. doi:10.1016/j.watres.2018.03.073
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82138-
dc.description.abstract"為了確保飲用水水質安全,在水處理的過程中加氯消毒是必要的步驟。然而在這同時,氯也會和水中的天然有機質、水中的微生物以及所生成的生物膜反應進而生成消毒副產物。這些消毒副產物會對人體健康造成負面效應。 過去的研究顯示水溫以及水中的硬度,其中尤其是鈣離子,對於細菌的生長以及生物膜的生成有著顯著的影響。本研究利用實驗室模擬方式,針對水溫及硬度的變化探討其是否會影響細菌和生物膜增生,進而增加水中消毒副產物生成潛能。在研究中,戀臭假單胞菌 (Pseudomonas putida, ATCC 47054) 被用於模擬水中微生物的活動,並培養於未額外添加鈣離子,以及每公升水中含有40毫克、120毫克以及200毫克鈣離子濃度的培養液中,以評估鈣離子對生物膜生成的影響。除探討鈣離子之效應外,樣本同時也分別放置於15°C、25°C以及30°C的環境下培養30天,以探討溫度變化對生物膜生成的影響。在培養完畢後,針對各水樣分析其微生物濃度、相關水質參數以及消毒副產物生成潛能。 根據重複模擬結果顯示,相較於未添加鈣離子的樣本,鈣離子濃度的提升會促進戀臭假單胞菌細菌及生物膜的增生。在考量到溫度與鈣離子的綜合效應後,結果顯示在25°C下,以每公升水中含40毫克的鈣離子濃度進行培養後,戀臭假單胞菌的細菌及生物膜濃度達到最高。同時,隨著微生物的增長,其對於水中有機質的貢獻也隨之上升,例如:水中腐植質及蛋白質含量。消毒副產物生成潛能的實驗結果顯示,在研究中所測量的消毒副產物,相較於未添加鈣離子之樣本,其濃度皆因鈣離子濃度增加而上升,其中又以鹵乙酸(HAA)生成為最大宗。同時,依據溫度對於微生物生長之影響,在鹵乙晴(HAN)的濃度變化上亦可觀察到相同的趨勢。另外,為了進一步了解微生物活動所貢獻之有機質成分比例,我們同時也針對過濾後的樣本進行比較分析。結果顯示,在培養液中的有機質主要為溶解態,而來自生物膜的有機質,則主要被歸類於顆粒狀態。 綜合以上,本研究結果顯示水中硬度的增加以及在適當的溫度下,微生物的活動會因此上升。其後在進行加氯消毒時,會伴隨更多的消毒副產物生成。然而針對一富含生物膜的水體,在進行加氯消毒前,可以藉由過濾等前處理去除生物膜所貢獻到水體的有機質,進而有效降低消毒副產物生成潛能。"zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-25T05:36:41Z (GMT). No. of bitstreams: 1
U0001-0510202120212700.pdf: 25413105 bytes, checksum: 74436e708bf552b3798cd76d780dea16 (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents"誌謝 i 中文摘要 ii ABSTRACT iv CONTENTS vii LIST OF FIGURES ix LIST OF TABLES xi Chapter 1 Introduction 1 1.1 Background 1 1.2 Objectives 2 Chapter 2 Literature Review 4 2.1 Associations among bacteria, biofilms and DBP precursors 4 2.2 Promotion of bacterial growth by temperature and calcium 8 2.2.1 Temperature effect 8 2.2.2 Calcium effect 8 2.3 Disinfection by-products contributed by bacteria 12 Chapter 3 Material and Method 15 3.1 Sample preparation 15 3.1.1 Materials and reagent 15 3.1.2 Preparation of LB agar 17 3.1.3 Natural organic matters-enriched solution (NOM solution) 17 3.1.4 Calcium solution 17 3.1.5 Bacterial solution 17 3.1.6 Incubation system 18 3.2 Sample collection 19 3.3 Analysis 21 3.3.1 Bacterial analysis 21 3.3.2 Non-purgeable dissolved organic carbon (NPDOC) analysis 21 3.3.3 Fluorescence excitation emission matrix (FEEM) 22 3.3.4 Ultraviolet-visible (UV-Vis) spectrophotometry 23 3.3.5 Disinfection by-product formation potential (DBPFP) analysis 23 Chapter 4 Results and Discussions 28 4.1 Effect of calcium concentration and incubation temperature on bacteria growths 28 4.2 Effect of calcium and temperature on water quality 34 4.3 Effect of calcium concentration and incubation temperature on DBPFPs 40 4.4 Effect of filtration 44 Chapter 5 Conclusions 50 REFERENCE 53 APPENDIX 57"
dc.language.isoen
dc.subject生物膜zh_TW
dc.subject消毒副產物zh_TW
dc.subject水溫zh_TW
dc.subject鈣離子zh_TW
dc.subject消毒副產物前質zh_TW
dc.subjectdisinfection by-product precursoren
dc.subjectdisinfection by-producten
dc.subjecttemperatureen
dc.subjectcalciumen
dc.subjectbiofilmen
dc.title溫度及鈣離子對生物膜生成效應與水中消毒副產物前質貢獻之研究zh_TW
dc.titleEffects of Temperature and Calcium Ions on Biofilm Formation and its Contribution to DBP Precursors in Wateren
dc.date.schoolyear109-2
dc.description.degree碩士
dc.contributor.oralexamcommittee童心欣(Hsin-Tsai Liu),林財富(Chih-Yang Tseng)
dc.subject.keyword消毒副產物,水溫,鈣離子,消毒副產物前質,生物膜,zh_TW
dc.subject.keyworddisinfection by-product,temperature,calcium,disinfection by-product precursor,biofilm,en
dc.relation.page62
dc.identifier.doi10.6342/NTU202103563
dc.rights.note同意授權(限校園內公開)
dc.date.accepted2021-10-06
dc.contributor.author-college公共衛生學院zh_TW
dc.contributor.author-dept環境與職業健康科學研究所zh_TW
dc.date.embargo-lift2026-10-05-
顯示於系所單位:環境與職業健康科學研究所

文件中的檔案:
檔案 大小格式 
U0001-0510202120212700.pdf
  未授權公開取用
24.82 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved