請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82086完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳家揚(Chia-Yang Chen) | |
| dc.contributor.author | Shih-Hsiang Liao | en |
| dc.contributor.author | 廖士翔 | zh_TW |
| dc.date.accessioned | 2022-11-25T05:35:34Z | - |
| dc.date.available | 2023-10-26 | |
| dc.date.copyright | 2021-11-09 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-10-26 | |
| dc.identifier.citation | 1. Agency for Toxic Substances and Disease Registry. Draft toxicological profile for perfluoroalkyls. 2021 May; Available from: https://www.atsdr.cdc.gov/toxprofiles/tp200.pdf. Accessed 16 June 2021. 2. Zota, A.R., Calafat, A.M., and Woodruff, T.J., Temporal trends in phthalate exposures: findings from the National Health and Nutrition Examination Survey, 2001-2010. Environmental Health Perspectives, 2014. 122(3): p. 235-41. 3. Wang, Z., Dewitt, J.C., Higgins, C.P., and Cousins, I.T., A never-ending story of per- and polyfluoroalkyl substances (PFASs)? Environmental Science Technology, 2017. 51(5): p. 2508-2518. 4. Lau, C., Perfluorinated compounds: an overview, in Toxicological Effects of Perfluoroalkyl and Polyfluoroalkyl Substances, Jamie C. DeWitt, Editor. 2015, Springer International Publishing: Cham. p. 1-21. 5. Wang, Z., Cousins, I.T., Scheringer, M., Buck, R.C., and Hungerbühler, K., Global emission inventories for C4-C14 perfluoroalkyl carboxylic acid (PFCA) homologues from 1951 to 2030, Part I: production and emissions from quantifiable sources. Environment International, 2014. 70: p. 62-75. 6. Pelch, K.E., Reade, A., Wolffe, T.a.M., and Kwiatkowski, C.F., PFAS health effects database: Protocol for a systematic evidence map. Environment International, 2019. 130: p. 104851. 7. Zhang, S., Chen, K., Li, W., Chai, Y., Zhu, J., Chu, B., et al., Varied thyroid disrupting effects of perfluorooctanoic acid (PFOA) and its novel alternatives hexafluoropropylene-oxide-dimer-acid (GenX) and ammonium 4,8-dioxa-3H-perfluorononanoate (ADONA) in vitro. Environment International, 2021. 156: p. 106745. 8. Eriksen, K.T., Raaschou-Nielsen, O., Mclaughlin, J.K., Lipworth, L., Tjønneland, A., Overvad, K., et al., Association between plasma PFOA and PFOS levels and total cholesterol in a middle-aged Danish population. PLOS ONE, 2013. 8(2): p. e56969. 9. Davidsen, N., Rosenmai, A.K., Lauschke, K., Svingen, T., and Vinggaard, A.M., Developmental effects of PFOS, PFOA and GenX in a 3D human induced pluripotent stem cell differentiation model. Chemosphere, 2021. 279: p. 130624. 10. Eggert, A., Cisneros-Montalvo, S., Anandan, S., Musilli, S., Stukenborg, J.-B., Adamsson, A., et al., The effects of perfluorooctanoic acid (PFOA) on fetal and adult rat testis. Reproductive Toxicology, 2019. 90: p. 68-76. 11. International Agency for Research on Cancer. IARC monographs on the identification of carcunogenic hazards to human. 2021 June; Available from: https://monographs.iarc.who.int/agents-classified-by-the-iarc/. Accessed 16 June 2021. 12. The United States Environmental Protection Agency. Risk management for per- and polyfluoroalkyl substances (PFAS) under TSCA. 2021 June; Available from: https://www.epa.gov/assessing-and-managing-chemicals-under-tsca/risk-management-and-polyfluoroalkyl-substances-pfas#pfoa. Accessed 16 June 2021. 13. European Chemicals Agency. List of substances subject to POPs Regulation. 2020 June; Available from: https://echa.europa.eu/list-of-substances-subject-to-pops-regulation?p_p_id=disslists_WAR_disslistsportlet p_p_lifecycle=1 p_p_state=normal p_p_mode=view p_p_col_id=column-1 p_p_col_pos=1 p_p_col_count=2 _disslists_WAR_disslistsportlet_javax.portlet.action=searchDissLists. Accessed 16 June 2021. 14. Toxic and Chemical Substances Bureau. Toxic chemical substances. 2020; Available from: https://www.tcsb.gov.tw/cp-182-2398-96d9c-2.html. Accessed 16 June 2021. 15. Christensen, K.Y., Raymond, M., Blackowicz, M., Liu, Y., Thompson, B.A., Anderson, H.A., et al., Perfluoroalkyl substances and fish consumption. Environmental Research, 2017. 154: p. 145-151. 16. Gebbink, W.A. and Van Leeuwen, S.P.J., Environmental contamination and human exposure to PFASs near a fluorochemical production plant: Review of historic and current PFOA and GenX contamination in the Netherlands. Environment International, 2020. 137: p. 105583. 17. Olsen, G.W., Burris, J.M., Ehresman, D.J., Froehlich, J.W., Seacat, A.M., Butenhoff, J.L., et al., Half-life of serum elimination of perfluorooctanesulfonate,perfluorohexanesulfonate, and perfluorooctanoate in retired fluorochemical production workers. Environmental Health Perspectives, 2007. 115(9): p. 1298-1305. 18. Bartell, S.M., Calafat, A.M., Lyu, C., Kato, K., Ryan, P.B., and Steenland, K., Rate of decline in serum PFOA concentrations after granular activated carbon filtration at two public water systems in Ohio and West Virginia. Environmental Health Perspectives, 2010. 118(2): p. 222-228. 19. Xu, Y., Fletcher, T., Pineda, D., Lindh Christian, H., Nilsson, C., Glynn, A., et al., Serum half-lives for short- and long-chain perfluoroalkyl acids after ceasing exposure from drinking water contaminated by firefighting foam. Environmental Health Perspectives, 2020. 128(7): p. 077004. 20. The United States Environmental Protection Agency. GenX chemicals studies. 2021 February; Available from: https://www.epa.gov/pfas/genx-chemicals-studies. Accessed 16 June 2021. 21. European Chemicals Agency. Candidate List of substances of very high concern for Authorisation. 2019 July; Available from: https://echa.europa.eu/candidate-list-table/-/dislist/details/0b0236e1833efc3e. Accessed 16 June 2021. 22. Gao, D., Li, Z., Wang, H., and Liang, H., An overview of phthalate acid ester pollution in China over the last decade: Environmental occurrence and human exposure. Science of The Total Environment, 2018. 645: p. 1400-1409. 23. Fréry, N., Santonen, T., Porras, S.P., Fucic, A., Leso, V., Bousoumah, R., et al., Biomonitoring of occupational exposure to phthalates: A systematic review. International Journal of Hygiene and Environmental Health, 2020. 229: p. 113548. 24. PlasticsEurope. Plastics – the Facts 2020. An analysis of European latest plastics production, demand and waste data. 2020; Available from: https://www.plasticseurope.org/en/resources/market-data. Accessed 10 September 2021. 25. Mathew, L., Snyder, N.W., Lyall, K., Lee, B.K., Mcclure, L.A., Elliott, A.J., et al., Prenatal phthalate exposure measurement: A comparison of metabolites quantified in prenatal maternal urine and newborn's meconium. Science of The Total Environment, 2021. 796: p. 148898. 26. Centers for Disease Control and Prevention. NHANES 2015-2016 laboratory data. 2018 October; Available from: https://wwwn.cdc.gov/nchs/nhanes/search/datapage.aspx?Component=Laboratory CycleBeginYear=2015. Accessed 17 June 2021. 27. Zhong, Q., Liu, H.-L., Fu, H., Niu, Q.-S., Wu, H.-B., and Huang, F., Prenatal exposure to phthalates with preterm birth and gestational age: A systematic review and meta-analysis. Chemosphere, 2021. 282: p. 130991. 28. Nidens, N., Vogel, M., Körner, A., and Kiess, W., Prenatal exposure to phthalate esters and its impact on child development. Best Practice Research Clinical Endocrinology Metabolism, 2020: p. 101478. 29. Radke, E.G., Glenn, B.S., Braun, J.M., and Cooper, G.S., Phthalate exposure and female reproductive and developmental outcomes: a systematic review of the human epidemiological evidence. Environment International, 2019. 130: p. 104580. 30. Swan, S.H., Sathyanarayana, S., Barrett, E.S., Janssen, S., Liu, F., Nguyen, R.H.N., et al., First trimester phthalate exposure and anogenital distance in newborns. Human Reproduction, 2015. 30(4): p. 963-972. 31. Johns, L.E., Cooper, G.S., Galizia, A., and Meeker, J.D., Exposure assessment issues in epidemiology studies of phthalates. Environment International, 2015. 85: p. 27-39. 32. The United States Consumer Product Safety Commission. Consumer Product Safety Improvement Act of 2008, phthalates rule (16 CFR part 1307). 2017 October; Available from: https://www.cpsc.gov/Business--Manufacturing/Business-Education/Business-Guidance/Phthalates-Information. Accessed 17 June 2021. 33. Bastiaensen, M., Gys, C., Colles, A., Malarvannan, G., Verheyen, V., Koppen, G., et al., Biomarkers of phthalates and alternative plasticizers in the Flemish Environment and Health Study (FLEHS IV): Time trends and exposure assessment. Environmental Pollution, 2021. 276: p. 116724. 34. Correia-Sá, L., Schütze, A., Norberto, S., Calhau, C., Domingues, V.F., and Koch, H.M., Exposure of Portuguese children to the novel non-phthalate plasticizer di-(iso-nonyl)-cyclohexane-1,2-dicarboxylate (DINCH). Environment International, 2017. 102: p. 79-86. 35. Kasper-Sonnenberg, M., Koch, H.M., Apel, P., Rüther, M., Pälmke, C., Brüning, T., et al., Time trend of exposure to the phthalate plasticizer substitute DINCH in Germany from 1999 to 2017: Biomonitoring data on young adults from the Environmental Specimen Bank (ESB). International Journal of Hygiene and Environmental Health, 2019. 222(8): p. 1084-1092. 36. Lessmann, F., Correia-Sá, L., Calhau, C., Domingues, V.F., Weiss, T., Brüning, T., et al., Exposure to the plasticizer di(2-ethylhexyl) terephthalate (DEHTP) in Portuguese children - Urinary metabolite levels and estimated daily intakes. Environment International, 2017. 104: p. 25-32. 37. Lessmann, F., Kolossa-Gehring, M., Apel, P., Rüther, M., Pälmke, C., Harth, V., et al., German Environmental Specimen Bank: 24-hour urine samples from 1999 to 2017 reveal rapid increase in exposure to the para-phthalate plasticizer di(2-ethylhexyl) terephthalate (DEHTP). Environment International, 2019. 132: p. 105102. 38. Nehring, A., Bury, D., Kling, H.-W., Weiss, T., Brüning, T., and Koch, H.M., Determination of human urinary metabolites of the plasticizer di(2-ethylhexyl) adipate (DEHA) by online-SPE-HPLC-MS/MS. Journal of Chromatography B, 2019. 1124: p. 239-246. 39. Nehring, A., Bury, D., Ringbeck, B., Kling, H.-W., Otter, R., Weiss, T., et al., Metabolism and urinary excretion kinetics of di(2-ethylhexyl) adipate (DEHA) in four human volunteers after a single oral dose. Toxicology Letters, 2020. 321: p. 95-102. 40. Catenza, C.J., Farooq, A., Shubear, N.S., and Donkor, K.K., A targeted review on fate, occurrence, risk and health implications of bisphenol analogues. Chemosphere, 2021. 268: p. 129273. 41. Freire, C., Molina-Molina, J.-M., Iribarne-Durán, L.M., Jiménez-Díaz, I., Vela-Soria, F., Mustieles, V., et al., Concentrations of bisphenol A and parabens in socks for infants and young children in Spain and their hormone-like activities. Environment International, 2019. 127: p. 592-600. 42. Lestido-Cardama, A., Sendón, R., Bustos, J., Santillana, M.I., Paseiro Losada, P., and Rodríguez Bernaldo De Quirós, A., Multi-analyte method for the quantification of bisphenol related compounds in canned food samples and exposure assessment of the Spanish adult population. Food Packaging and Shelf Life, 2021. 28: p. 100671. 43. Goldinger, D.M., Demierre, A.-L., Zoller, O., Rupp, H., Reinhard, H., Magnin, R., et al., Endocrine activity of alternatives to BPA found in thermal paper in Switzerland. Regulatory Toxicology and Pharmacology, 2015. 71(3): p. 453-462. 44. Zhang, H., Quan, Q., Zhang, M., Zhang, N., Zhang, W., Zhan, M., et al., Occurrence of bisphenol A and its alternatives in paired urine and indoor dust from Chinese university students: Implications for human exposure. Chemosphere, 2020. 247: p. 125987. 45. Corrales, J., Kristofco, L.A., Steele, W.B., Yates, B.S., Breed, C.S., Williams, E.S., et al., Global assessment of bisphenol A in the environment: Review and analysis of its occurrence and bioaccumulation. Dose-response : a publication of International Hormesis Society, 2015. 13(3): p. 1559325815598308-1559325815598308. 46. Li, C., Zhao, Y., Chen, Y., Wang, F., Tse, L.A., Wu, X., et al., The internal exposure of bisphenol analogues in South China adults and the associated health risks. Science of The Total Environment, 2021: p. 148796. 47. Tschersich, C., Murawski, A., Schwedler, G., Rucic, E., Moos, R.K., Kasper-Sonnenberg, M., et al., Bisphenol A and six other environmental phenols in urine of children and adolescents in Germany – human biomonitoring results of the German Environmental Survey 2014–2017 (GerES V). Science of The Total Environment, 2021. 763: p. 144615. 48. Acconcia, F., Pallottini, V., and Marino, M., Molecular mechanisms of action of BPA. Dose-response : a publication of International Hormesis Society, 2015. 13(4): p. 1559325815610582-1559325815610582. 49. Wang, Y. and Wang, H.-S., Bisphenol A affects the pulse rate of Lumbriculus variegatus via an estrogenic mechanism. Comparative Biochemistry and Physiology Part C: Toxicology Pharmacology, 2021. 248: p. 109105. 50. Brehm, E. and Flaws, J.A., Transgenerational effects of endocrine-disrupting chemicals on male and female reproduction. Endocrinology, 2019. 160(6): p. 1421-1435. 51. Mustieles, V., Pérez-Lobato, R., Olea, N., and Fernández, M.F., Bisphenol A: Human exposure and neurobehavior. Neurotoxicology, 2015. 49: p. 174-84. 52. Nesan, D., Sewell, L.C., and Kurrasch, D.M., Opening the black box of endocrine disruption of brain development: Lessons from the characterization of Bisphenol A. Hormones Behavior, 2018. 101: p. 50-58. 53. Chevrier, J., Gunier, R.B., Bradman, A., Holland, N.T., Calafat, A.M., Eskenazi, B., et al., Maternal urinary bisphenol A during pregnancy and maternal and neonatal thyroid function in the CHAMACOS study. Environmental Health Perspectives, 2013. 121(1): p. 138-144. 54. European Chemicals Agency. Candidate List of substances of very high concern for Authorisation. 2017 January; Available from: https://echa.europa.eu/candidate-list-table/-/dislist/details/0b0236e180e22414. Accessed 19 June 2021. 55. The European Union. Commission Regulation (EU) 2018/213 of 12 February 2018 on the use of bisphenol A in varnishes and coatings intended to come into contact with food and amending Regulation (EU) No 10/2011 as regards the use of that substance in plastic food contact materials (Text with EEA relevance. ). 2018; Available from: http://data.europa.eu/eli/reg/2018/213/oj. Accessed 19 June 2021. 56. Usman, A. and Ahmad, M., From BPA to its analogues: Is it a safe journey? Chemosphere, 2016. 158: p. 131-142. 57. Russo, G., Capuozzo, A., Barbato, F., Irace, C., Santamaria, R., and Grumetto, L., Cytotoxicity of seven bisphenol analogues compared to bisphenol A and relationships with membrane affinity data. Chemosphere, 2018. 201: p. 432-440. 58. Liu, M., Jia, S., Dong, T., Han, Y., Xue, J., Wanjaya, E.R., et al., The occurrence of bisphenol plasticizers in paired dust and urine samples and its association with oxidative stress. Chemosphere, 2019. 216: p. 472-478. 59. Mustieles, V., D'cruz, S.C., Couderq, S., Rodríguez-Carrillo, A., Fini, J.-B., Hofer, T., et al., Bisphenol A and its analogues: A comprehensive review to identify and prioritize effect biomarkers for human biomonitoring. Environment International, 2020. 144: p. 105811. 60. Wei, F., Mortimer, M., Cheng, H., Sang, N., and Guo, L.-H., Parabens as chemicals of emerging concern in the environment and humans: A review. Science of The Total Environment, 2021. 778: p. 146150. 61. Torfs, E. and Brackman, G., A perspective on the safety of parabens as preservatives in wound care products. International Wound Journal, 2021. 18(2): p. 221-232. 62. Soni, M.G., Carabin, I.G., and Burdock, G.A., Safety assessment of esters of p-hydroxybenzoic acid (parabens). Food and Chemical Toxicology, 2005. 43(7): p. 985-1015. 63. Andersen, F.A., Final Amended Report on the Safety Assessment of Methylparaben, Ethylparaben, Propylparaben, Isopropylparaben, Butylparaben, Isobutylparaben, and Benzylparaben as used in Cosmetic Products. International Journal of Toxicology, 2008. 27(4_suppl): p. 1-82. 64. Nowak, K., Ratajczak–Wrona, W., Górska, M., and Jabłońska, E., Parabens and their effects on the endocrine system. Molecular and Cellular Endocrinology, 2018. 474: p. 238-251. 65. The United States Environmental Protection Agency. 2016 CDR data in Chemview. 2020 May; Available from: https://chemview.epa.gov/chemview#. Accessed 25 October 2021. 66. Hong, S., Jeon, H.L., Lee, J., Kim, S., Lee, C., Lee, S., et al., Urinary parabens and their potential sources of exposure among Korean children and adolescents: Korean National Environmental Health Survey 2015–2017. International Journal of Hygiene and Environmental Health, 2021. 236: p. 113781. 67. Tkalec, Ž., Kosjek, T., Snoj Tratnik, J., Stajnko, A., Runkel, A.A., Sykiotou, M., et al., Exposure of Slovenian children and adolescents to bisphenols, parabens and triclosan: Urinary levels, exposure patterns, determinants of exposure and susceptibility. Environment International, 2021. 146: p. 106172. 68. Moos, R.K., Angerer, J., Dierkes, G., Brüning, T., and Koch, H.M., Metabolism and elimination of methyl, iso- and n-butyl paraben in human urine after single oral dosage. Archives of Toxicology, 2016. 90(11): p. 2699-2709. 69. Karwacka, A., Zamkowska, D., Radwan, M., and Jurewicz, J., Exposure to modern, widespread environmental endocrine disrupting chemicals and their effect on the reproductive potential of women: an overview of current epidemiological evidence. Human Fertility, 2019. 22(1): p. 2-25. 70. Khanna, S., Dash, P.R., and Darbre, P.D., Exposure to parabens at the concentration of maximal proliferative response increases migratory and invasive activity of human breast cancer cells in vitro. Journal of Applied Toxicology, 2014. 34(9): p. 1051-1059. 71. The European Commission. Commission Regulation (EU) No 1004/2014 of 18 September 2014 amending Annex V to Regulation (EC) No 1223/2009 of the European Parliament and of the Council on cosmetic products Text with EEA relevance. 2014 Sep; Available from: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32014R1004. Accessed 20 June 2021. 72. Yu, C.H., Riker, C.D., Lu, S.-E., and Fan, Z., Biomonitoring of emerging contaminants, perfluoroalkyl and polyfluoroalkyl substances (PFAS), in New Jersey adults in 2016–2018. International Journal of Hygiene and Environmental Health, 2020. 223(1): p. 34-44. 73. The United States Department of Health and Human Services Food and Drug Administration. Bioanalytical Method Validation 2018; Available from: https://www.fda.gov/files/drugs/published/Bioanalytical-Method-Validation-Guidance-for-Industry.pdf. Accessed 22 June 2021. 74. The European Commission. 2002/657/EC: Commission Decision of 12 August 2002 implementing Council Directive 96/23/EC concerning the performance of analytical methods and the interpretation of results. 2002; Available from: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32002D0657. Accessed 22 June 2021. 75. The European Commission. Analytical quality control and method validation procedures for pesticide residues analysis in food and feed. 2006; Available from: https://www.eurl-pesticides.eu//docs/public/tmplt_article.asp?CntID=727 LabID=100 Lang=EN. Accessed 22 June 2021. 76. Chen, C.C., Wang, Y.H., Wang, S.L., Huang, P.C., Chuang, S.C., Chen, M.H., et al., Exposure sources and their relative contributions to urinary phthalate metabolites among children in Taiwan. International Journal of Hygiene and Environmental Health, 2017. 220(5): p. 869-879. 77. Hsia, J.-M., Quantitation of environmental pollutants in urine and serum using ultra–performance liquid chromatography/tandem mass spectrometry, in National Taiwan University, Institute of Environmental and Occupational Health Sciences College of Public Health, Master Thesis. 2019, National Taiwan University. p. 1-83. 78. Houtz, E.F., Sutton, R., Park, J.-S., and Sedlak, M., Poly- and perfluoroalkyl substances in wastewater: Significance of unknown precursors, manufacturing shifts, and likely AFFF impacts. Water Research, 2016. 95: p. 142-149. 79. Kabadi, S.V., Fisher, J., Aungst, J., and Rice, P., Internal exposure-based pharmacokinetic evaluation of potential for biopersistence of 6:2 fluorotelomer alcohol (FTOH) and its metabolites. Food and Chemical Toxicology, 2018. 112: p. 375-382. 80. Chen, D., Zhao, Y., Xu, W., Pan, Y., Wei, Q., and Xie, S., Biotransformation and tissue bioaccumulation of 8:2 fluorotelomer alcohol in broiler by oral exposure. Environmental Pollution, 2020. 267: p. 115611. 81. Kato, K., Kalathil, A.A., Patel, A.M., Ye, X., and Calafat, A.M., Per- and polyfluoroalkyl substances and fluorinated alternatives in urine and serum by on-line solid phase extraction–liquid chromatography–tandem mass spectrometry. Chemosphere, 2018. 209: p. 338-345. 82. Bastiaensen, M., Malarvannan, G., Gys, C., Ait Bamai, Y., Araki, A., and Covaci, A., Between- and within-individual variability of urinary phthalate and alternative plasticizer metabolites in spot, morning void and 24-h pooled urine samples. Environmental Research, 2020. 191: p. 110248. 83. Husøy, T., Andreassen, M., Hjertholm, H., Carlsen, M.H., Norberg, N., Sprong, C., et al., The Norwegian biomonitoring study from the EU project EuroMix: Levels of phenols and phthalates in 24-hour urine samples and exposure sources from food and personal care products. Environment International, 2019. 132: p. 105103. 84. Hines, E.P., Mendola, P., Von Ehrenstein, O.S., Ye, X., Calafat, A.M., and Fenton, S.E., Concentrations of environmental phenols and parabens in milk, urine and serum of lactating North Carolina women. Reproductive Toxicology, 2015. 54: p. 120-128. 85. Lehmler, H.-J., Liu, B., Gadogbe, M., and Bao, W., Exposure to Bisphenol A, Bisphenol F, and Bisphenol S in U.S. Adults and Children: The National Health and Nutrition Examination Survey 2013–2014. ACS Omega, 2018. 3(6): p. 6523-6532. 86. Murawski, A., Tschersich, C., Rucic, E., Schwedler, G., Moos, R.K., Kasper-Sonnenberg, M., et al., Parabens in urine of children and adolescents in Germany – human biomonitoring results of the german environmental survey 2014–2017 (GerES V). Environmental Research, 2021. 194: p. 110502. 87. Vorst, K.L., Saab, N., Silva, P., Curtzwiler, G., and Steketee, A., Risk assessment of per- and polyfluoroalkyl substances (PFAS) in food: Symposium proceedings. Trends in Food Science Technology, 2021. 116: p. 1203-1211. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82086 | - |
| dc.description.abstract | "內分泌干擾物質是一群會影響人體內分泌系統正常運作的化合物。全氟烷基化合物(perfluoroalkyl substances, PFASs)、鄰苯二甲酸酯類(phthalate esters, PAEs)、羥基苯甲酸酯防腐劑類(parabens)、雙酚A及其替代物(BPs)這四群化合物,被廣泛運用在日常用品或食品包裝之中的內分泌干擾物質。人體暴露到這四類化合物的途徑主要來自飲食,其次為皮膚接觸或是呼吸到附著化合物的灰塵顆粒。本研究中使用血清以及尿液樣本,建立以生物偵測方法檢測體內總濃度;血清能夠反映化合物在體內總量之平衡濃度,尿液能顯示暴露後短時間代謝之化合物情況,兩者一起評估人體所有暴露來源之目標化合物累積濃度。生物偵測技術為建立人體全面暴露的方法,能夠得知可能的內在濃度,使評估暴露與健康效應之間的關係更加清楚。 本研究中血清以及尿液樣本來源為國立臺灣大學醫學院附設醫院兒童醫院,於2018年針對7至11歲世代追蹤孩童以及其兄弟姊妹取樣。本研究中共有303位研究個案,並收取265份血清樣本以及298份尿液樣本做定量分析。 本研究定量化合物為:17種全氟烷基化合物、8種鄰苯二甲酸酯類代謝物、4種羥基苯甲酸酯防腐劑類、雙酚A以及5種替代物。使用Waters I-Class極致液相層析(ultra-performance liquid chromatography, UPLC)搭配Waters Xevo TQ-XS串聯式質譜儀,以UniSpray游離源定量分析。14種全氟烷基化合物、8種鄰苯二甲酸酯類代謝物、4種羥基苯甲酸酯防腐劑類、雙酚S和雙酚AF使用Waters CORTECS (30 × 2.1 mm, 1.6 μm)層析液相管柱,有機動相為甲醇,水性動相為0.1%醋酸水溶液(pH 3.26),梯度流析流速0.4 mL/min,管柱溫度為40°C,層析時間連同管柱再平衡總需10.3分鐘;剩餘3種全氟烷基化合物、雙酚A、雙酚F、雙酚B、雙酚A二環氧甘油醚二水合物等7種化合物,使用Waters BEH C18(50 × 2.1 mm, 1.7 μm)層析液相管柱,有機相仍為甲醇,水性動相為10 mM N-甲基嗎啡林水溶液(pH 9.65),梯度流析流速0.4 mL/min,管柱溫度為55°C,層析時間連同管柱再平衡總需10.3分鐘。質譜儀端使用多重反應偵測模式(multiple reaction monitoring, MRM),定量分析以內部標準品校正之標準品回歸線線性範圍在0.5–500 ng/mL,判定係數R2有0.995以上,儀器偵測極限為0.1–1126 fg,儀器定量極限為0.3–8071 fg,顯示有良好靈敏度。在半定量分析中,使用即時直接進樣游離源(direct analysis in real time, DART)搭配Waters Xevo TQ-XS串聯式質譜儀,優化參數包含游離源到MS端入口的距離為3.7 cm,柵電壓400 V,游離源溫度400°C,每次分析皆以同一樣本三重複,並計算其平均值,以校正訊號變動幅度大的問題,每次分析三重複樣本時間為3.35分鐘。 本研究使用的血清及尿液前處理方法皆為實驗室先前開發之方法加以改良。100 μL血清加入含1%甲酸之乙腈(acetonitrile),經過Ostro 96孔盤萃取後加入20 μL二甲基亞砜(dimethyl sulfoxide),再經濃縮與甲醇回溶步驟得以上機;150 μL尿液經過β-glucuronidase以及arylsulfatase混合酵素於37℃培養40分鐘,再加入乙腈沉澱蛋白質後,經過Sirocco 96孔盤過濾後加入20 μL二甲基亞砜,再經濃縮與甲醇回溶步驟得以上機。方法確效部分,血清基質效應為68–136%,萃取效率為50–134%;尿液基質效應為45–134%,萃取效率為59–143%。同日和異日之準確度在80–120%,相對偏差大部分皆在20%以內。血清方法偵測極限範圍與定量極限範圍分別為0.5–521 pg/mL與2.1–844 pg/mL (不包含8:2 diPAP 1480 pg/mL以及MEP 1709 pg/mL);尿液方法偵測極限範圍及定量極限範圍為1.6–344 pg/mL與20.4–926 pg/mL(不包含6:2 PAP 1479 pg/mL以及8:2 PAP 1506 pg/mL)。 定量結果顯示血清中各化合物檢測率大於80%,除PFHxA (19.2%)、PFDoDA (76.2%)、6:2 PAP (71.7%)、8:2 PAP (63.4%、6:2 diPAP (65.7%)、OH-MINCH (0.75%), BPAF (45.7%)、BPB (42.6%)以及BADGE-2H2O (63%)。尿液中各化合物陽性率高於90%,除了PFBA (85.6%)、PFDoDA (59.4%)、PFHxS (81.9%)、6:2 diPAP (80.9%)、8:2 diPAP (40.9%)、OH-MINCH (48.7%)、BPAF (59.4%) 以及BPB (61.7%)。短碳鏈全氟烷基化合物(PFBA、PFPeA、PFBS、PFHxS)在尿液中相較其他全氟烷基化合物有較高的幾何平均濃度(1.24–13.2 μg/g-cr)。PFOA、PFNA、PFHxS以及PFOS在血中相較其他全氟烷基化合物有較高的幾何平均濃度(1.97–4.63 ng/mL)。將四大類內分泌干擾物質各自做血中相關性統計與尿中相關性統計,發現同一類化合物間有著低度至中度正相關存在,表示這群受試者有共同暴露這些化合物的可能性。在同一化合物在血與在尿的濃度相關性中,PAE代謝物與paraben有著顯著的低度正相關,可能表示尿為這兩大類內分泌干擾物質代謝途徑。使用問卷與化合物濃度做單變項分析,結果發現外出使用塑膠餐具、海水魚、牡蠣以及海帶與PFASs有著正相關,包裝飲料和PFASs有負相關;使用乳液、外出使用塑膠餐具與PAE代謝物有正相關,牡蠣和PAE代謝物有負相關;外出使用塑膠餐具、包裝飲料、牡蠣和海帶與BPs有正相關;使用乳液、外出使用塑膠餐具和海帶與parabens有正相關。本研究定量孩童血中與尿中各類化合物濃度結果以及相關性分析,並與問卷內容作單變相分析找出可能的相關暴露來源,提供未來對內分泌干擾物質管控之優先項目,以降低孩童暴露風險。" | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-25T05:35:34Z (GMT). No. of bitstreams: 1 U0001-2610202114302500.pdf: 9771131 bytes, checksum: 3c906d243f3abd98fe02f323e3d724ea (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | "致謝 i 中文摘要 ii Abstract v Contents viii List of figures xi List of tables xiv Chapter 1. Introduction 1 1.1 Perfluoroalkyl substances (PFASs) 1 1.2 Phthalate esters (PAEs) metabolites 4 1.3 Bisphenol A and Analogs (BPs) 6 1.4 Parabens 8 1.5 Objectives 10 Chapter 2. Methods 12 2.1 Reagents and materials 12 2.2 Sample collection and storage 17 2.3 Sample preparation 18 2.3.1 Serum sample preparation 18 2.3.2 Urine sample preparation 19 2.4 Instrumental analysis 20 2.4.1 Mass spectrometric conditions 21 2.4.2 UPLC conditions 22 2.4.3 DART conditions 23 2.5 Method validation 24 2.5.1 Matrix effect and extraction efficiency 24 2.5.2 Inter-day and intra-day accuracy and precision 25 2.6 Identification, quantitation and data analysis 26 2.7 Quality assurance and quality control 27 2.8 Statistical analysis 28 Chapter 3. Results and Discussion 30 3.1 Direct analysis in real time 30 3.1.1 Optimization of DART parameters 30 3.1.2 LOD and LOQ of DART 31 3.2 Chromatography 34 3.3 Sample preparation 35 3.3.1 Adjustment of sample preparation steps 35 3.3.2 The conditions of specific chemicals 41 3.4 Identification and quantification 43 3.4.1 IDLs, IQLs and range of calibration curves 43 3.4.2 LODs and LOQs 43 3.5 Method validation 46 3.5.1 Matrix effect and extraction efficiency 46 3.5.2 Inter-day and intra-day accuracy and precision 48 3.6 Analysis of real samples 48 Chapter 4. Conclusions 56 Reference 59 Figures 68 Tables 105 Supplements 133 " | |
| dc.language.iso | en | |
| dc.subject | UniSpray游離源 | zh_TW |
| dc.subject | 極致液相層析/串聯式質譜術 | zh_TW |
| dc.subject | 即時直接進樣游離源 | zh_TW |
| dc.subject | 尿液 | zh_TW |
| dc.subject | 血清 | zh_TW |
| dc.subject | 內分泌干擾素 | zh_TW |
| dc.subject | DART | en |
| dc.subject | endocrine disrupting chemicals | en |
| dc.subject | serum | en |
| dc.subject | urine | en |
| dc.subject | UniSpray ionization | en |
| dc.subject | ultra-performance liquid chromatograph/tandem mass spectrometer | en |
| dc.title | 以即時直接分析質譜術與極致液相層析/串聯式質譜術定量血清及尿液中環境荷爾蒙 | zh_TW |
| dc.title | Determination of endocrine disruptors in serum and urine with direct analysis in real time/tandem mass spectrometry and ultra-performance liquid chromatography/ tandem mass spectrometry | en |
| dc.date.schoolyear | 109-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳保中 教授(Hsin-Tsai Liu),陳鑫昌 助理教授(Chih-Yang Tseng),陳美惠 醫師 | |
| dc.subject.keyword | 極致液相層析/串聯式質譜術,UniSpray游離源,即時直接進樣游離源,尿液,血清,內分泌干擾素, | zh_TW |
| dc.subject.keyword | ultra-performance liquid chromatograph/tandem mass spectrometer,UniSpray ionization,DART,urine,serum,endocrine disrupting chemicals, | en |
| dc.relation.page | 208 | |
| dc.identifier.doi | 10.6342/NTU202104231 | |
| dc.rights.note | 同意授權(限校園內公開) | |
| dc.date.accepted | 2021-10-26 | |
| dc.contributor.author-college | 公共衛生學院 | zh_TW |
| dc.contributor.author-dept | 環境與職業健康科學研究所 | zh_TW |
| dc.date.embargo-lift | 2023-10-26 | - |
| 顯示於系所單位: | 環境與職業健康科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2610202114302500.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 9.54 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
