Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82137
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor謝之真(Chih-Chen Hsieh)
dc.contributor.authorShao-Yang Huangen
dc.contributor.author黃紹洋zh_TW
dc.date.accessioned2022-11-25T05:36:40Z-
dc.date.available2023-10-06
dc.date.copyright2021-11-02
dc.date.issued2021
dc.date.submitted2021-10-07
dc.identifier.citation1. Huang, L.R., et al., A DNA prism for high-speed continuous fractionation of large DNA molecules. Nature Biotechnology, 2002. 20(10): p. 1048-1051. 2. Bakajin, O., et al., Separation of 100-kilobase DNA molecules in 10 seconds. Analytical Chemistry, 2001. 73(24): p. 6053-6056. 3. Akerman, B. and K.D. Cole, Electrophoretic capture of circular DNA in gels. Electrophoresis, 2002. 23(16): p. 2549-61. 4. 王勝弘, 於圓柱陣列微流道中以間歇式電場分離DNA:電場強度及開關頻率之影響, in 化學工程學研究所. 2015, 臺灣大學. p. 1-91. 5. 黃睿亭, 於圓柱陣列微流道中以脈衝式電場分離DNA之研究, in 化學工程學研究所. 2015, 臺灣大學. p. 1-114. 6. 劉貞汝, 結合圓柱陣列與漸擴微流道以電泳分離DNA之研究, in 化學工程學研究所. 2017, 臺灣大學. p. 1-122. 7. 舒稚翔, 結合圓柱陣列與漸擴微流道以正向力分離DNA之研究, in 化學工程學研究所. 2018, 臺灣大學. p. 1-79. 8. 張淳慎, 於微流道中結合介電泳與正向應力分離DNA之研究, in 臺灣大學化學工程學研究所學位論文. 2019, 國立臺灣大學. p. 1-183. 9. Watson, J.D. and F.H.C. Crick, Molecular Structure of Nucleic Acids - A Structure for Deoxyribose Nucleic Acid. Nature, 1953. 171(4356): p. 737-738. 10. Venter, J.C., et al., The sequence of the human genome. Science, 2001. 291(5507): p. 1304-1351. 11. Perkins, T.T., et al., Stretching of a Single Tethered Polymer in a Uniform Flow. Science, 1995. 268(5207): p. 83-87. 12. Smith, D.E., T.T. Perkins, and S. Chu, Dynamical scaling of DNA diffusion coefficients. Macromolecules, 1996. 29(4): p. 1372-1373. 13. Yoshinaga, N., K. Yoshikawa, and S. Kidoaki, Multiscaling in a long semiflexible polymer chain in two dimensions. Journal of Chemical Physics, 2002. 116(22): p. 9926-9929. 14. Balducci, A., C.C. Hsieh, and P.S. Doyle, Relaxation of stretched DNA in slitlike confinement. Physical Review Letters, 2007. 99(23). 15. Gurrieri, S., et al., Direct visualization of individual DNA molecules by fluorescence microscopy: Characterization of the factors affecting signal/background and optimization of imaging conditions using YOYO. Analytical Biochemistry, 1997. 249(1): p. 44-53. 16. Kundukad, B., J. Yan, and P.S. Doyle, Effect of YOYO-1 on the mechanical properties of DNA. Soft Matter, 2014. 10(48): p. 9721-9728. 17. Li, Y., et al., When Ends Meet: Circular DNA Stretches Differently in Elongational Flows. Macromolecules, 2015. 48(16): p. 5997-6001. 18. Serag, M.F., M. Abadi, and S. Habuchi, Single-molecule diffusion and conformational dynamics by spatial integration of temporal fluctuations. Nature Communications, 2014. 5(1): p. 5123. 19. Gan, L., Insulator-Based Dielectrophoretic Manipulation of DNA in a Microfluidic Device. 2015, Arizona State University. p. 1-117. 20. Stellwagen, N.C., C. Gelfi, and P.G. Righetti, The free solution mobility of DNA. Biophysical Journal, 1997. 72(2): p. 687-703. 21. Sridharan, S., et al., Joule heating effects on electroosmotic flow in insulator-based dielectrophoresis. Electrophoresis, 2011. 32(17): p. 2274-81. 22. Mitnik, L., et al., Segregation in DNA Solutions Induced by Electric Fields. Science, 1995. 267(5195): p. 219-222. 23. Magnusdottir, S., et al., Electrohydrodynamically induced aggregation during constant and pulsed field capillary electrophoresis of DNA. Biopolymers, 1999. 49(5): p. 385-401. 24. Isambert, H., et al., Electrohydrodynamic patterns in macroion dispersions under a strong electric field. Physical Review E, 1997. 56(5): p. 5688-5704. 25. Isambert, H., et al., Electrohydrodynamic patterns in charged colloidal solutions. Physical Review Letters, 1997. 78(5): p. 971-974. 26. Tang, J., N. Du, and P.S. Doyle, Compression and self-entanglement of single DNA molecules under uniform electric field. Proceedings of the National Academy of Sciences of the United States of America, 2011. 108(39): p. 16153-16158. 27. Viefhues, M. and R. Eichhorn, DNA dielectrophoresis: Theory and applications a review. Electrophoresis, 2017. 38(11): p. 1483-1506. 28. Jones, P.V., G.L. Salmon, and A. Ros, Continuous Separation of DNA Molecules by Size Using Insulator-Based Dielectrophoresis. Analytical Chemistry, 2017. 89(3): p. 1531-1539. 29. Wunsch, B.H., et al., Gel-on-a-chip: continuous, velocity-dependent DNA separation using nanoscale lateral displacement. Lab on a Chip, 2019. 19(9): p. 1567-1578. 30. 曾義雄,陳信芬,陳慶三, 電泳分離技術研討會論文集. 1987: 行政院國家科學委員會. 31. Schwartz, D.C. and C.R. Cantor, Separation of Yeast Chromosome-Sized DNAs by Pulsed Field Gradient Gel-Electrophoresis. Cell, 1984. 37(1): p. 67-75. 32. Chu, G., D. Vollrath, and R.W. Davis, Separation of Large DNA Molecules by Contour-Clamped Homogeneous Electric Fields. Science, 1986. 234(4783): p. 1582-1585. 33. Noolandi, J., A new concept for sequencing DNA by capillary electrophoresis. Electrophoresis, 1992. 13(6): p. 394-395. 34. Won, J.I., Recent Advances in DNA sequencing by End-Labeled Free-Solution Electrophoresis (ELFSE). Biotechnology and Bioprocess Engineering, 2006. 11(3): p. 179-186. 35. Karlinsey, J.M., Sample introduction techniques for microchip electrophoresis: A review. Analytica Chimica Acta, 2012. 725: p. 1-13. 36. Tsai, C.H., et al., Numerical simulation of electrokinetic injection techniques in capillary electrophoresis microchips. Electrophoresis, 2005. 26(3): p. 674-686. 37. Han, J. and H.G. Craighead, Separation of long DNA molecules in a microfabricated entropic trap array. Science, 2000. 288(5468): p. 1026-1029. 38. Ou, J., et al., DNA electrophoresis in a sparse ordered post array. Physical Review E, 2009. 79(6): p. 1-4. 39. Ou, J., S.J. Carpenter, and K.D. Dorfman, Onset of channeling during DNA electrophoresis in a sparse ordered post array. Biomicrofluidics, 2010. 4(1): p. 1-10. 40. Fu, J., et al., A patterned anisotropic nanofluidic sieving structure for continuous-flow separation of DNA and proteins. Nature Nanotechnology, 2007. 2(2): p. 121-128. 41. Täuber, S., et al., Reaching for the limits in continuous-flow dielectrophoretic DNA analysis. Analyst, 2017. 142(24): p. 4670-4677. 42. Viefhues, M., J. Regtmeier, and D. Anselmetti, Fast and continuous-flow separation of DNA-complexes and topological DNA variants in microfluidic chip format. Analyst, 2013. 138(1): p. 186-196. 43. Pohl, H.A., The Motion and Precipitation of Suspensoids in Divergent Electric Fields. Journal of Applied Physics, 1951. 22(7): p. 869-871. 44. Voldman, J., Electrical forces for microscale cell manipulation. Annual Review of Biomedical Engineering, 2006. 8: p. 425-454. 45. Jubery, T.Z., S.K. Srivastava, and P. Dutta, Dielectrophoretic separation of bioparticles in microdevices: A review. Electrophoresis, 2014. 35(5): p. 691-713. 46. JONES, T.B., Electromechanics of Particles. 1995: p. 1-265. 47. Pethig, R., Limitations of the Clausius-Mossotti function used in dielectrophoresis and electrical impedance studies of biomacromolecules. Electrophoresis, 2019. 40(18-19): p. 2575-2583. 48. Oh, M., et al., Selective Manipulation of Biomolecules with Insulator-Based Dielectrophoretic Tweezers. ACS Applied Nano Materials, 2020. 3(1): p. 797-805. 49. Henning, A., et al., Label-free electrical quantification of the dielectrophoretic response of DNA. PMC Biophysics, 2008. 1(1): p. 4. 50. Regtmeier, J., et al., Electrodeless dielectrophoresis for bioanalysis: Theory, devices and applications. Electrophoresis, 2011. 32(17): p. 2253-2273. 51. Dash, S. and S. Mohanty, Dielectrophoretic separation of micron and submicron particles: A review. Electrophoresis, 2014. 35(18): p. 2656-2672. 52. Lewpiriyawong, N., C. Yang, and Y.C. Lam, Continuous sorting and separation of microparticles by size using AC dielectrophoresis in a PDMS microfluidic device with 3-D conducting PDMS composite electrodes. ELECTROPHORESIS, 2010. 31(15): p. 2622-2631. 53. Faraghat, S.A., et al., High-throughput, low-loss, low-cost, and label-free cell separation using electrophysiology-activated cell enrichment. Proc Natl Acad Sci U S A, 2017. 114(18): p. 4591-4596. 54. Park, S., et al., Continuous dielectrophoretic bacterial separation and concentration from physiological media of high conductivity. Lab on a Chip, 2011. 11(17): p. 2893-2900. 55. Kang, K.H., et al., Continuous separation of microparticles by size with Direct current-dielectrophoresis. ELECTROPHORESIS, 2006. 27(3): p. 694-702. 56. Gallo-Villanueva, R.C., et al., Separation of mixtures of particles in a multipart microdevice employing insulator-based dielectrophoresis. Electrophoresis, 2011. 32(18): p. 2456-65. 57. Barrett, L.M., et al., Dielectrophoretic manipulation of particles and cells using insulating ridges in faceted prism microchannels. Anal Chem, 2005. 77(21): p. 6798-804. 58. Martinez-Duarte, R., et al., Dielectrophoresis of lambda-DNA using 3D carbon electrodes. Electrophoresis, 2013. 34(7): p. 1113-1122. 59. Li, S.B., et al., On-chip DNA preconcentration in different media conductivities by electrodeless dielectrophoresis. Biomicrofluidics, 2015. 9(5): p. 1-11. 60. Parikesit, G.O.F., et al., Size-dependent trajectories of DNA macromolecules due to insulative dielectrophoresis in submicrometer-deep fluidic channels. Biomicrofluidics, 2008. 2(2): p. 024103. 61. Mahshid, S., et al., Transverse dielectrophoretic-based DNA nanoscale confinement. Scientific Reports, 2018. 8(1): p. 5981. 62. Sung, K.E. and M.A. Burns, Optimization of dielectrophoretic DNA stretching in microfabricated devices. Analytical chemistry, 2006. 78(9): p. 2939-2947. 63. Li, S., et al., Dielectrophoretic responses of DNA and fluorophore in physiological solution by impedimetric characterization. Biosens Bioelectron, 2013. 41: p. 649-55. 64. Yokokawa, R., et al., Individual evaluation of DEP, EP and AC-EOF effects on λDNA molecules in a DNA concentrator. Sensors and Actuators B: Chemical, 2010. 143(2): p. 769-775. 65. Joswiak, M.N., J. Ou, and K.D. Dorfman, Statistical properties of the electrophoretic collision of a long DNA molecule with a small obstacle. ELECTROPHORESIS, 2012. 33(6): p. 1013-1020. 66. Pethig, R., Review—Where Is Dielectrophoresis (DEP) Going? Journal of The Electrochemical Society, 2016. 164(5): p. B3049-B3055.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82137-
dc.description.abstract在分子分形時,難免會有疏漏而造成線形與環形DNA混合,也因此產生分離不同構型DNA的需求。在現行應用中,最常見且傳統之分離方法為凝膠電泳,然耗時長為其缺點;而最近利用微流道分離不同構型DNA的研究中,則多以絕緣式介電泳來分離,然而各種不同設計皆有其侷限。在本研究中,我們則嘗試在微流道中利用正向應力或介電泳力分離線型及環形之DNA。首先,我們已經在先前的研究中實現以正向應力(normal stress)來分離不同長度之線型DNA,也因此欲探究以此裝置分離不同構型DNA之可能性。在利用介電泳力方面,則希望設計出有別以往絕緣式介電泳分離之新穎裝置。我們以λ-DNA(48.5 kbp)和Charomid 9-42 DNA(42.2 kbp)分別代表線形與環形做為分離之對象。 在以正向應力分離之實驗部分,因線形與環形DNA之鬆弛時間差距不大,造成兩者正向應力差別有限,導致分離效果差於預期。為改善分離效率,我們使用鞘流將DNA於裝置入口處先集中,使正向應力的效應放大,確實能夠使線形DNA傾向往側邊出口流動,而環形DNA則傾向沿著裝置中央流動,達到較佳的分離。 我們亦嘗試以交流電引發DNA負介電泳,以搭配正向應力來更進一步提升分離DNA的效率。儘管從文獻中測量DNA與溶液介電係數之結果可以推測DNA非常難產生負介電泳力之現象,但仍有許多關於DNA負介電泳之參考文獻。也因此我們嘗試文獻上不同配方之緩衝溶液,並改變頻率範圍,然皆未發現明顯負介電泳之現象。此外,實驗過程中不論於PDMS微流道或是玻璃微流道內,皆觀測到明顯之電流熱效應,此效應造成之DNA運動與負介電泳非常近似,然電流熱效應並未被上述任何一篇文獻所考慮,所以我們認為文獻中電關於DNA負介電泳現象很可能是由電流熱效應所產生。 因並未發現負介電泳之現象,我們轉為以正介電泳力分離DNA,並設計出有別於以往以介電泳力分離之裝置。在新穎以絕緣式介電泳分離之實驗中,除了λ-DNA和Charomid 9-42 DNA,我們亦加入T4 DNA (165.6 kbp),以同時探討於此裝置分離不同長度DNA之可能性。在此裝置中,我們確實觀測到不同DNA在相同介電泳條件下偏移程度有差異,但此設計仍需進一步優化使其分離效果提升。zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-25T05:36:40Z (GMT). No. of bitstreams: 1
U0001-0610202102024400.pdf: 9350790 bytes, checksum: 7f45626d7849e4881094e81bbc784f4b (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents論文口試委員審定書 I 致謝 III 摘要 IV Abstract VI 目錄 VIII 圖目錄 XI 表目錄 XXXIII 第 1 章 、緒論 1 1.1 前言 1 1.2 研究動機 1 第 2 章 、文獻回顧 3 2.1 DNA簡介 3 2.1.1 DNA的化學結構 4 2.1.2 DNA的高分子性質 7 2.1.3 DNA與染劑分子 8 2.1.4 DNA的構型 10 2.1.5 線與環DNA的物理性質 11 2-2 DNA常見的電動力學 14 2.2.1 電雙層 15 2.2.2 電泳 15 2.2.3 電滲流 16 2.2.4 電流熱效應 17 2.3 電流體動力不穩定性(electrohydrodynamic instability) 18 2.4 分離原則與分析方法 21 2.4.1 分離解析度 22 2.4.2 分離效率 24 2.4.3 位移效率 25 2.5 現行DNA分離技術 28 2.5.1 凝膠電泳(gel electrophoresis,GEP) 28 2.5.2 毛細管電泳(capillary electrophoresis,CE) 29 2.5.3 微流道電泳(microchannel electrophoresis) 30 2.5.4 線與環之DNA於之分離 38 2.6 介電泳 40 2.6.1 介電泳力和電容率及電導率之關係 42 2.6.2 介電泳於微流道分離之應用 47 2.6.3 介電泳於DNA之應用 59 2.7 新穎正向應力分離DNA之裝置 73 2.7.2 結合正向應力之側向分離通道 76 2.7.3 影響正向應力之因素 78 2.8 研究目的與實驗設計構想 80 2.8.1.以正向應力分離環與線的DNA 80 2.8.2 結合負介電泳力與正向應力以側向分離DNA 85 2.8.3 開發新形絕緣式介電泳之裝置 88 第 3 章 、設備、材料與方法 92 3.1 實驗設備 92 3.2 實驗材料 95 3.3 通道製作 97 3.4 溶液配置 109 3.5 電場施加裝置 112 3.6 結果收集與分析 118 第 4 章 、結果與討論 121 4.1 以正向應力分離線與環之DNA 121 4.1.1 分叉出口對分離之影響 123 4.1.2 以集中流場分離之結果 131 4.2 負介電泳力之測試 144 4.2.1 不同濃度之PBS緩衝液 146 4.2.2 pH 8.0 NaOH 150 4.3 開發新穎之絕緣式介電泳分離裝置 160 第 5 章 、結論與未來展望 174 5.1 結論 174 5.2 未來展望 175 第 6 章 、參考文獻 176
dc.language.isozh-TW
dc.subject環狀DNA分離zh_TW
dc.subject絕緣式介電泳zh_TW
dc.subject微流道zh_TW
dc.subject介電泳zh_TW
dc.subject正向應力zh_TW
dc.subjectinsulated dielectrophoresisen
dc.subjectMicrochannelen
dc.subjectcircular DNAen
dc.subjectDNA separationen
dc.subjectnormal stressen
dc.title以正向應力及介電泳力在微流道中分離線形與環形DNA之研究zh_TW
dc.titleSeparation of Linear and Ring DNA by Normal Stress and Dielectrophoresis Force in Microchannelsen
dc.date.schoolyear109-2
dc.description.degree碩士
dc.contributor.oralexamcommittee趙玲(Hsin-Tsai Liu),莊怡哲(Chih-Yang Tseng),周家復
dc.subject.keyword微流道,環狀DNA分離,正向應力,介電泳,絕緣式介電泳,zh_TW
dc.subject.keywordMicrochannel,circular DNA,DNA separation,normal stress,insulated dielectrophoresis,en
dc.relation.page180
dc.identifier.doi10.6342/NTU202103570
dc.rights.note同意授權(限校園內公開)
dc.date.accepted2021-10-08
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept化學工程學研究所zh_TW
dc.date.embargo-lift2023-10-06-
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
U0001-0610202102024400.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
9.13 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved