Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 牙醫專業學院
  4. 口腔生物科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82109
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳信銘(Hsin-Ming Chen)
dc.contributor.authorYu-Ting Siaoen
dc.contributor.author蕭妤庭zh_TW
dc.date.accessioned2022-11-25T05:36:02Z-
dc.date.available2026-10-25
dc.date.copyright2021-11-09
dc.date.issued2021
dc.date.submitted2021-10-27
dc.identifier.citation1. Parkin, D.M., P. Pisani, and J. Ferlay, Estimates of the worldwide incidence of 25 major cancers in 1990. Int J Cancer, 1999. 80(6): p. 827-41. 2. Fedele, S., Diagnostic aids in the screening of oral cancer. Head Neck Oncol, 2009. 1: p. 5. 3. Montero, P.H. and S.G. Patel, Cancer of the oral cavity. Surg Oncol Clin N Am, 2015. 24(3): p. 491-508. 4. Tahir, A., et al., The role of mast cells and angiogenesis in well-differentiated oral squamous cell carcinoma. J Cancer Res Ther, 2013. 9(3): p. 387-91. 5. Bagan, J., G. Sarrion, and Y. Jimenez, Oral cancer: clinical features. Oral Oncol, 2010. 46(6): p. 414-7. 6. Oji, C. and F. Chukwuneke, Poor oral Hygiene may be the Sole Cause of Oral Cancer. J Maxillofac Oral Surg, 2012. 11(4): p. 379-83. 7. Ng, J.H., et al., Changing epidemiology of oral squamous cell carcinoma of the tongue: A global study. Head Neck, 2017. 39(2): p. 297-304. 8. Kumar, M., et al., Oral cancer: Etiology and risk factors: A review. J Cancer Res Ther, 2016. 12(2): p. 458-63. 9. Chaturvedi, P., et al., Tobacco related oral cancer. BMJ, 2019. 365: p. l2142. 10. Blot, W.J., et al., Smoking and drinking in relation to oral and pharyngeal cancer. Cancer Res, 1988. 48(11): p. 3282-7. 11. Stevens, M.H., et al., Head and neck cancer survival and life-style change. Arch Otolaryngol, 1983. 109(11): p. 746-9. 12. Swoboda, H. and H.P. Friedl, Tobacco-related cancer in relation to prevalence of drinking and smoking in eastern Austria. J Cancer Res Clin Oncol, 1992. 118(8): p. 621-5. 13. Warnakulasuriya, S., Living with oral cancer: epidemiology with particular reference to prevalence and life-style changes that influence survival. Oral Oncol, 2010. 46(6): p. 407-10. 14. Warnakulasuriya, S., Global epidemiology of oral and oropharyngeal cancer. Oral Oncol, 2009. 45(4-5): p. 309-16. 15. Zhong, X., et al., Oral microbiota alteration associated with oral cancer and areca chewing. Oral Dis, 2021. 27(2): p. 226-239. 16. Warnakulasuriya, S., C. Trivedy, and T.J. Peters, Areca nut use: an independent risk factor for oral cancer. BMJ, 2002. 324(7341): p. 799-800. 17. Wu, M.T., et al., Risk of betel chewing for oesophageal cancer in Taiwan. Br J Cancer, 2001. 85(5): p. 658-60. 18. D'Souza, S. and V. Addepalli, Preventive measures in oral cancer: An overview. Biomed Pharmacother, 2018. 107: p. 72-80. 19. Scully, C. and J.V. Bagan, Recent advances in Oral Oncology 2007: imaging, treatment and treatment outcomes. Oral Oncol, 2008. 44(3): p. 211-5. 20. Shah, J.P. and Z. Gil, Current concepts in management of oral cancer--surgery. Oral Oncol, 2009. 45(4-5): p. 394-401. 21. Baskar, R., et al., Cancer and radiation therapy: current advances and future directions. Int J Med Sci, 2012. 9(3): p. 193-9. 22. Hancock, P.J., J.B. Epstein, and G.R. Sadler, Oral and dental management related to radiation therapy for head and neck cancer. J Can Dent Assoc, 2003. 69(9): p. 585-90. 23. Carneiro-Neto, J.N., et al., Protocols for management of oral complications of chemotherapy and/or radiotherapy for oral cancer: Systematic review and meta-analysis current. Med Oral Patol Oral Cir Bucal, 2017. 22(1): p. e15-e23. 24. Hartner, L., Chemotherapy for Oral Cancer. Dent Clin North Am, 2018. 62(1): p. 87-97. 25. Torre, D., Alternate cryogens for cryosurgery. J Dermatol Surg, 1975. 1(2): p. 56-8. 26. Onik, G., et al., Ultrasonic characteristics of frozen liver. Cryobiology, 1984. 21(3): p. 321-8. 27. de Baere, T., et al., Evaluating Cryoablation of Metastatic Lung Tumors in Patients--Safety and Efficacy: The ECLIPSE Trial--Interim Analysis at 1 Year. J Thorac Oncol, 2015. 10(10): p. 1468-74. 28. Yu, C.H., et al., Cryotherapy for oral precancers and cancers. J Formos Med Assoc, 2014. 113(5): p. 272-7. 29. Andrews, M.D., Cryosurgery for common skin conditions. Am Fam Physician, 2004. 69(10): p. 2365-72. 30. Baust, J.G., et al., Cryosurgery--a putative approach to molecular-based optimization. Cryobiology, 2004. 48(2): p. 190-204. 31. Sabel, M.S., Cryo-immunology: a review of the literature and proposed mechanisms for stimulatory versus suppressive immune responses. Cryobiology, 2009. 58(1): p. 1-11. 32. Chu, K.F. and D.E. Dupuy, Thermal ablation of tumours: biological mechanisms and advances in therapy. Nat Rev Cancer, 2014. 14(3): p. 199-208. 33. Erinjeri, J.P. and T.W. Clark, Cryoablation: mechanism of action and devices. J Vasc Interv Radiol, 2010. 21(8 Suppl): p. S187-91. 34. Farah, C.S. and N.W. Savage, Cryotherapy for treatment of oral lesions. Aust Dent J, 2006. 51(1): p. 2-5. 35. Kawczyk-Krupka, A., et al., Comparison of cryotherapy and photodynamic therapy in treatment of oral leukoplakia. Photodiagnosis Photodyn Ther, 2012. 9(2): p. 148-55. 36. Lin, H.P., et al., Cryogun cryotherapy for oral leukoplakia. Head Neck, 2012. 34(9): p. 1306-11. 37. Yeh, C.J., Simple cryosurgical treatment for oral lesions. Int J Oral Maxillofac Surg, 2000. 29(3): p. 212-6. 38. Toida, M., J.I. Ishimaru, and N. Hobo, A simple cryosurgical method for treatment of oral mucous cysts. Int J Oral Maxillofac Surg, 1993. 22(6): p. 353-5. 39. Ahmad, F., et al., Changes in interleukin-1beta and 6 after hepatic microwave tissue ablation compared with radiofrequency, cryotherapy and surgical resections. Am J Surg, 2010. 200(4): p. 500-6. 40. Wu, J., et al., Stromal-epithelial lactate shuttle induced by tumorderived interleukin1beta promotes cell proliferation in oral squamous cell carcinoma. Int J Mol Med, 2018. 41(2): p. 687-696. 41. Rebe, C. and F. Ghiringhelli, Interleukin-1beta and Cancer. Cancers (Basel), 2020. 12(7). 42. Liu, B., L. Qu, and S. Yan, Cyclooxygenase-2 promotes tumor growth and suppresses tumor immunity. Cancer Cell Int, 2015. 15: p. 106. 43. Tsuji, S., et al., Cyclooxygenase-2 upregulation as a perigenetic change in carcinogenesis. J Exp Clin Cancer Res, 2001. 20(1): p. 117-29. 44. Gravante, G., et al., Immunoregulatory effects of liver ablation therapies for the treatment of primary and metastatic liver malignancies. Liver Int, 2009. 29(1): p. 18-24. 45. Jansen, M.C., et al., Cryoablation induces greater inflammatory and coagulative responses than radiofrequency ablation or laser induced thermotherapy in a rat liver model. Surgery, 2010. 147(5): p. 686-95. 46. Hanai, A., W.L. Yang, and T.S. Ravikumar, Induction of apoptosis in human colon carcinoma cells HT29 by sublethal cryo-injury: mediation by cytochrome c release. Int J Cancer, 2001. 93(4): p. 526-33. 47. Yang, W.L., et al., Apoptosis induced by cryo-injury in human colorectal cancer cells is associated with mitochondrial dysfunction. Int J Cancer, 2003. 103(3): p. 360-9. 48. Alblin, R.J., W.A. Soanes, and M.J. Gonder, Prospects for cryo-immunotherapy in cases of metastasizing carcinoma of the prostate. Cryobiology, 1971. 8(3): p. 271-9. 49. Gursel, E., M. Roberts, and R.J. Veenema, Regression of prostatic cancer following sequential cryotherapy to the prostate. J Urol, 1972. 108(6): p. 928-32. 50. Gallucci, S., M. Lolkema, and P. Matzinger, Natural adjuvants: endogenous activators of dendritic cells. Nat Med, 1999. 5(11): p. 1249-55. 51. Sauter, B., et al., Consequences of cell death: exposure to necrotic tumor cells, but not primary tissue cells or apoptotic cells, induces the maturation of immunostimulatory dendritic cells. J Exp Med, 2000. 191(3): p. 423-34. 52. Gazzaniga, S., et al., Inflammatory changes after cryosurgery-induced necrosis in human melanoma xenografted in nude mice. J Invest Dermatol, 2001. 116(5): p. 664-71. 53. Sabel, M.S., et al., Immunologic response to cryoablation of breast cancer. Breast Cancer Res Treat, 2005. 90(1): p. 97-104. 54. Sotomayor, E.M., et al., Conversion of tumor-specific CD4+ T-cell tolerance to T-cell priming through in vivo ligation of CD40. Nat Med, 1999. 5(7): p. 780-7. 55. Dong, H., et al., Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Nat Med, 2002. 8(8): p. 793-800. 56. den Brok, M.H., et al., Efficient loading of dendritic cells following cryo and radiofrequency ablation in combination with immune modulation induces anti-tumour immunity. Br J Cancer, 2006. 95(7): p. 896-905. 57. Seifert, J.K., et al., Large volume hepatic freezing: association with significant release of the cytokines interleukin-6 and tumor necrosis factor a in a rat model. World J Surg, 2002. 26(11): p. 1333-41. 58. Seliger, B., Strategies of tumor immune evasion. BioDrugs, 2005. 19(6): p. 347-54. 59. Wing, M.G., et al., Characterisation of suppressor cells generated following cryosurgery of an HSV-2-induced fibrosarcoma. Cancer Immunol Immunother, 1988. 26(2): p. 169-75. 60. Yamashita, T., et al., Enhanced tumor metastases in rats following cryosurgery of primary tumor. Gan, 1982. 73(2): p. 222-8. 61. Sabel, M.S., et al., Rate of freeze alters the immunologic response after cryoablation of breast cancer. Ann Surg Oncol, 2010. 17(4): p. 1187-93. 62. Gage, A.A., J.M. Baust, and J.G. Baust, Experimental cryosurgery investigations in vivo. Cryobiology, 2009. 59(3): p. 229-43. 63. Ngwa, W., et al., Using immunotherapy to boost the abscopal effect. Nat Rev Cancer, 2018. 18(5): p. 313-322. 64. Postow, M.A., et al., Immunologic correlates of the abscopal effect in a patient with melanoma. N Engl J Med, 2012. 366(10): p. 925-31. 65. Abdo, J., et al., Immunotherapy Plus Cryotherapy: Potential Augmented Abscopal Effect for Advanced Cancers. Front Oncol, 2018. 8: p. 85. 66. Sanmamed, M.F. and L. Chen, Inducible expression of B7-H1 (PD-L1) and its selective role in tumor site immune modulation. Cancer J, 2014. 20(4): p. 256-61. 67. Sharpe, A.H., et al., The function of programmed cell death 1 and its ligands in regulating autoimmunity and infection. Nat Immunol, 2007. 8(3): p. 239-45. 68. Ohaegbulam, K.C., et al., Human cancer immunotherapy with antibodies to the PD-1 and PD-L1 pathway. Trends Mol Med, 2015. 21(1): p. 24-33. 69. Ji, M., et al., PD-1/PD-L1 pathway in non-small-cell lung cancer and its relation with EGFR mutation. J Transl Med, 2015. 13: p. 5. 70. Han, Y., D. Liu, and L. Li, PD-1/PD-L1 pathway: current researches in cancer. Am J Cancer Res, 2020. 10(3): p. 727-742. 71. Ritprajak, P. and M. Azuma, Intrinsic and extrinsic control of expression of the immunoregulatory molecule PD-L1 in epithelial cells and squamous cell carcinoma. Oral Oncol, 2015. 51(3): p. 221-8. 72. Bellucci, R., et al., Interferon-gamma-induced activation of JAK1 and JAK2 suppresses tumor cell susceptibility to NK cells through upregulation of PD-L1 expression. Oncoimmunology, 2015. 4(6): p. e1008824. 73. Garcia-Diaz, A., et al., Interferon Receptor Signaling Pathways Regulating PD-L1 and PD-L2 Expression. Cell Rep, 2019. 29(11): p. 3766. 74. Li, P., et al., FGFR2 Promotes Expression of PD-L1 in Colorectal Cancer via the JAK/STAT3 Signaling Pathway. J Immunol, 2019. 202(10): p. 3065-3075. 75. Kaihara, T., et al., Decreased expression of E-cadherin and Yamamoto-Kohama's mode of invasion highly correlates with lymph node metastasis in esophageal squamous cell carcinoma. Pathobiology, 2001. 69(3): p. 172-8. 76. Papadavid, E., et al., Abnormal immunoreactivity of the E-cadherin/catenin (alpha-, beta-, and gamma-) complex in premalignant and malignant non-melanocytic skin tumours. J Pathol, 2002. 196(2): p. 154-62. 77. Eriksen, J.G., et al., Expression of integrins and E-cadherin in squamous cell carcinomas of the head and neck. APMIS, 2004. 112(9): p. 560-8. 78. Uchikado, Y., et al., Slug Expression in the E-cadherin preserved tumors is related to prognosis in patients with esophageal squamous cell carcinoma. Clin Cancer Res, 2005. 11(3): p. 1174-80. 79. Sasaki, K., et al., Significance of Twist expression and its association with E-cadherin in esophageal squamous cell carcinoma. J Exp Clin Cancer Res, 2009. 28: p. 158. 80. Ohigashi, Y., et al., Clinical significance of programmed death-1 ligand-1 and programmed death-1 ligand-2 expression in human esophageal cancer. Clin Cancer Res, 2005. 11(8): p. 2947-53. 81. Strome, S.E., et al., B7-H1 blockade augments adoptive T-cell immunotherapy for squamous cell carcinoma. Cancer Res, 2003. 63(19): p. 6501-5. 82. Tsushima, F., et al., Predominant expression of B7-H1 and its immunoregulatory roles in oral squamous cell carcinoma. Oral Oncol, 2006. 42(3): p. 268-74. 83. Cao, Y., et al., B7-H1 overexpression regulates epithelial-mesenchymal transition and accelerates carcinogenesis in skin. Cancer Res, 2011. 71(4): p. 1235-43. 84. Atashzar, M.R., et al., Cancer stem cells: A review from origin to therapeutic implications. J Cell Physiol, 2020. 235(2): p. 790-803. 85. Liu, C.G., et al., Clinical implications of stem cell gene Oct-4 expression in breast cancer. Ann Surg, 2011. 253(6): p. 1165-71. 86. Alaiya, A., et al., Proteomic analysis of Class IV lupus nephritis. Nephrol Dial Transplant, 2015. 30(1): p. 62-70. 87. Fu, T.Y., et al., Association of OCT4, SOX2, and NANOG expression with oral squamous cell carcinoma progression. J Oral Pathol Med, 2016. 45(2): p. 89-95. 88. Zhou, X., G.R. Huang, and P. Hu, Over-expression of Oct4 in human esophageal squamous cell carcinoma. Mol Cells, 2011. 32(1): p. 39-45. 89. Ghebeh, H., et al., Doxorubicin downregulates cell surface B7-H1 expression and upregulates its nuclear expression in breast cancer cells: role of B7-H1 as an anti-apoptotic molecule. Breast Cancer Res, 2010. 12(4): p. R48. 90. Alsuliman, A., et al., Bidirectional crosstalk between PD-L1 expression and epithelial to mesenchymal transition: significance in claudin-low breast cancer cells. Mol Cancer, 2015. 14: p. 149. 91. Almozyan, S., et al., PD-L1 promotes OCT4 and Nanog expression in breast cancer stem cells by sustaining PI3K/AKT pathway activation. Int J Cancer, 2017. 141(7): p. 1402-1412. 92. Dong, P., et al., Tumor-Intrinsic PD-L1 Signaling in Cancer Initiation, Development and Treatment: Beyond Immune Evasion. Front Oncol, 2018. 8: p. 386. 93. Dunn, G.P., et al., Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol, 2002. 3(11): p. 991-8. 94. Schreiber, R.D., L.J. Old, and M.J. Smyth, Cancer immunoediting: integrating immunity's roles in cancer suppression and promotion. Science, 2011. 331(6024): p. 1565-70. 95. Robert, C., et al., Pembrolizumab versus Ipilimumab in Advanced Melanoma. N Engl J Med, 2015. 372(26): p. 2521-32. 96. Topalian, S.L., et al., Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med, 2012. 366(26): p. 2443-54. 97. Herbst, R.S., et al., Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature, 2014. 515(7528): p. 563-7. 98. Ock, C.Y., et al., Pan-Cancer Immunogenomic Perspective on the Tumor Microenvironment Based on PD-L1 and CD8 T-Cell Infiltration. Clin Cancer Res, 2016. 22(9): p. 2261-70. 99. Anand, P., et al., Bioavailability of curcumin: problems and promises. Mol Pharm, 2007. 4(6): p. 807-18. 100. Shehzad, A., F. Wahid, and Y.S. Lee, Curcumin in cancer chemoprevention: molecular targets, pharmacokinetics, bioavailability, and clinical trials. Arch Pharm (Weinheim), 2010. 343(9): p. 489-99. 101. Bimonte, S., et al., Dissecting the role of curcumin in tumour growth and angiogenesis in mouse model of human breast cancer. Biomed Res Int, 2015. 2015: p. 878134. 102. Ireson, C., et al., Characterization of metabolites of the chemopreventive agent curcumin in human and rat hepatocytes and in the rat in vivo, and evaluation of their ability to inhibit phorbol ester-induced prostaglandin E2 production. Cancer Res, 2001. 61(3): p. 1058-64. 103. Wu, T., et al., Curcumin Attenuates Both Acute and Chronic Immune Nephritis. Int J Mol Sci, 2020. 21(5). 104. Li, Y., et al., Synthesis, characterization and ROS-mediated antitumor effects of palladium(II) complexes of curcuminoids. Eur J Med Chem, 2018. 144: p. 662-671. 105. Mohajeri, M. and A. Sahebkar, Protective effects of curcumin against doxorubicin-induced toxicity and resistance: A review. Crit Rev Oncol Hematol, 2018. 122: p. 30-51. 106. Lin, Y.C., et al., Therapeutic efficacy evaluation of curcumin on human oral squamous cell carcinoma xenograft using multimodalities of molecular imaging. Am J Chin Med, 2010. 38(2): p. 343-58. 107. Chakravarti, N., et al., Differential inhibition of protein translation machinery by curcumin in normal, immortalized, and malignant oral epithelial cells. Cancer Prev Res (Phila), 2010. 3(3): p. 331-8. 108. Zhen, L., et al., Curcumin inhibits oral squamous cell carcinoma proliferation and invasion via EGFR signaling pathways. Int J Clin Exp Pathol, 2014. 7(10): p. 6438-46. 109. Nelson, K.M., et al., The Essential Medicinal Chemistry of Curcumin. J Med Chem, 2017. 60(5): p. 1620-1637. 110. Yaguchi, T., et al., The mechanisms of cancer immunoescape and development of overcoming strategies. Int J Hematol, 2011. 93(3): p. 294-300. 111. Lin, G.S., et al., STAT3 Tyr705 phosphorylation affects clinical outcome in patients with newly diagnosed supratentorial glioblastoma. Med Oncol, 2014. 31(4): p. 924. 112. Chakravarti, N., J.N. Myers, and B.B. Aggarwal, Targeting constitutive and interleukin-6-inducible signal transducers and activators of transcription 3 pathway in head and neck squamous cell carcinoma cells by curcumin (diferuloylmethane). Int J Cancer, 2006. 119(6): p. 1268-75. 113. Fugle, C.W., et al., CD24 blunts oral squamous cancer development and dampens the functional expansion of myeloid-derived suppressor cells. Oncoimmunology, 2016. 5(10): p. e1226719. 114. Weed, D.T., et al., Tadalafil reduces myeloid-derived suppressor cells and regulatory T cells and promotes tumor immunity in patients with head and neck squamous cell carcinoma. Clin Cancer Res, 2015. 21(1): p. 39-48. 115. Zandberg, D.P. and S.E. Strome, The role of the PD-L1:PD-1 pathway in squamous cell carcinoma of the head and neck. Oral Oncol, 2014. 50(7): p. 627-32. 116. Hayakawa, T., et al., Enhanced anti-tumor effects of the PD-1/PD-L1 blockade by combining a highly absorptive form of NF-kB/STAT3 inhibitor curcumin. Journal for ImmunoTherapy of Cancer, 2014. 2(S3). 117. Bu, L.L., et al., STAT3 Induces Immunosuppression by Upregulating PD-1/PD-L1 in HNSCC. J Dent Res, 2017. 96(9): p. 1027-1034. 118. Liao, F., et al., Curcumin enhances anti-tumor immune response in tongue squamous cell carcinoma. Arch Oral Biol, 2018. 92: p. 32-37. 119. Chen, Y.F., et al., Establishment of syngeneic murine model for oral cancer therapy. Oral Oncol, 2019. 95: p. 194-201. 120. Chen, Y.F., et al., Establishing of mouse oral carcinoma cell lines derived from transgenic mice and their use as syngeneic tumorigenesis models. BMC Cancer, 2019. 19(1): p. 281. 121. Nakamura, R., et al., Reciprocal expression of Slug and Snail in human oral cancer cells. PLoS One, 2018. 13(7): p. e0199442. 122. Nakazawa, S., et al., Dominant-negative p53 mutant R248Q increases the motile and invasive activities of oral squamous cell carcinoma cells. Biomed Res, 2019. 40(1): p. 37-49. 123. Ragos, V., et al., p53 mutations in oral cavity carcinoma. J BUON, 2018. 23(6): p. 1569-1572. 124. Li, Y. and J. Zhang, Expression of mutant p53 in oral squamous cell carcinoma is correlated with the effectiveness of intra-arterial chemotherapy. Oncol Lett, 2015. 10(5): p. 2883-2887. 125. Khan, A.Q., et al., Curcumin-Mediated Apoptotic Cell Death in Papillary Thyroid Cancer and Cancer Stem-Like Cells through Targeting of the JAK/STAT3 Signaling Pathway. Int J Mol Sci, 2020. 21(2). 126. Chan, L.C., et al., IL-6/JAK1 pathway drives PD-L1 Y112 phosphorylation to promote cancer immune evasion. J Clin Invest, 2019. 129(8): p. 3324-3338. 127. Zong, Z., et al., M1 Macrophages Induce PD-L1 Expression in Hepatocellular Carcinoma Cells Through IL-1beta Signaling. Front Immunol, 2019. 10: p. 1643. 128. Merelli, B., et al., Targeting the PD1/PD-L1 axis in melanoma: biological rationale, clinical challenges and opportunities. Crit Rev Oncol Hematol, 2014. 89(1): p. 140-65. 129. Guo, B., J. Zhang, and S. Fu, Inflammasomes/IL-1 pathways in myeloid cells modulate PD-1/PD-L1 checkpoint molecules. Journal of Immunology, 2017. 198. 130. Yin, H., et al., Curcumin Suppresses IL-1beta Secretion and Prevents Inflammation through Inhibition of the NLRP3 Inflammasome. J Immunol, 2018. 200(8): p. 2835-2846. 131. Hafner, A., et al., The multiple mechanisms that regulate p53 activity and cell fate. Nat Rev Mol Cell Biol, 2019. 20(4): p. 199-210. 132. Kashiwazaki, H., et al., High frequency of p53 mutations in human oral epithelial dysplasia and primary squamous cell carcinoma detected by yeast functional assay. Oncogene, 1997. 15(22): p. 2667-74. 133. Hassan, N.M., et al., Presence of dominant negative mutation of TP53 is a risk of early recurrence in oral cancer. Cancer Lett, 2008. 270(1): p. 108-19. 134. Tojyo, I., et al., PD-L1 expression correlated with p53 expression in oral squamous cell carcinoma. Maxillofac Plast Reconstr Surg, 2019. 41(1): p. 56. 135. Seifert, J.K., et al., Interleukin-6 and tumor necrosis factor-alpha levels following hepatic cryotherapy: association with volume and duration of freezing. World J Surg, 1999. 23(10): p. 1019-26. 136. Pearson, G.W., Control of Invasion by Epithelial-to-Mesenchymal Transition Programs during Metastasis. J Clin Med, 2019. 8(5). 137. Yu, W., et al., PD-L1 promotes tumor growth and progression by activating WIP and beta-catenin signaling pathways and predicts poor prognosis in lung cancer. Cell Death Dis, 2020. 11(7): p. 506. 138. Vathiotis, I.A., et al., Programmed Death-Ligand 1 as a Regulator of Tumor Progression and Metastasis. Int J Mol Sci, 2021. 22(10). 139. Kaplanov, I., et al., Blocking IL-1beta reverses the immunosuppression in mouse breast cancer and synergizes with anti-PD-1 for tumor abrogation. Proc Natl Acad Sci U S A, 2019. 116(4): p. 1361-1369.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82109-
dc.description.abstract實驗目的:近年的研究指出被破壞的癌組織所產生的細胞碎片,在機制上與疫苗相似,數百種來自癌症的特異性腫瘤細胞群會釋放出獨特抗原,可以刺激出抗腫瘤的抗體、毒殺性 T 細胞,從而製造出強大的免疫反應,不僅可以消除腫瘤亦可殺死遠處的轉移,此稱為遠端效應(Abscopal effect)。冷凍治療後原位破壞的腫瘤組織可以作為腫瘤抗原的來源,被抗原呈現細胞捕獲、處理並呈遞給 T 細胞, 從而有助於誘導抗腫瘤免疫,但是這種由此所產生出的腫瘤抗原在臨床上並無看到明顯的效果,推測是因為這不足以克服有些癌症已經發展的免疫反應檢查點的逃逸機制,如細胞程式死亡-配體( Programmed Cell Death-Ligand 1,PD-L1)。 除此之外,冷凍治療對於 PD-L1 也能產生直接或間接的影響,而薑黃素 (Curcumin)在不同的癌症中皆被研究出能夠抑制腫瘤 PD-L1 蛋白的表現量。本篇研究想要探討冷凍治療後 PD-L1 的表現變化與後續引發的細胞機制改變,以及使用 curcumin 是否能有抑制冷凍後口腔癌細胞中的 PD-L1 表現量,並使動動物模式實驗,當使用冷凍治療治療腫瘤時結合 curcumin 的施打會不會產生全身性的抗腫瘤反應。 實驗方法:本篇研究選取人類口腔癌細胞株 SAS 與 Ca9-22,與兩種由 4- Nitroquinoline-1-oxide (4NQO)誘導的 C57BL/6 小鼠舌癌細胞 MTC-Q1-GFP 與 MOC-L1,分別進行了加入薑黃素(0-20 μM)、冷凍治療(0-80 secs)、以及兩者合併使用的實驗。並以細胞存活率分析(MTT assay)、西方墨點法(Western Blot)、 傷口癒合試驗(Wound Healing Assay) 和動物實驗探討薑黃素在細胞上和動物上對 PD-L1、Epithelial-mesenchymal transition(EMT)、stemness 壓力是否有著調節作用。 實驗結果:薑黃素在細胞作用 24 小時後,濃度 10、20 μM 下 PD-L1 蛋白量有明顯下降,在 EMT 相關蛋白如 E-cadherin 上升,N-cadherin、vimentin、Snail、 Twist1/2 和幹性有關的蛋白如 ABCG2、Oct4 等的表現量都會隨著薑黃素的濃度升高而下降。然而在冷凍治療下,發現隨著噴液態氮的秒數增加,細胞中的 PD- L1、EMT 和幹性蛋白也都隨之增加,但是這種升高的現象是屬於短暫的,細胞約莫在五天後恢復各項數值。在細胞冷凍治療時同時給予薑黃素,可以抑制由冷凍刺激所照成的 PD-L1、N-cadherin、vimentin、Snail、Twist1/2、ABCG2、Oct4 上升,在傷口癒合試驗亦可以看到薑黃素能將細胞冷凍後遷移的能力提高給抑制下來,符合蛋白表限量的變化。在動物實驗中,冷凍治療噴 10、20 秒都是有效能縮減小鼠背上的腫瘤,將治療後殘留下的腫瘤放置,可以發現腫瘤的惡性程度增加。而在結合薑黃素給予小鼠冷凍治療後,並沒有發現預期的 Abscopal effect,沒有加速腫瘤的縮小,亦沒有察覺到遠端腫瘤的消減。 結論:在細胞上,液態氮冷凍後因爲微環境的改變會對細胞照成刺激,隨著秒數的增加蛋白如 E-cadherin 下降,N-cadherin、vimentin、Snail、Twist1/2、 ABCG2、Oct4 蛋白上升,而再結合薑黃素後,明顯可以看到抑制的效果。但在動物實驗上似乎沒有看到跟細胞實驗一樣的效果。這些初步結果,可以發現薑黃素對於口腔癌的一些效果,如若找出臨床上與細胞上的差異,對於口腔癌在遠端效應與冷凍治療的臨床應用和治療效果會有更多幫助。zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-25T05:36:02Z (GMT). No. of bitstreams: 1
U0001-2210202109522800.pdf: 16714456 bytes, checksum: 6b590529d6e31f15558d41563f72a1cb (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents"口試委員審定書 I 中文摘要 II ABSTRACT IV CONTENTS VII CHAPTER 1 導論(INTRODUCTION) 1 1.1 口腔癌 1 1.1.1 定義 1 1.1.2 致病因子 1 1.1.3 台灣口腔癌現況 2 1.1.4 治療與預後 2 1.2 冷凍治療(CRYOTHERAPY) 4 1.2.1 起源 4 1.2.2 細胞機制 4 1.2.3 口腔癌上的應用 5 1.2.4 優勢與限制 6 1.3 冷凍免疫(CRYO-IMMUNIZATION) 8 1.3.1 冷凍治療後產生的細胞碎片 8 1.3.2 冷凍治療後的免疫反應 8 1.3.3 冷凍治療的遠端效應(Abscopal effect) 9 1.4 PROGRAMMED CELL DEATH-LIGAND 1(PD-L1) 11 1.4.1 PD-L1介紹 11 1.4.2 PD-L1與細胞EMT和Stemness關聯 11 1.4.3 免疫檢查點阻斷療法 12 1.5 薑黃素(CURCUMIN) 14 1.5.1 薑黃素介紹 14 1.5.2 薑黃素與PD-L1關係 14 CHAPTER 2 實驗材料與方法(MATERIALS AND METHODS) 16 2.1細胞株來源及培養 16 2.2 西方點墨法(WESTERN BLOTTING) 18 2.3 冷凍治療 20 2.4 細胞活性測試(MTT ASSAY) 20 2.5 動物實驗 21 2.6 傷口癒合測定(WOUND HEALING ASSAY) 23 2.7 酵素結合免疫吸附分析法(ENZYME-LINKED IMMUNOSORBENT ASSAY, ELISA) 23 2.8 統計分析 24 CHAPTER 3 實驗結果(RESULTS) 25 3.1 不同種口腔癌細胞株PD-L1蛋白的表現量 25 3.2 薑黃素可以抑制細胞的生存率和PD-L1蛋白的表現量 26 3.3 薑黃素藉由JAK/STAT路徑抑制PD-L1的蛋白表現量 27 3.4 冷凍治療後細胞中的PD-L1蛋白表現量上升 28 3.5 冷凍後細胞PD-L1蛋白量上升造成EMT與幹性上升 29 3.6 冷凍治療後癌細胞引發的現象非永久持續性的 30 3.7 在細胞上使用薑黃素可以抑制冷凍治療造成的負面影響 33 3.8 薑黃素也可以抑制冷凍後微環境的細胞激素IL-1Β上升 35 3.9 冷凍治療在小鼠模型上能減少口腔癌大小,但也讓腫瘤上的PD-L1增加表現 37 3.10 冷凍治療後沒有處理乾淨的腫瘤會變得更惡性 38 3.11 在小鼠模型上無法看到薑黃素有抑制PD-L1上升達到ABSCOPAL EFFECT的效果 40 CHAPTER 4 討論(DISCUSSIONS) 41 CHAPTER 5 結論(CONCLUSION) 45 CHAPTER 6 圖與表(FIGURES&TABLES ) 46 REFERENCE 75"
dc.language.isozh-TW
dc.subject冷凍治療zh_TW
dc.subject口腔鱗狀細胞癌zh_TW
dc.subject程序化死亡分子zh_TW
dc.subject薑黃素zh_TW
dc.subject腫瘤遠端效應zh_TW
dc.subject上皮間質轉化zh_TW
dc.subject免疫療法zh_TW
dc.subject細胞幹性zh_TW
dc.subjectOral squamous cell carcinomaen
dc.subjectcryotherapyen
dc.subjectimmunotherapyen
dc.subjectProgrammed Cell Death-Ligand (PD-L1)en
dc.subjectcurcuminen
dc.subjectabscopal effecten
dc.subjectEMTen
dc.subjectstemnessen
dc.title薑黃素可抑制口腔癌細胞株經冷凍治療所致細胞程式死亡- 配體 1、上皮間質轉化和幹細胞特性相關蛋白表現過度表現zh_TW
dc.title"Curcumin Can Inhibit Overexpression of Program Death-Ligand 1, Epithelial Mesenchymal Transition, and Stemness Related Proteins Induced by Cryotherapy in Oral Cancer Cell Lines"en
dc.date.schoolyear109-2
dc.description.degree碩士
dc.contributor.oralexamcommittee江俊斌(Hsin-Tsai Liu),侯欣翰(Chih-Yang Tseng),黎萬君
dc.subject.keyword口腔鱗狀細胞癌,冷凍治療,免疫療法,程序化死亡分子,薑黃素,腫瘤遠端效應,上皮間質轉化,細胞幹性,zh_TW
dc.subject.keywordOral squamous cell carcinoma,cryotherapy,immunotherapy,Programmed Cell Death-Ligand (PD-L1),curcumin,abscopal effect,EMT,stemness,en
dc.relation.page88
dc.identifier.doi10.6342/NTU202104013
dc.rights.note同意授權(限校園內公開)
dc.date.accepted2021-10-27
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept口腔生物科學研究所zh_TW
dc.date.embargo-lift2026-10-25-
顯示於系所單位:口腔生物科學研究所

文件中的檔案:
檔案 大小格式 
U0001-2210202109522800.pdf
  未授權公開取用
16.32 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved