Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 解剖學暨細胞生物學科所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82094
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor龔秀妮(Hsiu-Ni Kung)
dc.contributor.authorYu-Jui Linen
dc.contributor.author林妤叡zh_TW
dc.date.accessioned2022-11-25T05:35:44Z-
dc.date.available2026-10-29
dc.date.copyright2021-11-12
dc.date.issued2021
dc.date.submitted2021-10-27
dc.identifier.citationUncategorized References Alam, M. A., Uddin, R., Subhan, N., Rahman, M. M., Jain, P., Reza, H. M. (2015). Beneficial role of bitter melon supplementation in obesity and related complications in metabolic syndrome. J Lipids, 2015, 496169. doi:10.1155/2015/496169 Alamri, Z. Z. J. I. j. o. b., pharmacology, c. (2018). The role of liver in metabolism: an updated review with physiological emphasis. 7, 2271. Alexander Bentley, R., Ruck, D. J., Fouts, H. N. (2020). U.S. obesity as delayed effect of excess sugar. Econ Hum Biol, 36, 100818. doi:10.1016/j.ehb.2019.100818 Allen, A. M., Therneau, T. M., Larson, J. J., Coward, A., Somers, V. K., Kamath, P. S. (2018). Nonalcoholic fatty liver disease incidence and impact on metabolic burden and death: A 20 year-community study. Hepatology, 67(5), 1726-1736. doi:10.1002/hep.29546 Andres-Hernando, A., Orlicky, D. J., Kuwabara, M., Ishimoto, T., Nakagawa, T., Johnson, R. J., Lanaspa, M. A. (2020). Deletion of Fructokinase in the Liver or in the Intestine Reveals Differential Effects on Sugar-Induced Metabolic Dysfunction. Cell Metabolism, 32(1), 117-127 e113. doi:10.1016/j.cmet.2020.05.012 Arias, I. M. (2020). The liver : biology and pathobiology(Sixth edition. ed., pp. 1 online resource). Azzu, V., Vacca, M., Virtue, S., Allison, M., Vidal-Puig, A. (2020). Adipose Tissue-Liver Cross Talk in the Control of Whole-Body Metabolism: Implications in Nonalcoholic Fatty Liver Disease. Gastroenterology, 158(7), 1899-1912. doi:10.1053/j.gastro.2019.12.054 Balakumar, M., Raji, L., Prabhu, D., Sathishkumar, C., Prabu, P., Mohan, V., Balasubramanyam, M. (2016). High-fructose diet is as detrimental as high-fat diet in the induction of insulin resistance and diabetes mediated by hepatic/pancreatic endoplasmic reticulum (ER) stress. Molecular and Cellular Biochemistry, 423(1-2), 93-104. doi:10.1007/s11010-016-2828-5 Banales, J. M., Huebert, R. C., Karlsen, T., Strazzabosco, M., LaRusso, N. F., Gores, G. J. (2019). Cholangiocyte pathobiology. Nature Reviews: Gastroenterology Hepatology, 16(5), 269-281. doi:10.1038/s41575-019-0125-y Bantle, J. P. (2009). Dietary fructose and metabolic syndrome and diabetes. J Nutr, 139(6), 1263S-1268S. doi:10.3945/jn.108.098020 Bataller, R., Brenner, D. A. (2005). Liver fibrosis. J Clin Invest, 115(2), 209-218. doi:10.1172/JCI24282 Bhatia, S. N., Underhill, G. H., Zaret, K. S., Fox, I. J. (2014). Cell and tissue engineering for liver disease. Science Translational Medicine, 6(245), 245sr242. doi:10.1126/scitranslmed.3005975 Birchmeier, W. (2016). Orchestrating Wnt signalling for metabolic liver zonation. Nature Cell Biology, 18(5), 463-465. doi:10.1038/ncb3349 Blank, V., Petroff, D., Beer, S., Bohlig, A., Heni, M., Berg, T., . . . Karlas, T. (2020). Current NAFLD guidelines for risk stratification in diabetic patients have poor diagnostic discrimination. Scientific Reports, 10(1), 18345. doi:10.1038/s41598-020-75227-x Brunt, E. M., Janney, C. G., Di Bisceglie, A. M., Neuschwander-Tetri, B. A., Bacon, B. R. (1999). Nonalcoholic steatohepatitis: a proposal for grading and staging the histological lesions. American Journal of Gastroenterology, 94(9), 2467-2474. doi:10.1111/j.1572-0241.1999.01377.x Bugianesi, E., Leone, N., Vanni, E., Marchesini, G., Brunello, F., Carucci, P., . . . Rizzetto, M. (2002). Expanding the natural history of nonalcoholic steatohepatitis: from cryptogenic cirrhosis to hepatocellular carcinoma. Gastroenterology, 123(1), 134-140. doi:10.1053/gast.2002.34168 Buzzetti, E., Pinzani, M., Tsochatzis, E. A. (2016). The multiple-hit pathogenesis of non-alcoholic fatty liver disease (NAFLD). Metabolism: Clinical and Experimental, 65(8), 1038-1048. doi:10.1016/j.metabol.2015.12.012 Caldwell, S., Lackner, C. (2017). Perspectives on NASH Histology: Cellular Ballooning. Annals of Hepatology, 16(2), 182-184. doi:10.5604/16652681.1231550 Carriere, I., Peres, K., Ancelin, M. L., Gourlet, V., Berr, C., Barberger-Gateau, P., . . . Akbaraly, T. (2014). Metabolic syndrome and disability: findings from the prospective three-city study. Journals of Gerontology. Series A: Biological Sciences and Medical Sciences, 69(1), 79-86. doi:10.1093/gerona/glt101 Chalasani, N., Younossi, Z., Lavine, J. E., Diehl, A. M., Brunt, E. M., Cusi, K., . . . Sanyal, A. J. (2012). The diagnosis and management of non-alcoholic fatty liver disease: practice Guideline by the American Association for the Study of Liver Diseases, American College of Gastroenterology, and the American Gastroenterological Association. Hepatology, 55(6), 2005-2023. doi:10.1002/hep.25762 Chan, A. M. L., Ng, A. M. H., Mohd Yunus, M. H., Idrus, R. B. H., Law, J. X., Yazid, M. D., . . . Lokanathan, Y. (2021). Recent Developments in Rodent Models of High-Fructose Diet-Induced Metabolic Syndrome: A Systematic Review. Nutrients, 13(8), 2497. Retrieved from https://www.mdpi.com/2072-6643/13/8/2497 Chang, M. L., Lin, Y. T., Kung, H. N., Hou, Y. C., Liu, J. J., Pan, M. H., . . . Tsai, P. J. (2021). A triterpenoid-enriched extract of bitter melon leaves alleviates hepatic fibrosis by inhibiting inflammatory responses in carbon tetrachloride-treated mice. Food Function, 12(17), 7805-7815. doi:10.1039/d1fo00884f Cheng, H. L., Kuo, C. Y., Liao, Y. W., Lin, C. C. (2012). EMCD, a hypoglycemic triterpene isolated from Momordica charantia wild variant, attenuates TNF-alpha-induced inflammation in FL83B cells in an AMP-activated protein kinase-independent manner. European Journal of Pharmacology, 689(1-3), 241-248. doi:10.1016/j.ejphar.2012.05.033 Ching, R. H., Yeung, L. O., Tse, I. M., Sit, W. H., Li, E. T. (2011). Supplementation of bitter melon to rats fed a high-fructose diet during gestation and lactation ameliorates fructose-induced dyslipidemia and hepatic oxidative stress in male offspring. J Nutr, 141(9), 1664-1672. doi:10.3945/jn.111.142299 Cho, I. J., Oh, D. H., Yoo, J., Hwang, Y. C., Ahn, K. J., Chung, H. Y., . . . Jeong, I. K. (2021). Allopurinol ameliorates high fructose diet induced hepatic steatosis in diabetic rats through modulation of lipid metabolism, inflammation, and ER stress pathway. Scientific Reports, 11(1), 9894. doi:10.1038/s41598-021-88872-7 Choi, H. K., Willett, W., Curhan, G. (2010). Fructose-rich beverages and risk of gout in women. JAMA, 304(20), 2270-2278. doi:10.1001/jama.2010.1638 Choi, Y. J., Shin, H. S., Choi, H. S., Park, J. W., Jo, I., Oh, E. S., . . . Kang, D. H. (2014). Uric acid induces fat accumulation via generation of endoplasmic reticulum stress and SREBP-1c activation in hepatocytes. Laboratory Investigation, 94(10), 1114-1125. doi:10.1038/labinvest.2014.98 Choo, V. L., Viguiliouk, E., Blanco Mejia, S., Cozma, A. I., Khan, T. A., Ha, V., . . . Sievenpiper, J. L. (2018). Food sources of fructose-containing sugars and glycaemic control: systematic review and meta-analysis of controlled intervention studies. BMJ, 363, k4644. doi:10.1136/bmj.k4644 Coulouarn, C., Corlu, A., Glaise, D., Guenon, I., Thorgeirsson, S. S., Clement, B. (2012). Hepatocyte-stellate cell cross-talk in the liver engenders a permissive inflammatory microenvironment that drives progression in hepatocellular carcinoma. Cancer Research, 72(10), 2533-2542. doi:10.1158/0008-5472.CAN-11-3317 Csak, T., Ganz, M., Pespisa, J., Kodys, K., Dolganiuc, A., Szabo, G. (2011). Fatty acid and endotoxin activate inflammasomes in mouse hepatocytes that release danger signals to stimulate immune cells. Hepatology, 54(1), 133-144. doi:10.1002/hep.24341 Cydylo, M. A., Davis, A. T., Kavanagh, K. (2017). Fatty liver promotes fibrosis in monkeys consuming high fructose. Obesity (Silver Spring), 25(2), 290-293. doi:10.1002/oby.21720 Damania, A., Jain, E., Kumar, A. (2014). Advancements in in vitro hepatic models: application for drug screening and therapeutics. Hepatology International, 8(1), 23-38. doi:10.1007/s12072-013-9490-8 Dandawate, P. R., Subramaniam, D., Padhye, S. B., Anant, S. (2016). Bitter melon: a panacea for inflammation and cancer. Chin J Nat Med, 14(2), 81-100. doi:10.1016/S1875-5364(16)60002-X Day, C. P., James, O. F. (1998). Steatohepatitis: a tale of two 'hits'? Gastroenterology, 114(4), 842-845. doi:10.1016/s0016-5085(98)70599-2 De, A., Duseja, A. (2020). Natural History of Simple Steatosis or Nonalcoholic Fatty Liver. Journal of Clinical and Experimental Hepatology, 10(3), 255-262. doi:10.1016/j.jceh.2019.09.005 de Bem, A. F., Krolow, R., Farias, H. R., de Rezende, V. L., Gelain, D. P., Moreira, J. C. F., . . . de Oliveira, J. (2020). Animal Models of Metabolic Disorders in the Study of Neurodegenerative Diseases: An Overview. Frontiers in Neuroscience, 14, 604150. doi:10.3389/fnins.2020.604150 DiNicolantonio, J. J., Mehta, V., Onkaramurthy, N., O'Keefe, J. H. (2018). Fructose-induced inflammation and increased cortisol: A new mechanism for how sugar induces visceral adiposity. Progress in Cardiovascular Diseases, 61(1), 3-9. doi:10.1016/j.pcad.2017.12.001 Donnelly, K. L., Smith, C. I., Schwarzenberg, S. J., Jessurun, J., Boldt, M. D., Parks, E. J. (2005). Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease. J Clin Invest, 115(5), 1343-1351. doi:10.1172/JCI23621 Drescher, H. K., Weiskirchen, S., Weiskirchen, R. (2019). Current Status in Testing for Nonalcoholic Fatty Liver Disease (NAFLD) and Nonalcoholic Steatohepatitis (NASH). Cells, 8(8). doi:10.3390/cells8080845 Du, L., Heaney, A. P. (2012). Regulation of Adipose Differentiation by Fructose and GluT5. Molecular Endocrinology, 26(10), 1773-1782. doi:10.1210/me.2012-1122 Fan, M., Lee, J. I., Ryu, Y. B., Choi, Y. J., Tang, Y., Oh, M., . . . Kim, E. K. (2021). Comparative Analysis of Metabolite Profiling of Momordica charantia Leaf and the Anti-Obesity Effect through Regulating Lipid Metabolism. International Journal of Environmental Research and Public Health, 18(11). doi:10.3390/ijerph18115584 Federico, A., Rosato, V., Masarone, M., Torre, P., Dallio, M., Romeo, M., Persico, M. (2021). The Role of Fructose in Non-Alcoholic Steatohepatitis: Old Relationship and New Insights. Nutrients, 13(4). doi:10.3390/nu13041314 Feve, B., Bastard, J. P. (2009). The role of interleukins in insulin resistance and type 2 diabetes mellitus. Nature Reviews: Endocrinology, 5(6), 305-311. doi:10.1038/nrendo.2009.62 Fougerat, A., Montagner, A., Loiseau, N., Guillou, H., Wahli, W. (2020). Peroxisome Proliferator-Activated Receptors and Their Novel Ligands as Candidates for the Treatment of Non-Alcoholic Fatty Liver Disease. Cells, 9(7). doi:10.3390/cells9071638 Friedman, S. L., Neuschwander-Tetri, B. A., Rinella, M., Sanyal, A. J. (2018). Mechanisms of NAFLD development and therapeutic strategies. Nature Medicine, 24(7), 908-922. doi:10.1038/s41591-018-0104-9 Fuangchan, A., Sonthisombat, P., Seubnukarn, T., Chanouan, R., Chotchaisuwat, P., Sirigulsatien, V., . . . Haines, S. T. (2011). Hypoglycemic effect of bitter melon compared with metformin in newly diagnosed type 2 diabetes patients. J Ethnopharmacol, 134(2), 422-428. doi:10.1016/j.jep.2010.12.045 Ganz, M., Szabo, G. (2013). Immune and inflammatory pathways in NASH. Hepatology International, 7 Suppl 2, 771-781. doi:10.1007/s12072-013-9468-6 Gao, B., Wang, H., Lafdil, F., Feng, D. (2012). STAT proteins - key regulators of anti-viral responses, inflammation, and tumorigenesis in the liver. J Hepatol, 57(2), 430-441. doi:10.1016/j.jhep.2012.01.029 Garg, A. D., Kaczmarek, A., Krysko, O., Vandenabeele, P., Krysko, D. V., Agostinis, P. (2012). ER stress-induced inflammation: does it aid or impede disease progression? Trends in Molecular Medicine, 18(10), 589-598. doi:10.1016/j.molmed.2012.06.010 Guo, J., Friedman, S. L. (2010). Toll-like receptor 4 signaling in liver injury and hepatic fibrogenesis. Fibrogenesis Tissue Repair, 3, 21. doi:10.1186/1755-1536-3-21 Han, L., Yao, S., Cao, S., Mo, G., Li, J., Cao, Y., Huang, F. (2019). Triterpenoid Saponins from Anemone flaccida Suppress Tumor Cell Proliferation by Regulating MAPK, PD1/PDL1, and STAT3 Signaling Pathways and Altering Cancer Metabolism. OncoTargets and Therapy, 12, 10917-10930. doi:10.2147/OTT.S212666 He, Q., Li, Y., Li, H., Zhang, P., Zhang, A., You, L., . . . Liu, J. (2018). Hypolipidemic and antioxidant potential of bitter gourd (Momordica charantia L.) leaf in mice fed on a high-fat diet. Pakistan Journal of Pharmaceutical Sciences, 31(5), 1837-1843. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/30150178 He, Y., Hara, H., Nunez, G. (2016). Mechanism and Regulation of NLRP3 Inflammasome Activation. Trends in Biochemical Sciences, 41(12), 1012-1021. doi:10.1016/j.tibs.2016.09.002 Hirahatake, K. M., Meissen, J. K., Fiehn, O., Adams, S. H. (2011). Comparative effects of fructose and glucose on lipogenic gene expression and intermediary metabolism in HepG2 liver cells. PloS One, 6(11), e26583. doi:10.1371/journal.pone.0026583 Huang, W. C., Tsai, T. H., Huang, C. J., Li, Y. Y., Chyuan, J. H., Chuang, L. T., Tsai, P. J. (2015). Inhibitory effects of wild bitter melon leaf extract on Propionibacterium acnes-induced skin inflammation in mice and cytokine production in vitro. Food Function, 6(8), 2550-2560. doi:10.1039/c5fo00550g Ishimoto, T., Lanaspa, M. A., Le, M. T., Garcia, G. E., Diggle, C. P., MacLean, P. S., . . . Johnson, R. J. (2012). Opposing effects of fructokinase C and A isoforms on fructose-induced metabolic syndrome in mice. Proceedings of the National Academy of Sciences, 109(11), 4320-4325. doi:10.1073/pnas.1119908109 Jaeken, J., Pirard, M., Adamowicz, M., Pronicka, E., van Schaftingen, E. (1996). Inhibition of phosphomannose isomerase by fructose 1-phosphate: an explanation for defective N-glycosylation in hereditary fructose intolerance. Pediatric Research, 40(5), 764-766. doi:10.1203/00006450-199611000-00017 Jang, C., Hui, S., Lu, W., Cowan, A. J., Morscher, R. J., Lee, G., . . . Rabinowitz, J. D. (2018). The Small Intestine Converts Dietary Fructose into Glucose and Organic Acids. Cell Metabolism, 27(2), 351-361 e353. doi:10.1016/j.cmet.2017.12.016 Jang, C., Wada, S., Yang, S., Gosis, B., Zeng, X., Zhang, Z., . . . Rabinowitz, J. D. (2020). The small intestine shields the liver from fructose-induced steatosis. Nat Metab, 2(7), 586-593. doi:10.1038/s42255-020-0222-9 Jegatheesan, P., De Bandt, J. P. (2017). Fructose and NAFLD: The Multifaceted Aspects of Fructose Metabolism. Nutrients, 9(3). doi:10.3390/nu9030230 Jensen, T., Abdelmalek, M. F., Sullivan, S., Nadeau, K. J., Green, M., Roncal, C., . . . Johnson, R. J. (2018). Fructose and sugar: A major mediator of non-alcoholic fatty liver disease. J Hepatol, 68(5), 1063-1075. doi:10.1016/j.jhep.2018.01.019 Johnson, R. J., Segal, M. S., Sautin, Y., Nakagawa, T., Feig, D. I., Kang, D. H., . . . Sanchez-Lozada, L. G. (2007). Potential role of sugar (fructose) in the epidemic of hypertension, obesity and the metabolic syndrome, diabetes, kidney disease, and cardiovascular disease. American Journal of Clinical Nutrition, 86(4), 899-906. doi:10.1093/ajcn/86.4.899 Juo, Y.-Y., Livingston, E. H. (2019). Testing for Nonalcoholic Fatty Liver Disease. JAMA, 322(18), 1836-1836. doi:10.1001/jama.2019.10696 Kalra, A., Yetiskul, E., Wehrle, C. J., Tuma, F. (2021). Physiology, Liver. In StatPearls. Treasure Island (FL). Kmiec, Z. (2001). Cooperation of liver cells in health and disease. Advances in Anatomy, Embryology and Cell Biology, 161, III-XIII, 1-151. doi:10.1007/978-3-642-56553-3 Lee, H. J., Cui, R., Choi, S. E., Jeon, J. Y., Kim, H. J., Kim, T. H., . . . Lee, K. W. (2018). Bitter melon extract ameliorates palmitate-induced apoptosis via inhibition of endoplasmic reticulum stress in HepG2 cells and high-fat/high-fructose-diet-induced fatty liver. Food Nutr Res, 62. doi:10.29219/fnr.v62.1319 Li, L., Fu, J., Liu, D., Sun, J., Hou, Y., Chen, C., . . . Pi, J. (2020). Hepatocyte-specific Nrf2 deficiency mitigates high-fat diet-induced hepatic steatosis: Involvement of reduced PPARgamma expression. Redox Biol, 30, 101412. doi:10.1016/j.redox.2019.101412 Li, M., Li, Y., Liu, J. (2013). Metabolic syndrome with hyperglycemia and the risk of ischemic stroke. Yonsei Medical Journal, 54(2), 283-287. doi:10.3349/ymj.2013.54.2.283 Li, Z., Feng, P. P., Zhao, Z. B., Zhu, W., Gong, J. P., Du, H. M. (2019). Liraglutide protects against inflammatory stress in non-alcoholic fatty liver by modulating Kupffer cells M2 polarization via cAMP-PKA-STAT3 signaling pathway. Biochemical and Biophysical Research Communications, 510(1), 20-26. doi:10.1016/j.bbrc.2018.12.149 Linden, A. G., Li, S., Choi, H. Y., Fang, F., Fukasawa, M., Uyeda, K., . . . Liang, G. (2018). Interplay between ChREBP and SREBP-1c coordinates postprandial glycolysis and lipogenesis in livers of mice. Journal of Lipid Research, 59(3), 475-487. doi:10.1194/jlr.M081836 Lipovka, Y., Konhilas, J. P. (2015). AMP-Activated Protein Kinase Signalling in Cancer and Cardiac Hypertrophy. Cardiovasc Pharm Open Access, 4(3). doi:10.4172/2329-6607.1000154 Liu, T., Ma, H., Shi, W., Duan, J., Wang, Y., Zhang, C., . . . Lin, L. (2017). Inhibition of STAT3 signaling pathway by ursolic acid suppresses growth of hepatocellular carcinoma. International Journal of Oncology, 51(2), 555-562. doi:10.3892/ijo.2017.4035 Mastrocola, R., Ferrocino, I., Liberto, E., Chiazza, F., Cento, A. S., Collotta, D., . . . Collino, M. (2018). Fructose liquid and solid formulations differently affect gut integrity, microbiota composition and related liver toxicity: a comparative in vivo study. The Journal of Nutritional Biochemistry, 55, 185-199. doi:10.1016/j.jnutbio.2018.02.003 Mendez-Sanchez, N., Valencia-Rodriguez, A., Coronel-Castillo, C., Vera-Barajas, A., Contreras-Carmona, J., Ponciano-Rodriguez, G., Zamora-Valdes, D. (2020). The cellular pathways of liver fibrosis in non-alcoholic steatohepatitis. Ann Transl Med, 8(6), 400. doi:10.21037/atm.2020.02.184 Nguyen-Lefebvre, A. T., Horuzsko, A. (2015). Kupffer Cell Metabolism and Function. J Enzymol Metab, 1(1). Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/26937490 Ojewole, J. A., Adewole, S. O., Olayiwola, G. (2006). Hypoglycaemic and hypotensive effects of Momordica charantia Linn (Cucurbitaceae) whole-plant aqueous extract in rats. Cardiovascular Journal of South Africa, 17(5), 227-232. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/17117226 Oppelt, S. A., Sennott, E. M., Tolan, D. R. (2015). Aldolase-B knockout in mice phenocopies hereditary fructose intolerance in humans. Molecular Genetics and Metabolism, 114(3), 445-450. doi:10.1016/j.ymgme.2015.01.001 Park, M., Yoo, J. H., Lee, Y. S., Park, E. J., Lee, H. J. (2020). Ameliorative effects of black ginseng on nonalcoholic fatty liver disease in free fatty acid-induced HepG2 cells and high-fat/high-fructose diet-fed mice. J Ginseng Res, 44(2), 350-361. doi:10.1016/j.jgr.2019.09.004 Patel, C., Douard, V., Yu, S., Tharabenjasin, P., Gao, N., Ferraris, R. P. (2015). Fructose-induced increases in expression of intestinal fructolytic and gluconeogenic genes are regulated by GLUT5 and KHK. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 309(5), R499-509. doi:10.1152/ajpregu.00128.2015 Pereira, R. M., Botezelli, J. D., da Cruz Rodrigues, K. C., Mekary, R. A., Cintra, D. E., Pauli, J. R., . . . de Moura, L. P. (2017). Fructose Consumption in the Development of Obesity and the Effects of Different Protocols of Physical Exercise on the Hepatic Metabolism. Nutrients, 9(4). doi:10.3390/nu9040405 Rajamoorthi, A., Shrivastava, S., Steele, R., Nerurkar, P., Gonzalez, J. G., Crawford, S., . . . Ray, R. B. (2013). Bitter melon reduces head and neck squamous cell carcinoma growth by targeting c-Met signaling. PloS One, 8(10), e78006. doi:10.1371/journal.pone.0078006 Rebollo, A., Roglans, N., Baena, M., Sanchez, R. M., Merlos, M., Alegret, M., Laguna, J. C. (2014). Liquid fructose downregulates Sirt1 expression and activity and impairs the oxidation of fatty acids in rat and human liver cells. Biochimica et Biophysica Acta, 1841(4), 514-524. doi:10.1016/j.bbalip.2014.01.002 Saeed, F., Afzaal, M., Niaz, B., Arshad, M., Tufail, T., Hussain, M. B., Javed, A. (2018). Bitter melon (Momordica charantia): a natural healthy vegetable. International Journal of Food Properties, 21, 1270 - 1290. Satapathy, S. K., Sanyal, A. J. (2015). Epidemiology and Natural History of Nonalcoholic Fatty Liver Disease. Seminars in Liver Disease, 35(3), 221-235. doi:10.1055/s-0035-1562943 Schroder, K., Tschopp, J. (2010). The inflammasomes. Cell, 140(6), 821-832. doi:10.1016/j.cell.2010.01.040 Schulze, R. J., Schott, M. B., Casey, C. A., Tuma, P. L., McNiven, M. A. (2019). The cell biology of the hepatocyte: A membrane trafficking machine. Journal of Cell Biology, 218(7), 2096-2112. doi:10.1083/jcb.201903090 Shi, Y. S., Li, C. B., Li, X. Y., Wu, J., Li, Y., Fu, X., . . . Hu, W. Z. (2018). Fisetin Attenuates Metabolic Dysfunction in Mice Challenged with a High-Fructose Diet. J Agric Food Chem, 66(31), 8291-8298. doi:10.1021/acs.jafc.8b02140 Spruss, A., Henkel, J., Kanuri, G., Blank, D., Puschel, G. P., Bischoff, S. C., Bergheim, I. (2012). Female mice are more susceptible to nonalcoholic fatty liver disease: sex-specific regulation of the hepatic AMP-activated protein kinase-plasminogen activator inhibitor 1 cascade, but not the hepatic endotoxin response. Molecular Medicine, 18, 1346-1355. doi:10.2119/molmed.2012.00223 Stanhope, K. L., Medici, V., Bremer, A. A., Lee, V., Lam, H. D., Nunez, M. V., . . . Havel, P. J. (2015). A dose-response study of consuming high-fructose corn syrup-sweetened beverages on lipid/lipoprotein risk factors for cardiovascular disease in young adults. American Journal of Clinical Nutrition, 101(6), 1144-1154. doi:10.3945/ajcn.114.100461 Suk, K. T., Kim, D. J. (2015). Staging of liver fibrosis or cirrhosis: The role of hepatic venous pressure gradient measurement. World Journal of Hepatology, 7(3), 607-615. doi:10.4254/wjh.v7.i3.607 Sun, L., Zhang, X., Dong, L., Zhang, C., Guo, P., Wu, C. (2021). The triterpenoids of the bitter gourd (Momordica Charantia) and their pharmacological activities: A review. Journal of Food Composition and Analysis, 96, 103726. doi:https://doi.org/10.1016/j.jfca.2020.103726 Sundborn, G., Thornley, S., Merriman, T. R., Lang, B., King, C., Lanaspa, M. A., Johnson, R. J. (2019). Are Liquid Sugars Different from Solid Sugar in Their Ability to Cause Metabolic Syndrome? Obesity (Silver Spring), 27(6), 879-887. doi:10.1002/oby.22472 Swapna Sasi, U. S., Sindhu, G., Raghu, K. G. (2020). Fructose-palmitate based high calorie induce steatosis in HepG2 cells via mitochondrial dysfunction: An in vitro approach. Toxicology in Vitro, 68, 104952. doi:10.1016/j.tiv.2020.104952 Syal, G., Fausther, M., Dranoff, J. A. (2012). Advances in cholangiocyte immunobiology. American Journal of Physiology: Gastrointestinal and Liver Physiology, 303(10), G1077-1086. doi:10.1152/ajpgi.00227.2012 Thenmozhi, A. J., Subramanian, P. (2011). Antioxidant Potential of Momordica Charantia in Ammonium Chloride-Induced Hyperammonemic Rats. Evidence-Based Complementary and Alternative Medicine, 2011, 612023. doi:10.1093/ecam/nep227 Tillman, E. J., Morgan, D. A., Rahmouni, K., Swoap, S. J. (2014). Three months of high-fructose feeding fails to induce excessive weight gain or leptin resistance in mice. PloS One, 9(9), e107206. doi:10.1371/journal.pone.0107206 Todoric, J., Di Caro, G., Reibe, S., Henstridge, D. C., Green, C. R., Vrbanac, A., . . . Karin, M. (2020). Fructose stimulated de novo lipogenesis is promoted by inflammation. Nat Metab, 2(10), 1034-1045. doi:10.1038/s42255-020-0261-2 Toop, C. R., Gentili, S. (2016). Fructose Beverage Consumption Induces a Metabolic Syndrome Phenotype in the Rat: A Systematic Review and Meta-Analysis. Nutrients, 8(9). doi:10.3390/nu8090577 Trefts, E., Gannon, M., Wasserman, D. H. (2017). The liver. Current Biology, 27(21), R1147-R1151. doi:10.1016/j.cub.2017.09.019 Treuting, P. M., Dintzis, S. M., Montine, K. S. (2017). Comparative Anatomy and Histology : a Mouse, Rat, and Human Atlas (2nd ed.). Saint Louis: Elsevier Science. Tsai, T. H., Huang, C. J., Wu, W. H., Huang, W. C., Chyuan, J. H., Tsai, P. J. (2014). Antioxidant, cell-protective, and anti-melanogenic activities of leaf extracts from wild bitter melon (Momordica charantia Linn. var. abbreviata Ser.) cultivars. Bot Stud, 55(1), 78. doi:10.1186/s40529-014-0078-y Tsai, T. H., Huang, W. C., Ying, H. T., Kuo, Y. H., Shen, C. C., Lin, Y. K., Tsai, P. J. (2016). Wild Bitter Melon Leaf Extract Inhibits Porphyromonas gingivalis-Induced Inflammation: Identification of Active Compounds through Bioassay-Guided Isolation. Molecules, 21(4), 454. doi:10.3390/molecules21040454 Ucar, F., Sezer, S., Erdogan, S., Akyol, S., Armutcu, F., Akyol, O. (2013). The relationship between oxidative stress and nonalcoholic fatty liver disease: Its effects on the development of nonalcoholic steatohepatitis. Redox Rep, 18(4), 127-133. doi:10.1179/1351000213Y.0000000050 Wan, X., Xu, C., Yu, C., Li, Y. (2016). Role of NLRP3 Inflammasome in the Progression of NAFLD to NASH. Canadian Journal of Gastroenterology Hepatology, 2016, 6489012. doi:10.1155/2016/6489012 Wang, H., Thorling, C. A., Liang, X., Bridle, K. R., Grice, J. E., Zhu, Y., . . . Roberts, M. S. (2015). Diagnostic imaging and therapeutic application of nanoparticles targeting the liver. J Mater Chem B, 3(6), 939-958. doi:10.1039/c4tb01611d Wang, M. J., Chen, F., Lau, J. T. Y., Hu, Y. P. (2017). Hepatocyte polyploidization and its association with pathophysiological processes. Cell Death Disease, 8(5), e2805. doi:10.1038/cddis.2017.167 Wei, Y., Wang, Y. G., Jia, Y., Li, L., Yoon, J., Zhang, S., . . . Zhu, H. (2021). Liver homeostasis is maintained by midlobular zone 2 hepatocytes. Science, 371(6532). doi:10.1126/science.abb1625 Weiskirchen, R., Weiskirchen, S., Tacke, F. (2018). Recent advances in understanding liver fibrosis: bridging basic science and individualized treatment concepts. F1000Res, 7. doi:10.12688/f1000research.14841.1 Wong, S. K., Chin, K. Y., Suhaimi, F. H., Fairus, A., Ima-Nirwana, S. (2016). Animal models of metabolic syndrome: a review. Nutrition Metabolism, 13, 65. doi:10.1186/s12986-016-0123-9 Xu, M. Y., Hu, J. J., Shen, J., Wang, M. L., Zhang, Q. Q., Qu, Y., Lu, L. G. (2014). Stat3 signaling activation crosslinking of TGF-beta1 in hepatic stellate cell exacerbates liver injury and fibrosis. Biochimica et Biophysica Acta, 1842(11), 2237-2245. doi:10.1016/j.bbadis.2014.07.025 Yki-Jarvinen, H. (2016). Diagnosis of non-alcoholic fatty liver disease (NAFLD). Diabetologia, 59(6), 1104-1111. doi:10.1007/s00125-016-3944-1 Younossi, Z. M., Koenig, A. B., Abdelatif, D., Fazel, Y., Henry, L., Wymer, M. (2016). Global epidemiology of nonalcoholic fatty liver disease-Meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology, 64(1), 73-84. doi:10.1002/hep.28431 Zhang, M., Hettiarachchy, N. S., Horax, R., Chen, P., Over, K. F. (2009). Effect of maturity stages and drying methods on the retention of selected nutrients and phytochemicals in bitter melon (Momordica charantia) leaf. Journal of Food Science, 74(6), C441-448. doi:10.1111/j.1750-3841.2009.01222.x Zhao, J., Qi, Y. F., Yu, Y. R. (2021). STAT3: A key regulator in liver fibrosis. Annals of Hepatology, 21, 100224. doi:10.1016/j.aohep.2020.06.010 Zhao, S., Jang, C., Liu, J., Uehara, K., Gilbert, M., Izzo, L., . . . Wellen, K. E. (2020). Dietary fructose feeds hepatic lipogenesis via microbiota-derived acetate. Nature, 579(7800), 586-591. doi:10.1038/s41586-020-2101-7 Zhao, X. J., Yang, Y. Z., Zheng, Y. J., Wang, S. C., Gu, H. M., Pan, Y., . . . Kong, L. D. (2017). Magnesium isoglycyrrhizinate blocks fructose-induced hepatic NF-kappaB/NLRP3 inflammasome activation and lipid metabolism disorder. European Journal of Pharmacology, 809, 141-150. doi:10.1016/j.ejphar.2017.05.032 Zhao, X. J., Yu, H. W., Yang, Y. Z., Wu, W. Y., Chen, T. Y., Jia, K. K., . . . Kong, L. D. (2018). Polydatin prevents fructose-induced liver inflammation and lipid deposition through increasing miR-200a to regulate Keap1/Nrf2 pathway. Redox Biol, 18, 124-137. doi:10.1016/j.redox.2018.07.002 Zhu, J., Zhou, M., Zhao, X., Mu, M., Cheng, M. (2018). Blueberry, combined with probiotics, alleviates non-alcoholic fatty liver disease via IL-22-mediated JAK1/STAT3/BAX signaling. Food Function, 9(12), 6298-6306. doi:10.1039/c8fo01227j Zhu, P. L., Fu, X. Q., Li, J. K., Tse, A. K., Guo, H., Yin, C. L., . . . Yu, Z. L. (2018). Antrodia camphorata Mycelia Exert Anti-liver Cancer Effects and Inhibit STAT3 Signaling in vitro and in vivo. Frontiers in Pharmacology, 9, 1449. doi:10.3389/fphar.2018.01449 李詠彤. (2019). 富含三萜類之山苦瓜葉萃取物對高脂/高膽固醇飲食誘導倉鼠非酒精性脂肪肝的保護效應. (碩士論文). 實踐大學, 台北市,台灣. 許庭宜. (2021). TCK001 緩解四氯化碳誘導ICR小鼠腎纖維化之效應. (碩士論文). 實踐大學, 台北市,台灣. 蔡崇煌, 陳靖棻, 蔡新聲, 黃青真. (2010). 苦瓜於血糖控制之功效及安全性回顧. [Bitter Gourd (Momordica charantia): A Review of Its Efficacy and Safety for Glucose Homeostasis]. 臺灣營養學會雜誌, 35(3), 115-126. doi:10.6691/nsj.201009_35(3).0004
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82094-
dc.description.abstract"由飲食所引起的代謝症候群(Metabolic syndrome, MS)是現今盛行的流行病之一,攝食過多的果糖會引起非酒精性脂肪肝病(Nonalcoholic fatty liver disease, NAFLD)造成發炎反應和肝損傷,而具備抗發炎功效的天然萃取物有保護肝臟的潛力。山苦瓜葉(Momordica charantia L. var. abbreviate Seringe)的富含三萜類化合物萃取物(triterpenoid-enriched extract, TEE)含有生物活性成分,在先前研究發現能改善CCl4 誘導的小鼠肝纖維化現象。本研究欲探討 TEE 對高果糖飲食誘導肝損傷的保護機制。 細胞模式上發現 TEE 可緩解由 LPS 引起巨噬細胞的發炎現象,同時也能改善TGFβ 所引起的星狀細胞活化及纖維化,表示 TEE 具備抗發炎及抗纖維化的功效。另外也發現肝細胞在給予果糖處理後會提高脂肪酸生成與降低脂肪酸氧化相關蛋白質,使過多三酸甘油酯堆積形成油滴,引起發炎反應影響周遭細胞,如星狀細胞受到發炎因子的刺激活化,增加膠原蛋白的生成;此外果糖也會引起巨噬細胞活化,然而在給予 TEE 前處理皆有緩解效果。動物模式上則是將C57BL/6 公鼠給予三種不同的飲食條件,分別為 60%高果糖飼料、30%果糖飲用水、以及60%高脂飼料搭配 30%果糖飲用水,持續 14 週以引起 NAFLD 的相關症狀;同時每日餵食 TEE 並觀察其保護功效。本研究發現高果糖飲食會增加小鼠的體重變化量、提升血清中 AST 及 ALT 指標、增加尾靜脈血壓,並從組織蛋白與切片觀察到脂肪堆積形成脂肪肝、肝臟發炎及肝纖維化等損傷,而餵食TEE 皆能改善由高果糖飲食所引起的肝損傷現象。 由蛋白質表現量分析的結果,推測 TEE 是透過調控與發炎相關的 NLRP3 inflammasome 以及 STAT3 等途徑,降低三酸甘油酯生成與膠原蛋白堆積,藉此改善高果糖飲食誘導小鼠代謝性疾病及肝損傷的進展。由此可知,具抗發炎能力的 TEE 可做為治療高果糖飲食誘導非酒精性脂肪肝病的潛在天然萃取物。"zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-25T05:35:44Z (GMT). No. of bitstreams: 1
U0001-2510202116154400.pdf: 6105639 bytes, checksum: 793c9bdf8107bb32b08e922d376694db (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents"目錄 口試委員會審定書 B 中文摘要 E ABSTRACT F 縮寫表 H 目錄 K 圖目錄 O 表目錄 Q 第一章 緒論 1 第二章 文獻回顧 2 第一節 肝臟 2 一、基本結構 2 二、生理功能 6 第二節 非酒精性脂肪肝病 8 一、概況簡介 8 二、病程發展 8 三、診斷方法 15 四、影響成因 17 五、治療方法 18 第三節 高果糖飲食 19 一、歷史簡介 19 二、代謝機制 19 三、過量影響 22 四、形式差異 28 第四節 山苦瓜葉萃取物 29 一、山苦瓜(Bitter melon, BM) 29 二、生理活性 29 三、山苦瓜葉萃取物(Bitter melon leaf extract, BMLE) 31 第五節 研究目的 32 一、研究假說 32 二、實驗架構 32 第三章 材料方法 33 第一節 材料與儀器 33 一、富含三萜類萃取物(triterpenoid-enriched extract, TEE) 33 二、動物實驗 33 三、細胞實驗 34 四、實驗藥品 35 五、試劑儀器 36 第二節 製備山苦瓜葉萃取物 37 一、烘乾磨粉 37 二、粗萃取物BMLE製備 37 三、萃取物TEE製備 37 第三節 動物實驗 39 一、實驗動物 39 二、實驗設計 39 第四節 細胞實驗 44 一、細胞培養 44 二、實驗設計 44 第五節 實驗技術 47 測血糖數值 Blood glucose 47 胰島素耐受性測試 Intraperitoneal insulin tolerance test 47 小鼠滾輪測試儀 Rotarod 47 拉力測試儀 Grip Strength Meter 48 腸道通透性試驗Intestinal Permeability Assay 48 小鼠尾靜脈血壓儀 Blood pressure 48 肝臟三酸甘油酯 Triglyceride 49 血清及尿液生化分析 49 尿蛋白 Urine protein 52 尿比重 Specific gravity 52 石蠟包埋與切片 53 冷凍包埋與切片 53 蘇木精-伊紅染色法 Hematoxylin-Eosin stain 54 馬森三色染色法 Masson's Trichrome stain 55 油紅染色法 Oil red O stain 56 細胞計數 Cell counting 57 結晶紫染色法 Crystal Violet 57 細胞存活率測試 MTT assay 57 格里斯試驗 Griess assay 58 免疫細胞化學染色法 Immunocytochemistry 58 西方墨點法 Western Blot 59 第六節 統計分析 62 第四章 結果 63 第一節 TEE在巨噬細胞模式中具有抗發炎的效果 63 第二節 比較果糖餵食形式對高果糖飲食誘導小鼠模式的影響 63 第三節 TEE緩解高果糖飲食誘導NAFLD 65 第四節 TEE抑制高果糖飲食引起的肝臟脂肪堆積 67 第五節 TEE抑制高果糖飲食引起的發炎反應與纖維化現象 68 第六節 TEE改善果糖引起肝細胞的脂質累積 69 第七節 TEE改善果糖引起肝細胞的發炎現象 70 第八節 TEE改善果糖引起星狀細胞的活化與纖維化 71 第九節 TEE緩解果糖引起巨噬細胞的活化 72 第十節 TEE對TGFΒ誘導性狀細胞纖維化具有保護效果 72 第五章 討論 73 第一節 高果糖誘導動物模式 73 第二節 果糖餵食形式的影響 74 第三節 果糖飲食對於空腹血糖並無影響 75 第四節 TEE對高果糖飲食誘導小鼠之脂肪組織的影響 75 第五節 以細胞實驗模擬高果糖環境誘導脂質合成作用 76 第六節 以CONDITION MEDIUM模擬肝臟中的真實環境 77 第七節 從飲食及熱量攝取差異探討肝臟中KHK-C的表現量 77 第八節 探討TEE與STAT3訊息途徑的關係 78 第六章 結論 80 第七章 附圖 81 第八章 參考文獻 121 第九章 附錄 133 圖目錄 圖2- 1 人類及小鼠肝臟外觀圖 2 圖2- 2 肝小葉模式圖 3 圖2- 3 肝小葉功能性分區圖 5 圖2- 4 NAFLD的病程發展 8 圖2- 5 NASH相關發炎反應途徑 11 圖2- 6 NASH病理切片分級系統 15 圖2- 7 果糖與葡萄糖的代謝途徑 21 圖2- 8 果糖誘導NAFLD 22 圖2- 9 果糖引起氧化壓力及發炎反應的途徑 24 圖3- 1 山苦瓜葉萃取物製備流程 38 圖3- 2 細胞實驗模式圖 44 圖3- 3 小鼠滾輪測試儀 47 圖3- 4 小鼠尾靜脈血壓儀 48 圖7- 1 TEE對LPS引起巨噬細胞活化的模式中具有抗發炎效果 82 圖7- 2 比較果糖餵食形式對高果糖飲食誘導小鼠的影響 84 圖7- 3 TEE緩解高果糖飲食誘導NAFLD 90 圖7- 4 TEE抑制高果糖飲食引起的肝臟脂肪堆積 96 圖7- 5 TEE抑制高果糖飲食引起的發炎反應與纖維化現象 100 圖7- 6 TEE改善果糖引起肝細胞的脂質累積 104 圖7- 7 TEE改善果糖引起肝細胞的發炎現象 110 圖7- 8 TEE改善果糖引起星狀細胞的活化與纖維化 114 圖7- 9 TEE緩解果糖引起巨噬細胞的活化 118 圖7- 10 TEE對TGFβ誘導性狀細胞纖維化具有保護效果 120  圖9- 1 不同餵食形式對高果糖飲食誘導小鼠生理功能的影響差異 134 圖9- 2 TEE對高果糖飲食誘導小鼠之血清及尿液生化指標的影響 136 圖9- 3 TEE對高果糖飲食誘導小鼠之脂肪組織重量的影響 138 圖9- 4 細胞存活率測試 142 圖9- 5 純果糖處理不易引起肝細胞內三酸甘油酯的堆積 154 圖9- 6 TEE的薄層色譜分析結果 156 表目錄 表3- 1動物實驗組別設計 40 表3- 2 動物實驗各組別的三大營養素成分表 41 表3- 3高糖飼料(D02022704i)成分、營養素組成及熱量百分比 42 表3- 4高脂飼料(D12492)成分、營養素組成及熱量百分比 43 表3- 5 SDS-Page配方 60 表3- 6 西方墨點法溶液配製表 60 表3- 7西方墨點法抗體列表 61 表7- 1果糖餵食形式對高果糖飲食誘導小鼠之體重變化的影響 87 表7- 2果糖餵食形式對高果糖飲食誘導小鼠之飲食及能量攝取的影響 87 表7- 3果糖餵食形式對高果糖飲食誘導小鼠之飲食三大營養素比例 87 表7- 4果糖餵食形式對高果糖飲食誘導小鼠之臟器絕對重量及相對重量的影響 88 表7- 5果糖餵食形式對高果糖飲食誘導小鼠之脂肪組織絕對重量及相對重量的影響 88 表7- 6 TEE對高果糖飲食誘導小鼠之體重變化的影響 93 表7- 7 TEE對高果糖飲食誘導小鼠之飲食及能量攝取的影響 93 表7- 8 TEE對高果糖飲食誘導小鼠之飲食三大營養素比例 93 表7- 9 TEE對高果糖飲食誘導小鼠之臟器絕對重量及相對重量的影響 94 表7- 10 TEE對高果糖飲食誘導小鼠之脂肪組織絕對重量及相對重量的影響 94"
dc.language.isozh-TW
dc.subjectTEEzh_TW
dc.subject高果糖飲食zh_TW
dc.subject非酒精脂肪肝病zh_TW
dc.subject天然萃取物zh_TW
dc.subjecttriterpenoid-enriched extract (TEE)en
dc.subjecthigh-fructose dieten
dc.subjectNAFLDen
dc.subjectnatural extracten
dc.title山苦瓜葉萃取物對高果糖飲食誘導非酒精性肝病之保護作用zh_TW
dc.titleThe protective role of wild bitter melon leaf extract against high-fructose diet induced NAFLD in miceen
dc.date.schoolyear109-2
dc.description.degree碩士
dc.contributor.oralexamcommittee蔡帛蓉(Hsin-Tsai Liu),周逸鵬(Chih-Yang Tseng),許書豪
dc.subject.keyword高果糖飲食,非酒精脂肪肝病,天然萃取物,TEE,zh_TW
dc.subject.keywordhigh-fructose diet,NAFLD,natural extract,triterpenoid-enriched extract (TEE),en
dc.relation.page156
dc.identifier.doi10.6342/NTU202104154
dc.rights.note同意授權(限校園內公開)
dc.date.accepted2021-10-28
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept解剖學暨細胞生物學研究所zh_TW
dc.date.embargo-lift2026-10-29-
顯示於系所單位:解剖學暨細胞生物學科所

文件中的檔案:
檔案 大小格式 
U0001-2510202116154400.pdf
  未授權公開取用
5.96 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved