Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生化科技學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82088
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張麗冠(Li-Kwan Chang)
dc.contributor.authorDing-Li Wangen
dc.contributor.author王頂立zh_TW
dc.date.accessioned2022-11-25T05:35:36Z-
dc.date.available2026-10-20
dc.date.copyright2021-11-02
dc.date.issued2021
dc.date.submitted2021-10-26
dc.identifier.citationAli, A., Farooqui, S.R., and Banerjea, A.C. (2019). The host cell ubiquitin ligase protein CHIP is a potent suppressor of HIV-1 replication. J. Biol. Chem. 294, 7283-7295. Ambrose, Z., and Aiken, C. (2014). HIV-1 uncoating: connection to nuclear entry and regulation by host proteins. Virology 454-455, 371-379. Anderson, J.L., Campbell, E.M., Wu, X., Vandegraaff, N., Engelman, A., and Hope, T.J. (2006). Proteasome inhibition reveals that a functional preintegration complex intermediate can be generated during restriction by diverse TRIM5 proteins. J. Virol. 80, 9754-9760. Babu, J.R., Geetha, T., and Wooten, M.W. (2005). Sequestosome 1/p62 shuttles polyubiquitinated tau for proteasomal degradation. J. Neurochem. 94, 192-203. Baumann, M., Feederle, R., Kremmer, E., and Hammerschmidt, W. (1999). Cellular transcription factors recruit viral replication proteins to activate the Epstein-Barr virus origin of lytic DNA replication, oriLyt. EMBO J. 18, 6095-6105. Bergbauer, M., Kalla, M., Schmeinck, A., Gobel, C., Rothbauer, U., Eck, S., Benet-Pages, A., Strom, T.M., and Hammerschmidt, W. (2010). CpG-methylation regulates a class of Epstein-Barr virus promoters. PLoS Pathog 6, e1001114. Burkitt, D. (1958). A sarcoma involving the jaws in African children. Br J Surg 46, 218-223. Burkitt, D. (1962). A tumour syndrome affecting children in tropical Africa. Postgrad. Med. J. 38, 71-79. Callis, J. (2014). The ubiquitination machinery of the ubiquitin system. Arabidopsis Book 12, e0174. Campbell, E.M., and Hope, T.J. (2015). HIV-1 capsid: the multifaceted key player in HIV-1 infection. Nat. Rev. Microbiol. 13, 471-483. Chang, L.K., Lee, Y.H., Cheng, T.S., Hong, Y.R., Lu, P.J., Wang, J.J., Wang, W.H., Kuo, C.W., Li, S.S., and Liu, S.T. (2004). Post-translational modification of Rta of Epstein-Barr virus by SUMO-1. J. Biol. Chem. 279, 38803-38812. Chen, J., and Longnecker, R. (2019). Epithelial cell infection by Epstein-Barr virus. FEMS Microbiol. Rev. 43, 674-683. Ciechanover, A. (2005). Proteolysis: from the lysosome to ubiquitin and the proteasome. Nat. Rev. Mol. Cell Biol. 6, 79-87. Connolly, S.A., Jackson, J.O., Jardetzky, T.S., and Longnecker, R. (2011). Fusing structure and function: a structural view of the herpesvirus entry machinery. Nat. Rev. Microbiol. 9, 369-381. Countryman, J., and Miller, G. (1985). Activation of expression of latent Epstein-Barr herpesvirus after gene transfer with a small cloned subfragment of heterogeneous viral DNA. Proc Natl Acad Sci U S A 82, 4085-4089. Deng, L., Meng, T., Chen, L., Wei, W., and Wang, P. (2020). The role of ubiquitination in tumorigenesis and targeted drug discovery. Signal Transduct Target Ther 5, 11. Deshaies, R.J., and Joazeiro, C.A. (2009). RING domain E3 ubiquitin ligases. Annu. Rev. Biochem. 78, 399-434. Diaz-Griffero, F., Gallo, D.E., Hope, T.J., and Sodroski, J. (2011). Trafficking of some old world primate TRIM5alpha proteins through the nucleus. Retrovirology 8, 38. Diaz-Griffero, F., Kar, A., Perron, M., Xiang, S.H., Javanbakht, H., Li, X., and Sodroski, J. (2007). Modulation of retroviral restriction and proteasome inhibitor-resistant turnover by changes in the TRIM5alpha B-box 2 domain. J. Virol. 81, 10362-10378. Diaz-Griffero, F., Li, X., Javanbakht, H., Song, B., Welikala, S., Stremlau, M., and Sodroski, J. (2006). Rapid turnover and polyubiquitylation of the retroviral restriction factor TRIM5. Virology 349, 300-315. Diaz-Griffero, F., Qin, X.R., Hayashi, F., Kigawa, T., Finzi, A., Sarnak, Z., Lienlaf, M., Yokoyama, S., and Sodroski, J. (2009). A B-box 2 surface patch important for TRIM5alpha self-association, capsid binding avidity, and retrovirus restriction. J. Virol. 83, 10737-10751. Dikic, I., and Elazar, Z. (2018). Mechanism and medical implications of mammalian autophagy. Nat. Rev. Mol. Cell Biol. 19, 349-364. Dvorin, J.D., and Malim, M.H. (2003). Intracellular trafficking of HIV-1 cores: journey to the center of the cell. Curr. Top. Microbiol. Immunol. 281, 179-208. El-Guindy, A., Ghiassi-Nejad, M., Golden, S., Delecluse, H.J., and Miller, G. (2013). Essential role of Rta in lytic DNA replication of Epstein-Barr virus. J. Virol. 87, 208-223. Epstein, M.A., Achong, B.G., and Barr, Y.M. (1964). Virus Particles in Cultured Lymphoblasts from Burkitt's Lymphoma. Lancet 1, 702-703. Erpapazoglou, Z., Dhaoui, M., Pantazopoulou, M., Giordano, F., Mari, M., Leon, S., Raposo, G., Reggiori, F., and Haguenauer-Tsapis, R. (2012). A dual role for K63-linked ubiquitin chains in multivesicular body biogenesis and cargo sorting. Mol Biol Cell 23, 2170-2183. Finley, D. (2009). Recognition and processing of ubiquitin-protein conjugates by the proteasome. Annu. Rev. Biochem. 78, 477-513. Fletcher, A.J., Vaysburd, M., Maslen, S., Zeng, J., Skehel, J.M., Towers, G.J., and James, L.C. (2018). Trivalent RING Assembly on Retroviral Capsids Activates TRIM5 Ubiquitination and Innate Immune Signaling. Cell Host Microbe 24, 761-775 e766. Forshey, B.M., von Schwedler, U., Sundquist, W.I., and Aiken, C. (2002). Formation of a human immunodeficiency virus type 1 core of optimal stability is crucial for viral replication. J. Virol. 76, 5667-5677. Fukuda, M., Asano, S., Nakamura, T., Adachi, M., Yoshida, M., Yanagida, M., and Nishida, E. (1997). CRM1 is responsible for intracellular transport mediated by the nuclear export signal. Nature 390, 308-311. Gao, Z., Krithivas, A., Finan, J.E., Semmes, O.J., Zhou, S., Wang, Y., and Hayward, S.D. (1998). The Epstein-Barr virus lytic transactivator Zta interacts with the helicase-primase replication proteins. J. Virol. 72, 8559-8567. Giancotti, F.G., and Ruoslahti, E. (1999). Integrin signaling. Science 285, 1028-1032. Glickman, M.H., and Ciechanover, A. (2002). The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. Physiol. Rev. 82, 373-428. Goldberg, A.L. (2003). Protein degradation and protection against misfolded or damaged proteins. Nature 426, 895-899. Goudarzipour, K., Kajiyazdi, M., and Mahdaviyani, A. (2013). Epstein-barr virus-induced hemophagocytic lymphohistiocytosis. Int J Hematol Oncol Stem Cell Res 7, 42-45. Graham, F.L., Smiley, J., Russell, W.C., and Nairn, R. (1977). Characteristics of a human cell line transformed by DNA from human adenovirus type 5. J. Gen. Virol. 36, 59-74. Grogan, E., Jenson, H., Countryman, J., Heston, L., Gradoville, L., and Miller, G. (1987). Transfection of a rearranged viral DNA fragment, WZhet, stably converts latent Epstein-Barr viral infection to productive infection in lymphoid cells. Proc Natl Acad Sci U S A 84, 1332-1336. Grutter, M.G., and Luban, J. (2012). TRIM5 structure, HIV-1 capsid recognition, and innate immune signaling. Curr Opin Virol 2, 142-150. Hammerschmidt, W., and Sugden, B. (1988). Identification and characterization of oriLyt, a lytic origin of DNA replication of Epstein-Barr virus. Cell 55, 427-433. Hatakeyama, S. (2017). TRIM Family Proteins: Roles in Autophagy, Immunity, and Carcinogenesis. Trends Biochem. Sci. 42, 297-311. Henderson, E.E., and Long, W.K. (1981). Host cell reactivation of uv- and X-ray-damaged herpes simplex virus by Epstein-Barr virus (EBV)-transformed lymphoblastoid cell lines. Virology 115, 237-248. Henle, G., Henle, W., and Diehl, V. (1968). Relation of Burkitt's tumor-associated herpes-ytpe virus to infectious mononucleosis. Proc Natl Acad Sci U S A 59, 94-101. Henle, W., and Henle, G. (1980). Epidemiologic aspects of Epstein-Barr virus (EBV)-associated diseases. Ann. N. Y. Acad. Sci. 354, 326-331. Henson, B.W., Perkins, E.M., Cothran, J.E., and Desai, P. (2009). Self-assembly of Epstein-Barr virus capsids. J. Virol. 83, 3877-3890. Hershko, A., and Ciechanover, A. (1998). The ubiquitin system. Annu. Rev. Biochem. 67, 425-479. Hinuma, Y., Konn, M., Yamaguchi, J., Wudarski, D.J., Blakeslee, J.R., Jr., and Grace, J.T., Jr. (1967). Immunofluorescence and herpes-type virus particles in the P3HR-1 Burkitt lymphoma cell line. J. Virol. 1, 1045-1051. Huang, H.H., Chen, C.S., Wang, W.H., Hsu, S.W., Tsai, H.H., Liu, S.T., and Chang, L.K. (2016). TRIM5alpha Promotes Ubiquitination of Rta from Epstein-Barr Virus to Attenuate Lytic Progression. Front Microbiol 7, 2129. Huang, H.H., Wang, W.H., Feng, T.H., and Chang, L.K. (2020). Rta is an Epstein-Barr virus tegument protein that improves the stability of capsid protein BORF1. Biochem. Biophys. Res. Commun. 523, 773-779. Inoki, K., Kim, J., and Guan, K.L. (2012). AMPK and mTOR in cellular energy homeostasis and drug targets. Annu. Rev. Pharmacol. Toxicol. 52, 381-400. Kabeya, Y., Mizushima, N., Ueno, T., Yamamoto, A., Kirisako, T., Noda, T., Kominami, E., Ohsumi, Y., and Yoshimori, T. (2000). LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J. 19, 5720-5728. Kallin, B., Luka, J., and Klein, G. (1979). Immunochemical characterization of Epstein-Barr virus-associated early and late antigens in n-butyrate-treated P3HR-1 cells. J. Virol. 32, 710-716. Kanayama, A., Seth, R.B., Sun, L., Ea, C.K., Hong, M., Shaito, A., Chiu, Y.H., Deng, L., and Chen, Z.J. (2004). TAB2 and TAB3 activate the NF-kappaB pathway through binding to polyubiquitin chains. Mol. Cell 15, 535-548. Kawai, T., and Akira, S. (2011). Regulation of innate immune signalling pathways by the tripartite motif (TRIM) family proteins. EMBO Mol Med 3, 513-527. Khan, M.M., Strack, S., Wild, F., Hanashima, A., Gasch, A., Brohm, K., Reischl, M., Carnio, S., Labeit, D., Sandri, M., et al. (2014). Role of autophagy, SQSTM1, SH3GLB1, and TRIM63 in the turnover of nicotinic acetylcholine receptors. Autophagy 10, 123-136. Kim, J., Tipper, C., and Sodroski, J. (2011). Role of TRIM5alpha RING domain E3 ubiquitin ligase activity in capsid disassembly, reverse transcription blockade, and restriction of simian immunodeficiency virus. J. Virol. 85, 8116-8132. Kobayashi, R., Kato, A., Sagara, H., Watanabe, M., Maruzuru, Y., Koyanagi, N., Arii, J., and Kawaguchi, Y. (2017). Herpes Simplex Virus 1 Small Capsomere-Interacting Protein VP26 Regulates Nucleocapsid Maturation. J. Virol. 91. Kudo, N., Wolff, B., Sekimoto, T., Schreiner, E.P., Yoneda, Y., Yanagida, M., Horinouchi, S., and Yoshida, M. (1998). Leptomycin B inhibition of signal-mediated nuclear export by direct binding to CRM1. Exp. Cell Res. 242, 540-547. Lam, Y.A., Lawson, T.G., Velayutham, M., Zweier, J.L., and Pickart, C.M. (2002). A proteasomal ATPase subunit recognizes the polyubiquitin degradation signal. Nature 416, 763-767. Lauwers, E., Jacob, C., and Andre, B. (2009). K63-linked ubiquitin chains as a specific signal for protein sorting into the multivesicular body pathway. J. Cell Biol. 185, 493-502. Li, X., and Sodroski, J. (2008). The TRIM5alpha B-box 2 domain promotes cooperative binding to the retroviral capsid by mediating higher-order self-association. J. Virol. 82, 11495-11502. Li, Y., Li, X., Stremlau, M., Lee, M., and Sodroski, J. (2006). Removal of arginine 332 allows human TRIM5alpha to bind human immunodeficiency virus capsids and to restrict infection. J. Virol. 80, 6738-6744. Liao, G., Huang, J., Fixman, E.D., and Hayward, S.D. (2005). The Epstein-Barr virus replication protein BBLF2/3 provides an origin-tethering function through interaction with the zinc finger DNA binding protein ZBRK1 and the KAP-1 corepressor. J. Virol. 79, 245-256. Lienlaf, M., Hayashi, F., Di Nunzio, F., Tochio, N., Kigawa, T., Yokoyama, S., and Diaz-Griffero, F. (2011). Contribution of E3-ubiquitin ligase activity to HIV-1 restriction by TRIM5alpha(rh): structure of the RING domain of TRIM5alpha. J. Virol. 85, 8725-8737. Liu, W., Cui, Y., Wang, C., Li, Z., Gong, D., Dai, X., Bi, G.Q., Sun, R., and Zhou, Z.H. (2020). Structures of capsid and capsid-associated tegument complex inside the Epstein-Barr virus. Nat Microbiol 5, 1285-1298. Mandell, M.A., Jain, A., Arko-Mensah, J., Chauhan, S., Kimura, T., Dinkins, C., Silvestri, G., Munch, J., Kirchhoff, F., Simonsen, A., et al. (2014a). TRIM proteins regulate autophagy and can target autophagic substrates by direct recognition. Dev. Cell 30, 394-409. Mandell, M.A., Kimura, T., Jain, A., Johansen, T., and Deretic, V. (2014b). TRIM proteins regulate autophagy: TRIM5 is a selective autophagy receptor mediating HIV-1 restriction. Autophagy 10, 2387-2388. McKenzie, J., and El-Guindy, A. (2015). Epstein-Barr Virus Lytic Cycle Reactivation. Curr. Top. Microbiol. Immunol. 391, 237-261. McNab, F.W., Rajsbaum, R., Stoye, J.P., and O'Garra, A. (2011). Tripartite-motif proteins and innate immune regulation. Curr. Opin. Immunol. 23, 46-56. Metzger, M.B., Pruneda, J.N., Klevit, R.E., and Weissman, A.M. (2014). RING-type E3 ligases: master manipulators of E2 ubiquitin-conjugating enzymes and ubiquitination. Biochim Biophys Acta 1843, 47-60. Miller, G., El-Guindy, A., Countryman, J., Ye, J., and Gradoville, L. (2007). Lytic cycle switches of oncogenic human gammaherpesviruses. Adv. Cancer Res. 97, 81-109. Miller, N., and Hutt-Fletcher, L.M. (1992). Epstein-Barr virus enters B cells and epithelial cells by different routes. J. Virol. 66, 3409-3414. Mizushima, N., Yoshimori, T., and Ohsumi, Y. (2011). The role of Atg proteins in autophagosome formation. Annu. Rev. Cell. Dev. Biol. 27, 107-132. Mullen, M.M., Haan, K.M., Longnecker, R., and Jardetzky, T.S. (2002). Structure of the Epstein-Barr virus gp42 protein bound to the MHC class II receptor HLA-DR1. Mol. Cell 9, 375-385. Nemerow, G.R., Mold, C., Schwend, V.K., Tollefson, V., and Cooper, N.R. (1987). Identification of gp350 as the viral glycoprotein mediating attachment of Epstein-Barr virus (EBV) to the EBV/C3d receptor of B cells: sequence homology of gp350 and C3 complement fragment C3d. J. Virol. 61, 1416-1420. Ozato, K., Shin, D.M., Chang, T.H., and Morse, H.C., 3rd (2008). TRIM family proteins and their emerging roles in innate immunity. Nat. Rev. Immunol. 8, 849-860. Pankiv, S., Clausen, T.H., Lamark, T., Brech, A., Bruun, J.A., Outzen, H., Overvatn, A., Bjorkoy, G., and Johansen, T. (2007). p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J. Biol. Chem. 282, 24131-24145. Park, C.W., and Ryu, K.Y. (2014). Cellular ubiquitin pool dynamics and homeostasis. BMB Rep 47, 475-482. Perez-Caballero, D., Hatziioannou, T., Yang, A., Cowan, S., and Bieniasz, P.D. (2005). Human tripartite motif 5alpha domains responsible for retrovirus restriction activity and specificity. J. Virol. 79, 8969-8978. Perron, M.J., Stremlau, M., Song, B., Ulm, W., Mulligan, R.C., and Sodroski, J. (2004). TRIM5alpha mediates the postentry block to N-tropic murine leukemia viruses in human cells. Proc Natl Acad Sci U S A 101, 11827-11832. Pertel, T., Hausmann, S., Morger, D., Zuger, S., Guerra, J., Lascano, J., Reinhard, C., Santoni, F.A., Uchil, P.D., Chatel, L., et al. (2011). TRIM5 is an innate immune sensor for the retrovirus capsid lattice. Nature 472, 361-365. Reszka, N., Zhou, C., Song, B., Sodroski, J.G., and Knipe, D.M. (2010). Simian TRIM5alpha proteins reduce replication of herpes simplex virus. Virology 398, 243-250. Reymond, A., Meroni, G., Fantozzi, A., Merla, G., Cairo, S., Luzi, L., Riganelli, D., Zanaria, E., Messali, S., Cainarca, S., et al. (2001). The tripartite motif family identifies cell compartments. EMBO J. 20, 2140-2151. Rixon, F.J., Addison, C., McGregor, A., Macnab, S.J., Nicholson, P., Preston, V.G., and Tatman, J.D. (1996). Multiple interactions control the intracellular localization of the herpes simplex virus type 1 capsid proteins. J. Gen. Virol. 77 ( Pt 9), 2251-2260. Ronai, Z.A. (2016). Monoubiquitination in proteasomal degradation. Proc Natl Acad Sci U S A 113, 8894-8896. Russell, R.C., Tian, Y., Yuan, H., Park, H.W., Chang, Y.Y., Kim, J., Kim, H., Neufeld, T.P., Dillin, A., and Guan, K.L. (2013). ULK1 induces autophagy by phosphorylating Beclin-1 and activating VPS34 lipid kinase. Nat. Cell Biol. 15, 741-750. Sapetschnig, A., Rischitor, G., Braun, H., Doll, A., Schergaut, M., Melchior, F., and Suske, G. (2002). Transcription factor Sp3 is silenced through SUMO modification by PIAS1. EMBO J. 21, 5206-5215. Sathiyamoorthy, K., Hu, Y.X., Mohl, B.S., Chen, J., Longnecker, R., and Jardetzky, T.S. (2016). Structural basis for Epstein-Barr virus host cell tropism mediated by gp42 and gHgL entry glycoproteins. Nat Commun 7, 13557. Sathiyamoorthy, K., Jiang, J., Hu, Y.X., Rowe, C.L., Mohl, B.S., Chen, J., Jiang, W., Mellins, E.D., Longnecker, R., Zhou, Z.H., et al. (2014). Assembly and architecture of the EBV B cell entry triggering complex. PLoS Pathog 10, e1004309. Seibenhener, M.L., Babu, J.R., Geetha, T., Wong, H.C., Krishna, N.R., and Wooten, M.W. (2004). Sequestosome 1/p62 is a polyubiquitin chain binding protein involved in ubiquitin proteasome degradation. Mol. Cell. Biol. 24, 8055-8068. Smith, D.M., Chang, S.C., Park, S., Finley, D., Cheng, Y., and Goldberg, A.L. (2007). Docking of the proteasomal ATPases' carboxyl termini in the 20S proteasome's alpha ring opens the gate for substrate entry. Mol. Cell 27, 731-744. Spriggs, M.K., Armitage, R.J., Comeau, M.R., Strockbine, L., Farrah, T., Macduff, B., Ulrich, D., Alderson, M.R., Mullberg, J., and Cohen, J.I. (1996). The extracellular domain of the Epstein-Barr virus BZLF2 protein binds the HLA-DR beta chain and inhibits antigen presentation. J. Virol. 70, 5557-5563. Stremlau, M., Owens, C.M., Perron, M.J., Kiessling, M., Autissier, P., and Sodroski, J. (2004). The cytoplasmic body component TRIM5alpha restricts HIV-1 infection in Old World monkeys. Nature 427, 848-853. Stremlau, M., Perron, M., Lee, M., Li, Y., Song, B., Javanbakht, H., Diaz-Griffero, F., Anderson, D.J., Sundquist, W.I., and Sodroski, J. (2006). Specific recognition and accelerated uncoating of retroviral capsids by the TRIM5alpha restriction factor. Proc Natl Acad Sci U S A 103, 5514-5519. Studier, F.W., Rosenberg, A.H., Dunn, J.J., and Dubendorff, J.W. (1990). Use of T7 RNA polymerase to direct expression of cloned genes. Methods Enzymol. 185, 60-89. Sumpter, R., Jr., and Levine, B. (2011). Selective autophagy and viruses. Autophagy 7, 260-265. Swaminathan, S., Tomkinson, B., and Kieff, E. (1991). Recombinant Epstein-Barr virus with small RNA (EBER) genes deleted transforms lymphocytes and replicates in vitro. Proc Natl Acad Sci U S A 88, 1546-1550. Tan, J.M., Wong, E.S., Kirkpatrick, D.S., Pletnikova, O., Ko, H.S., Tay, S.P., Ho, M.W., Troncoso, J., Gygi, S.P., Lee, M.K., et al. (2008). Lysine 63-linked ubiquitination promotes the formation and autophagic clearance of protein inclusions associated with neurodegenerative diseases. Hum. Mol. Genet. 17, 431-439. Tareen, S.U., and Emerman, M. (2011). Human Trim5alpha has additional activities that are uncoupled from retroviral capsid recognition. Virology 409, 113-120. Tomar, D., Singh, R., Singh, A.K., Pandya, C.D., and Singh, R. (2012). TRIM13 regulates ER stress induced autophagy and clonogenic ability of the cells. Biochim Biophys Acta 1823, 316-326. Tosato, G., Marti, G.E., Yarchoan, R., Heilman, C.A., Wang, F., Pike, S.E., Korsmeyer, S.J., and Siminovitch, K. (1986). Epstein-Barr virus immortalization of normal cells of B cell lineage with nonproductive, rearranged immunoglobulin genes. J. Immunol. 137, 2037-2042. Trus, B.L., Homa, F.L., Booy, F.P., Newcomb, W.W., Thomsen, D.R., Cheng, N., Brown, J.C., and Steven, A.C. (1995). Herpes simplex virus capsids assembled in insect cells infected with recombinant baculoviruses: structural authenticity and localization of VP26. J. Virol. 69, 7362-7366. Tugizov, S.M., Berline, J.W., and Palefsky, J.M. (2003). Epstein-Barr virus infection of polarized tongue and nasopharyngeal epithelial cells. Nat. Med. 9, 307-314. Uchil, P.D., Quinlan, B.D., Chan, W.T., Luna, J.M., and Mothes, W. (2008). TRIM E3 ligases interfere with early and late stages of the retroviral life cycle. PLoS Pathog 4, e16. Wang, H.B., Zhang, H., Zhang, J.P., Li, Y., Zhao, B., Feng, G.K., Du, Y., Xiong, D., Zhong, Q., Liu, W.L., et al. (2015a). Neuropilin 1 is an entry factor that promotes EBV infection of nasopharyngeal epithelial cells. Nat Commun 6, 6240. Wang, W.H., Kuo, C.W., Chang, L.K., Hung, C.C., Chang, T.H., and Liu, S.T. (2015b). Assembly of Epstein-Barr Virus Capsid in Promyelocytic Leukemia Nuclear Bodies. J. Virol. 89, 8922-8931. Weidberg, H., Shvets, E., Shpilka, T., Shimron, F., Shinder, V., and Elazar, Z. (2010). LC3 and GATE-16/GABARAP subfamilies are both essential yet act differently in autophagosome biogenesis. EMBO J. 29, 1792-1802. Weiss, L.M., Movahed, L.A., Warnke, R.A., and Sklar, J. (1989). Detection of Epstein-Barr viral genomes in Reed-Sternberg cells of Hodgkin's disease. N Engl J Med 320, 502-506. Woo, J.S., Imm, J.H., Min, C.K., Kim, K.J., Cha, S.S., and Oh, B.H. (2006). Structural and functional insights into the B30.2/SPRY domain. EMBO J. 25, 1353-1363. Yamauchi, K., Wada, K., Tanji, K., Tanaka, M., and Kamitani, T. (2008). Ubiquitination of E3 ubiquitin ligase TRIM5 alpha and its potential role. FEBS J. 275, 1540-1555. Yang, Y., Brandariz-Nunez, A., Fricke, T., Ivanov, D.N., Sarnak, Z., and Diaz-Griffero, F. (2014). Binding of the rhesus TRIM5alpha PRYSPRY domain to capsid is necessary but not sufficient for HIV-1 restriction. Virology 448, 217-228. Yang, Y., Fricke, T., and Diaz-Griffero, F. (2013). Inhibition of reverse transcriptase activity increases stability of the HIV-1 core. J. Virol. 87, 683-687. Yap, M.W., Nisole, S., and Stoye, J.P. (2005). A single amino acid change in the SPRY domain of human Trim5alpha leads to HIV-1 restriction. Curr. Biol. 15, 73-78. Young, L.S., and Rickinson, A.B. (2004). Epstein-Barr virus: 40 years on. Nat. Rev. Cancer 4, 757-768. Yuan, J., Cahir-McFarland, E., Zhao, B., and Kieff, E. (2006). Virus and cell RNAs expressed during Epstein-Barr virus replication. J. Virol. 80, 2548-2565. Zhang, Q., Hong, Y., Dorsky, D., Holley-Guthrie, E., Zalani, S., Elshiekh, N.A., Kiehl, A., Le, T., and Kenney, S. (1996). Functional and physical interactions between the Epstein-Barr virus (EBV) proteins BZLF1 and BMRF1: Effects on EBV transcription and lytic replication. J. Virol. 70, 5131-5142. zur Hausen, H., O'Neill, F.J., Freese, U.K., and Hecker, E. (1978). Persisting oncogenic herpesvirus induced by the tumour promotor TPA. Nature 272, 373-375. 林俐岑 (2020). Role of TRIM5α in the regulation of Epstein-Barr virus minor capsid protein BORF1. 臺灣大學生化科技學系碩士論文 陳建炘 (2011). TRIM5alpha restrains Epstein-Barr virus lytic cycle by mediating ubiquitination of Rta. 臺灣大學生化科技學系碩士論文 陳則堯 (2016). Role of autophagy in the regulation of BORF1 of Epstein-Barr virus by TRIM5α. 臺灣大學生化科技學系碩士論文 徐詩媁 (2013). Role of TRIM5α in the lytic progression of Epstein-Barr virus. 臺灣大學生化科技學系碩士論文 黃翔弘 (2020). Role of Rta in the late stage of Epstein-Barr virus life cycle. 臺灣大學生化科技學系博士論文 廖博弘 (2019). Role of Epstein-Barr virus BFRF3 in nuclear transolcation of VCA. 臺灣大學生化科技學系碩士論文
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82088-
dc.description.abstractEB 病毒 (Epstein-Barr virus) 是第四型人類皰疹病毒 (Human γ-herpesvirus 4),會感染 90% 以上的人口,與伯奇氏淋巴瘤 (Burkitt's lymphoma)、霍奇金淋巴瘤 (Hodgkin's lymphoma) 及鼻咽癌 (Nasopharyngeal carcinoma) 等疾病相關。EB 病毒的外鞘殼體 (capsid) 是由主外鞘殼體蛋白質VCA為基質,中間由BDLF1、BORF1這兩個次外鞘殼體蛋白質連結,最後再以小外鞘殼體蛋白質BFRF3結合在外所構成,而 BFRF3 在 EB 病毒外鞘殼體組裝過程中是不可或缺的。本研究室先前發現 Tripate motif 5 alpha(TRIM5α) 除了作為反轉錄病毒的限制因子之外,還可透過泛素化修飾Rta,進而抑制 EB 病毒的再活化。因此,本研究的目的是要探討 TRIM5α 是否會透過泛素化修飾而影響 BFRF3 的功能。首先,本研究發現 TRIM5α 會與 BFRF3 結合,並促進其進行泛素化修飾。透過使用蛋白酶體抑制劑 MG132 以及自噬小體抑制劑 chloroquine,結果發現 BFRF3是以蛋白酶體降解途徑為主。然而,對泛素化修飾的分析得知 TRIM5α 是會促進 BFRF3 的 K63 鍵結的泛素化長鏈修飾,而 K63 鍵結的泛素化長鏈誘導的生理作用通常與 p62 的自噬途徑相關,而本研究也發現 BFRF3 會與 p62 在體內與體外皆會結合。因此在未來會以免疫螢光與蔗糖梯度離心等技術近一步釐清 TRIM5α 泛素化修飾 BFRF3 與 p62 自噬途徑的關聯,以及後續對病毒殼體組裝的影響。zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-25T05:35:36Z (GMT). No. of bitstreams: 1
U0001-2610202105554500.pdf: 3049548 bytes, checksum: fe50091e361924cfc88d45b80de64f82 (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents"誌謝 i 摘要 ii ABSTRACT iii 目錄 iv 圖目錄 vii 表目錄 vii 附錄目錄 vii 前言 1 一、EB 病毒 1 EB 病毒與其起源 1 EB 病毒的感染方式 1 EB 病毒的生活史 2 EB 病毒的外鞘殼體(nucleocapsid) 3 EB 病毒小外鞘殼體蛋白質 BFRF3 的重要性 4 二、泛素化修飾 (Ubiquitination) 5 泛素化修飾機制 5 泛素化修飾鍵結種類與生理功能 5 三、TRIM5α 6 TRIM 蛋白質家族與 TRIM5α 6 TRIM5α 的背景 7 TRIM5α 限制反轉錄病毒的方式 7 TRIM5α 各 Domain 發生突變的影響 8 TRIM5α 亦能抑制皰疹病毒的感染 9 TRIM5α 與泛素化修飾 9 四、蛋白質降解 (Protein degradation) 9 泛素–蛋白酶體降解系統 (ubiquitin-proteasome system, UPS) 9 自噬作用 (Autophagy) 10 選擇性自噬作用 (Selective autophagy) 12 TRIMosome 12 研究動機與目的 13 材料與方法 14 一、細胞株 14 二、細菌 14 三、質體與抗體 14 四、細胞轉染 (Transfection) 14 五、慢病毒感染 (Lentivirus infection) 14 六、SDS-PAGE蛋白質膠體電泳及西方墨點法 (Western blot analysis) 15 七、GST 融合蛋白質沉降分析 (GST Pull-down) 15 八、變性免疫沉澱分析 (Denature immunoprecipitation assay) 16 九、免疫共沉澱分析 (Immunoprecipitation assay) 16 十、蛋白質穩定性測定 (Protein stability analysis) 17 結果 18 一、TRIM5α 會與 BFRF3 直接結合 18 二、TRIM5α 會促進 BFRF3 的泛素化修飾 18 三、BFRF3 傾向經由Proteasome 途徑被降解 19 四、TRIM5α 提升 BFRF3 的蛋白質穩定性 19 五、TRIM5α 促進 BFRF3 的 K-63 鍵結的泛素化修飾 20 六、BFRF3 與 p62 的結合 20 討論 22 一、TRIM5α 是 BFRF3 的泛素連接酶 E3 22 二、TRIM5α 提升 BFRF3 的蛋白質穩定性 23 三、TRIM5α 對於 BFRF3 可能的影響 24 四、TRIM5α 與 BFRF3 之間可能存在著未知的蛋白質 24 五、BFRF3 走向自噬作用降解途徑的可能性 25 圖表 28 表 1、EB 病毒與皰疹病毒科 (HSV、KSHV) 的同源外鞘殼體蛋白質對照表 28 表 2、本研究使用的質體 29 表 3、本研究使用的抗體 31 圖 1、EB 病毒的溶裂期進程 32 圖 2、TRIM5α 抑制 EB 病毒溶裂期進程的機制 33 圖 3、TRIM5α 與 BFRF3 的結合 34 圖 4、TRIM5α 與 BFRF3 的泛素化修飾 35 圖 5、BFRF3 的自噬作用及蛋白酶體降解途徑分析 36 圖 6、TRIM5α 會增強 BFRF3 的蛋白質穩定性 37 圖 7、TRIM5α 對 BFRF3 泛素化鏈結修飾的分析 39 圖 8、BFRF3 與 p62 的結合 40 參考文獻 41 附錄 55 附錄 1、EB病毒的外鞘殼體結構圖以及各外鞘殼體蛋白質分佈 55 附錄 2、HSV 外鞘殼體組裝過程 56 附錄 3、BFRF3 是 EB 病毒外鞘殼體組裝不可或缺的存在 57 附錄 4、BFRF3 蛋白質序列 58 附錄 5、TRIM 蛋白質家族的結構 59 附錄 6、TRIM5α 結合 HIV-1 病毒顆粒的結構 60 附錄 7、TRIMosome 的結構 61"
dc.language.isozh-TW
dc.subjectTRIM5αzh_TW
dc.subject泛素化修飾zh_TW
dc.subject自噬作用zh_TW
dc.subjectBFRF3zh_TW
dc.subjectEpstein-Barr 病毒zh_TW
dc.subjectAutophagyen
dc.subjectEpstein-Barr virusen
dc.subjectTRIM5αen
dc.subjectBFRF3en
dc.subjectUbiquitinationen
dc.titleTRIM5α對EB病毒BFRF3的影響zh_TW
dc.titleInfluence of TRIM5α on Epstein-Barr virus BFRF3en
dc.date.schoolyear109-2
dc.description.degree碩士
dc.contributor.oralexamcommittee劉世東(Hsin-Tsai Liu),李重霈(Chih-Yang Tseng),廖憶純,羅凱尹
dc.subject.keywordEpstein-Barr 病毒,TRIM5α,BFRF3,泛素化修飾,自噬作用,zh_TW
dc.subject.keywordEpstein-Barr virus,TRIM5α,BFRF3,Ubiquitination,Autophagy,en
dc.relation.page62
dc.identifier.doi10.6342/NTU202104197
dc.rights.note同意授權(限校園內公開)
dc.date.accepted2021-10-27
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生化科技學系zh_TW
dc.date.embargo-lift2026-10-20-
顯示於系所單位:生化科技學系

文件中的檔案:
檔案 大小格式 
U0001-2610202105554500.pdf
  未授權公開取用
2.98 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved