請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82101完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃彥婷(Yen-Ting Hwang) | |
| dc.contributor.author | Yung-Jen Chen | en |
| dc.contributor.author | 陳永真 | zh_TW |
| dc.date.accessioned | 2022-11-25T05:35:52Z | - |
| dc.date.available | 2026-10-24 | |
| dc.date.copyright | 2021-11-05 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-10-26 | |
| dc.identifier.citation | Andrews, D. G., Holton, J. R., Leovy, C. B. (1987). Middle atmosphere dynamics (No. 40). Academic press. Baker, H. S., Mbengue, C., Woollings, T. (2018). Seasonal sensitivity of the Hadley cell and cross‐hemispheric responses to diabatic heating in an idealized GCM. Geophysical Research Letters, 45(5), 2533-2541. Baker, H. S., Woollings, T., Mbengue, C. (2017). Eddy-driven jet sensitivity to diabatic heating in an idealized GCM. Journal of Climate, 30(16), 6413-6431. Bordoni, S., Schneider, T. (2010). Regime transitions of steady and time-dependent Hadley circulations: Comparison of axisymmetric and eddy-permitting simulations. Journal of the Atmospheric Sciences, 67(5), 1643-1654. Broccoli, A. J., Dahl, K. A., Stouffer, R. J. (2006). Response of the ITCZ to Northern Hemisphere cooling. Geophysical Research Letters, 33(1). Ceppi, P., Hartmann, D. L. (2013). On the speed of the eddy-driven jet and the width of the Hadley cell in the Southern Hemisphere. Journal of Climate, 26(10), 3450-3465. Chang, C. P., Wang, Z., Ju, J., Li, T. (2004). On the relationship between western maritime continent monsoon rainfall and ENSO during northern winter. Journal of Climate, 17(3), 665-672. Chemke, R., Polvani, L. M. (2020). Linking midlatitudes eddy heat flux trends and polar amplification. npj Climate and Atmospheric Science, 3(1), 1-8. Chen, G., Held, I. M. (2007). Phase speed spectra and the recent poleward shift of Southern Hemisphere surface westerlies. Geophysical Research Letters, 34(21). Chen, G., Robinson, W. A. (2007). Sensitivity of the latitude of the surface westerlies to surface friction. Journal of the atmospheric sciences, 64(8), 2899-2915. Chiang, J. C., Bitz, C. M. (2005). Influence of high latitude ice cover on the marine Intertropical Convergence Zone. Climate Dynamics, 25(5), 477-496. Cvijanovic, I., Chiang, J. C. (2013). Global energy budget changes to high latitude North Atlantic cooling and the tropical ITCZ response. Climate dynamics, 40(5), 1435-1452. Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., ... Vitart, F. (2011). The ERA‐Interim reanalysis: Configuration and performance of the data assimilation system. Quarterly Journal of the royal meteorological society, 137(656), 553-597. Delworth, T. L., Broccoli, A. J., Rosati, A., Stouffer, R. J., Balaji, V., Beesley, J. A., ... Zhang, R. (2006). GFDL's CM2 global coupled climate models. Part I: Formulation and simulation characteristics. Journal of Climate, 19(5), 643-674. Deser, C., Tomas, R., Alexander, M., Lawrence, D. (2010). The seasonal atmospheric response to projected Arctic sea ice loss in the late twenty-first century. Journal of Climate, 23(2), 333-351. Frierson, D. M. (2008). Midlatitude static stability in simple and comprehensive general circulation models. Journal of the atmospheric sciences, 65(3), 1049-1062. Geen, R., Bordoni, S., Battisti, D. S., Hui, K. (2020). Monsoons, ITCZs, and the concept of the global monsoon. Reviews of Geophysics, 58(4), e2020RG000700. GFDL Global Atmospheric Model Development Team, Anderson, J. L., Balaji, V., Broccoli, A. J., Cooke, W. F., Delworth, T. L., ... Wyman, B. L. (2004). The new GFDL global atmosphere and land model AM2–LM2: Evaluation with prescribed SST simulations. Journal of Climate, 17(24), 4641-4673. Harnik, N., Seager, R., Naik, N., Cane, M., Ting, M. (2010). The role of linear wave refraction in the transient eddy–mean flow response to tropical Pacific SST anomalies. Quarterly Journal of the Royal Meteorological Society, 136(653), 2132-2146. Hartmann, D. L., Zuercher, P. (1998). Response of baroclinic life cycles to barotropic shear. Journal of the atmospheric sciences, 55(3), 297-313. Hoskins, B. J., Karoly, D. J. (1981). The steady linear response of a spherical atmosphere to thermal and orographic forcing. Journal of Atmospheric Sciences, 38(6), 1179-1196. Hwang, Y. T., Chung, P. C. (2021). Seasonal Sensitivity of the Cross-Equatorial Hadley Cell Response to Extratropical Thermal Forcings. Journal of Climate, 34(9), 3327-3342. Hwang, Y. T., Tseng, H. Y., Li, K. C., Kang, S. M., Chen, Y. J., Chiang, J. C. (2021). Relative roles of energy and momentum fluxes in the tropical response to extratropical thermal forcing. Journal of Climate, 34(10), 3771-3786. Kang, S. M., Polvani, L. M. (2011). The interannual relationship between the latitude of the eddy-driven jet and the edge of the Hadley cell. Journal of Climate, 24(2), 563-568. Kang, S. M., Xie, S. P., Deser, C., Xiang, B. (2021). Zonal mean and shift modes of historical climate response to evolving aerosol distribution. Science Bulletin. Lu, J., Chen, G., Frierson, D. M. (2008). Response of the zonal mean atmospheric circulation to El Niño versus global warming. Journal of Climate, 21(22), 5835-5851. Lu, J., Sun, L., Wu, Y., Chen, G. (2014). The role of subtropical irreversible PV mixing in the zonal mean circulation response to global warming–like thermal forcing. Journal of climate, 27(6), 2297-2316. McGraw, M. C., Barnes, E. A. (2016). Seasonal sensitivity of the eddy-driven jet to tropospheric heating in an idealized AGCM. Journal of Climate, 29(14), 5223-5240. Okajima, H., Xie, S. P., Numaguti, A. (2003). Interhemispheric coherence of tropical climate variability: Effect of the climatological ITCZ. Journal of the Meteorological Society of Japan. Ser. II, 81(6), 1371-1386. Randel, W. J., Held, I. M. (1991). Phase speed spectra of transient eddy fluxes and critical layer absorption. Journal of the atmospheric sciences, 48(5), 688-697. Robinson, W. A. (2006). Eddy-mediated interactions between low latitudes and the extratropics. Princeton University Press, Princeton, NJ. Rotstayn, L. D., Ryan, B. F., Penner, J. E. (2000). Precipitation changes in a GCM resulting from the indirect effects of anthropogenic aerosols. Geophysical Research Letters, 27(19), 3045-3048. Sardeshmukh, P. D., Hoskins, B. J. (1988). The generation of global rotational flow by steady idealized tropical divergence. Journal of the Atmospheric Sciences, 45(7), 1228-1251. Schneider, T., Bordoni, S. (2008). Eddy-mediated regime transitions in the seasonal cycle of a Hadley circulation and implications for monsoon dynamics. Journal of the Atmospheric Sciences, 65(3), 915-934. Schneider, T., Bischoff, T., Haug, G. H. (2014). Migrations and dynamics of the intertropical convergence zone. Nature, 513(7516), 45-53. Shin, Y., Kang, S. M., Takahashi, K., Stuecker, M. F., Hwang, Y. T., Kim, D. (2021). Evolution of the tropical response to periodic extratropical thermal forcing. Journal of Climate, 34(15), 6335-6353. Sigmond, M., Scinocca, J. F. (2010). The influence of the basic state on the Northern Hemisphere circulation response to climate change. Journal of Climate, 23(6), 1434-1446. Souza, P., Cavalcanti, I. F. A. (2009). Atmospheric centres of action associated with the Atlantic ITCZ position. International Journal of Climatology: A Journal of the Royal Meteorological Society, 29(14), 2091-2105. Vallis, G. K. (2017). Atmospheric and oceanic fluid dynamics. Cambridge University Press. Voelker, A. H. (2002). Global distribution of centennial-scale records for Marine Isotope Stage (MIS) 3: a database. Quaternary Science Reviews, 21(10), 1185-1212. Walker, C. C., Schneider, T. (2006). Eddy influences on Hadley circulations: Simulations with an idealized GCM. Journal of the atmospheric sciences, 63(12), 3333-3350. Wang, K., Deser, C., Sun, L., Tomas, R. A. (2018). Fast response of the tropics to an abrupt loss of Arctic sea ice via ocean dynamics. Geophysical Research Letters, 45(9), 4264-4272. Xie, S. P., Carton, J. A. (2004). Tropical Atlantic variability: Patterns, mechanisms, and impacts. Earth’s Climate: The Ocean-Atmosphere Interaction, Geophys. Monogr, 147, 121-142. Xie, S. P., Philander, S. G. H. (1994). A coupled ocean‐atmosphere model of relevance to the ITCZ in the eastern Pacific. Tellus A, 46(4), 340-350. Yuval, J., Kaspi, Y. (2020). Eddy Activity Response to Global Warming–Like Temperature Changes. Journal of Climate, 33(4), 1381-1404. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82101 | - |
| dc.description.abstract | 本研究探討中高緯熱力強迫下大氣之反應與不同背景場對其反應之影響。本研究使用大氣模式耦合單層海洋,在外熱帶放入不隨時間改變之強迫,並使用兩種控制模擬:其一為以赤道經向對稱之氣候背景場,另一為類北半球冬季之氣候背景場。大氣反應的時間尺度和型態受到三種因子的影響:中緯度熱力結構反應、哈德里胞型態與氣候間熱帶輻合區(ITCZ)的位置。 首先,低層加熱強迫造成的中緯度熱力結構反應會減弱經向溫度梯度與垂直溫度梯度,兩者對斜壓性(baroclinicity)的效果彼此抗衡。在不同的氣候背景場下,兩種因子之異常對斜壓性的改變程度有所差異。在渦流熱力通量異常主導減弱斜壓性的情況下(如夏季與春秋分),上層波動減少並使得副熱帶環流強度減弱。而如果垂直穩定度異常和渦流熱力通量異常貢獻相當(如冬季),使得上層的波動異常微弱以致於無法調整環流強度。前者通過渦流動量通量快速地調整副熱帶環流,較後者發展早數個月。 第二,哈德里胞型態解釋了在夏半球副熱帶環流的快速反應。在夏季,哈德里胞處於渦流驅動型(eddy-driven regime),即哈德里胞易受因斜壓性改變而造成之渦流動量通量異常調整。而在冬季,哈德里胞處於角動量守恆型(angular-momentum regime),即副熱帶環流不易被渦流通量影響,僅緩慢地被低層傳播增溫調整。此二因子影響大氣反應的時間尺度。 最後,當增熱異常傳播至熱帶,氣候間熱帶輻合區阻斷了低層熱異常的擴散,並造成跨間熱帶輻合區之海表溫度梯度。同時,哈德里環流異常之最大值發生在氣候間熱帶輻合區附近,且跨間熱帶輻合區之海表溫度梯度與跨間熱帶輻合區之哈德里環流強度具顯著正相關性。亦即,間熱帶輻合區之阻斷效應顯著地限制了環流反應,並決定了低層熱異常是否能傳播至深熱帶與另一半球。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-25T05:35:52Z (GMT). No. of bitstreams: 1 U0001-2210202116133000.pdf: 17684353 bytes, checksum: 391a30cddb70b67d1b0ba6d784c93b06 (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | 中文摘要 i ABSTRACT iii CONTENTS vi LIST OF FIGURES 1 Chapter 1 Introduction 11 1.1 Mechanisms of tropical response to extratropical forcing 12 1.2 Seasonality of the responses to the extratropical forcing 14 Chapter 2 Model and Methodology 18 2.1 Model Setup and Experimental Design 18 2.2 Eliassen–Palm (EP) flux 21 2.3 Definition of Tropical Indices 22 2.4 Mixed Layer Energy Budget Decomposition of Latent Heat Changes 23 Chapter 3 Equilibrium Responses 25 Chapter 4 Transient Responses 30 4.1 Extratropical Responses 31 4.1.1 The responses of wave activity to the extratropical forcing 31 4.1.2 The response of subtropical circulation to the midlatitude eddy changes 36 4.2 Tropical Responses 40 Chapter 5 Summary and Discussion 47 Reference 53 FIGURES 60 APPENDIX 89 | |
| dc.language.iso | en | |
| dc.subject | 熱帶-溫帶交互作用 | zh_TW |
| dc.subject | 斜壓渦流 | zh_TW |
| dc.subject | 大氣動力學 | zh_TW |
| dc.subject | 間熱帶輻合區 | zh_TW |
| dc.subject | 遙相關 | zh_TW |
| dc.subject | teleconnection | en |
| dc.subject | atmospheric dynamics | en |
| dc.subject | tropical-extratropical interaction | en |
| dc.subject | ITCZ | en |
| dc.subject | baroclinic eddy | en |
| dc.title | 背景場在中高緯熱力強迫所致大氣環流反應所扮演角色 | zh_TW |
| dc.title | Role of Mean State on Atmospheric Circulation Responses to Extratropical Thermal Forcing | en |
| dc.date.schoolyear | 109-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林和(Hsin-Tsai Liu),李時雨(Chih-Yang Tseng),梁禹喬 | |
| dc.subject.keyword | 大氣動力學,遙相關,熱帶-溫帶交互作用,間熱帶輻合區,斜壓渦流, | zh_TW |
| dc.subject.keyword | atmospheric dynamics,teleconnection,tropical-extratropical interaction,ITCZ,baroclinic eddy, | en |
| dc.relation.page | 91 | |
| dc.identifier.doi | 10.6342/NTU202104040 | |
| dc.rights.note | 同意授權(限校園內公開) | |
| dc.date.accepted | 2021-10-27 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 大氣科學研究所 | zh_TW |
| dc.date.embargo-lift | 2026-10-24 | - |
| 顯示於系所單位: | 大氣科學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2210202116133000.pdf 未授權公開取用 | 17.27 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
