Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物科技研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82080
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor劉嚞睿(Je-Ruei Liu)
dc.contributor.authorShu-Jie Lien
dc.contributor.author李淑婕zh_TW
dc.date.accessioned2022-11-25T05:35:26Z-
dc.date.available2023-09-01
dc.date.copyright2022-01-03
dc.date.issued2021
dc.date.submitted2021-09-07
dc.identifier.citation易秉蓉。2010。以地衣芽胞桿菌去除黴菌毒素之研究。國立臺灣大學動物科學技術學系碩士論文。 李恩。2014。具黴菌毒素分解能力之芽胞桿菌的鑑定與特性分析。國立臺灣大學食品科技研究所碩士論文。 黃晨瑀。2018。中草藥及其芽胞桿菌發酵產物之抗氧化和抗衰老功效。國立臺灣大學動物科學技術學系碩士論文。 Adams, P. D. (2009). Healing and hurting: molecular mechanisms, functions, and pathologies of cellular senescence. Molecular Cell, 36(1), 2-14. Agersø, Y., Stuer-Lauridsen, B., Bjerre, K., Jensen, M. G., Johansen, E., Bennedsen, M., Brockmann, E., Nielsen, B. (2018). Antimicrobial susceptibility testing and tentative epidemiological cutoff values for five Bacillus species relevant for use as animal feed additives or for plant protection. Applied and Environmental Microbiology, 84(19), e01108-01118. Angelis, I. D., Turco, L. (2011). Caco‐2 cells as a model for intestinal absorption. Current Protocols in Toxicology, 47(1), 20.26. 21-20.26. 15. Ashraf, H., Iqbal, J., Qadeer, M. (2003). Production of alpha amylase by Bacillus licheniformis using an economical medium. Bioresource Technology, 87(1), 57-61. Bai, K., Feng, C., Jiang, L., Zhang, L., Zhang, J., Zhang, L., Wang, T. (2018). Dietary effects of Bacillus subtilis fmbj on growth performance, small intestinal morphology, and its antioxidant capacity of broilers. Poultry Science, 97(7), 2312-2321. Begley, M., Gahan, C. G., Hill, C. (2005). The interaction between bacteria and bile. FEMS Microbiology Reviews, 29(4), 625-651. Bunz, F., Dutriaux, A., Lengauer, C., Waldman, T., Zhou, S., Brown, J., Sedivy, J., Kinzler, K. W., Vogelstein, B. (1998). Requirement for p53 and p21 to sustain G2 arrest after DNA damage. Science, 282(5393), 1497-1501. Chainy, G. B. N., Paital, B., Dandapat, J. (2016). An overview of seasonal changes in oxidative stress and antioxidant defence parameters in some invertebrate and vertebrate species. Scientifica, 2016. Chalasani, A. G., Dhanarajan, G., Nema, S., Sen, R., Roy, U. (2015). An antimicrobial metabolite from Bacillus sp.: significant activity against pathogenic bacteria including multidrug-resistant clinical strains. Frontiers in Microbiology, 6, 1335. Chandler, H., Peters, G. (2013). Stressing the cell cycle in senescence and aging. Current Opinion in Cell Biology, 25(6), 765-771. Chandrasekaran, A., Idelchik, M. d. P. S., Melendez, J. A. (2017). Redox control of senescence and age-related disease. Redox Biology, 11, 91-102. Charteris, W., Kelly, P., Morelli, L., Collins, J. (1998). Development and application of an in vitro methodology to determine the transit tolerance of potentially probiotic Lactobacillus and Bifidobacterium species in the upper human gastrointestinal tract. Journal of Applied Microbiology, 84(5), 759-768. Chauvière, G., Coconnier, M.-H., Kerneis, S., Darfeuille-Michaud, A., Joly, B., Servin, A. L. (1992). Competitive exclusion of diarrheagenic Escherichia coli (ETEC) from human enterocyte-like Caco-2 cells by heat-killed Lactobacillus. FEMS Microbiology Letters, 91(3), 213-217. Chen, L., Gu, W., Xu, H.-y., Yang, G.-L., Shan, X.-F., Chen, G., Wang, C.-F., Qian, A.-D. (2018). Complete genome sequence of Bacillus velezensis 157 isolated from Eucommia ulmoides with pathogenic bacteria inhibiting and lignocellulolytic enzymes production by SSF. 3 Biotech, 8(2), 1-10. de Cabo, R., Carmona-Gutierrez, D., Bernier, M., Hall, M. N., Madeo, F. (2014). The search for antiaging interventions: from elixirs to fasting regimens. Cell, 157(7), 1515-1526. De Smet, I., Van Hoorde, L., Vande Woestyne, M., Christiaens, H., Verstraete, W. (1995). Significance of bile salt hydrolytic activities of lactobacilli. Journal of Applied Bacteriology, 79(3), 292-301. Deng, W., Dong, X., Tong, J., Zhang, Q. (2012). The probiotic Bacillus licheniformis ameliorates heat stress-induced impairment of egg production, gut morphology, and intestinal mucosal immunity in laying hens. Poultry Science, 91(3), 575-582. Dikalov, S. (2011). Cross talk between mitochondria and NADPH oxidases. Free Radical Biology and Medicine, 51(7), 1289-1301. Donato, V., Ayala, F. R., Cogliati, S., Bauman, C., Costa, J. G., Lenini, C., Grau, R. (2017). Bacillus subtilis biofilm extends Caenorhabditis elegans longevity through downregulation of the insulin-like signalling pathway. Nature Communications, 8(1), 1-15. Duc, L. H., Hong, H. A., Cutting, S. M. (2003). Germination of the spore in the gastrointestinal tract provides a novel route for heterologous antigen delivery. Vaccine, 21(27-30), 4215-4224. Ehmann, M., Felix, K., Hartmann, D., Schnölzer, M., Nees, M., Vorderwülbecke, S., Bogumil, R., Büchler, M. W., Friess, H. (2007). Identification of potential markers for the detection of pancreatic cancer through comparative serum protein expression profiling. Pancreas, 34(2), 205-214. Elmore, S. (2007). Apoptosis: a review of programmed cell death. Toxicologic Pathology, 35(4), 495-516. Fagerlund, A., Lindbäck, T., Granum, P. E. (2010). Bacillus cereus cytotoxins Hbl, Nhe and CytK are secreted via the Sec translocation pathway. Bmc Microbiology, 10(1), 1-8. Fernández, M. F., Boris, S., Barbes, C. (2003). Probiotic properties of human lactobacilli strains to be used in the gastrointestinal tract. Journal of Applied Microbiology, 94(3), 449-455. Fougère, B., Boulanger, E., Nourhashémi, F., Guyonnet, S., Cesari, M. (2017). RETRACTED: Chronic Inflammation: Accelerator of Biological Aging. The Journals of Gerontology: Series A, 72(9), 1218-1225. Gangadharan, D., Sivaramakrishnan, S., Nampoothiri, K. M., Sukumaran, R. K., Pandey, A. (2008). Response surface methodology for the optimization of alpha amylase production by Bacillus amyloliquefaciens. Bioresource Technology, 99(11), 4597-4602. Geginat, J., Paroni, M., Kastirr, I., Larghi, P., Pagani, M., Abrignani, S. (2016). Reverse plasticity: TGF-β and IL-6 induce Th1-to-Th17-cell transdifferentiation in the gut. European Journal of Immunology, 46(10), 2306-2310. Gemma, C., Vila, J., Bachstetter, A., Bickford, P. C. (2007). Oxidative stress and the aging brain: from theory to prevention. Brain Aging, 353-374. Ghavami, S., Shojaei, S., Yeganeh, B., Ande, S. R., Jangamreddy, J. R., Mehrpour, M., Christoffersson, J., Chaabane, W., Moghadam, A. R., Kashani, H. H. (2014). Autophagy and apoptosis dysfunction in neurodegenerative disorders. Progress in Neurobiology, 112, 24-49. Gorden, J., Small, P. (1993). Acid resistance in enteric bacteria. Infection and Immunity, 61(1), 364-367. Groisillier, A., Lonvaud-Funel, A. (1999). Comparison of partial malolactic enzyme gene sequences for phylogenetic analysis of some lactic acid bacteria species and relationships with the malic enzyme. International Journal of Systematic and Evolutionary Microbiology, 49(4), 1417-1428. Guinebretière, M.-H., Broussolle, V., Nguyen-The, C. (2002). Enterotoxigenic profiles of food-poisoning and food-borne Bacillus cereus strains. Journal of Clinical Microbiology, 40(8), 3053-3056. Harman, D. (1992). Free radical theory of aging. Mutation Research/DNAging, 275(3-6), 257-266. Hazards, K., Kostas, Allende, A., Alvarez‐Ordóñez, A., Bolton, D., Bover‐Cid, S., Chemaly, M., Davies, R., De Cesare, A., Hilbert, F. (2020). Scientific Opinion on the update of the list of QPS‐recommended biological agents intentionally added to food or feed as notified to EFSA (2017–2019). EFSA Journal, 18(2), e05966. Hong, H. A., Huang, J. M., Khaneja, R., Hiep, L., Urdaci, M., Cutting, S. (2008). The safety of Bacillus subtilis and Bacillus indicus as food probiotics. Journal of Applied Microbiology, 105(2), 510-520. Hosono, A. (1999). Bile tolerance, taurocholate deconjugation, and binding of cholesterol by Lactobacillus gasseri strains. Journal of Dairy Science, 82(2), 243-248. Islam, V. H., Babu, N. P., Pandikumar, P., Ignacimuthu, S. (2011). Isolation and characterization of putative probiotic bacterial strain, Bacillus amyloliquefaciens, from North East Himalayan soil based on in vitro and in vivo functional properties. Probiotics and Antimicrobial Proteins, 3(3), 175-185. Isolauri, E., Salminen, S., Ouwehand, A. C. (2004). Probiotics. Best Practice Research Clinical Gastroenterology, 18(2), 299-313. Koutsoumanis, K., Allende, A., Alvarez-Ordónez, A., Bolton, D., Bover-Cid, S., Chemaly, M., Davies, R., De Cesare, A., Hilbert, F., Lindqvist, R. (2021). Updated list of QPS-recommended biological agents for safety risk assessments carried out by EFSA. EFSA Journal. Lee, S.-H., Oh, M., Park, J., Jang, S. Y., Cheong, S. H., Lee, H., Moon, S.-H. (2015). Antioxidant and anti-inflammatory activities of the ethanolic extract of fermented red ginseng marc. Food Science and Biotechnology, 24(2), 651-657. Lei, K., Li, Y., Yu, D., Rajput, I., Li, W. (2013). Influence of dietary inclusion of Bacillus licheniformis on laying performance, egg quality, antioxidant enzyme activities, and intestinal barrier function of laying hens. Poultry Science, 92(9), 2389-2395. Leser, T., Knarreborg, A., Worm, J. (2008). Germination and outgrowth of Bacillus subtilis and Bacillus licheniformis spores in the gastrointestinal tract of pigs. Journal of Applied Microbiology, 104(4), 1025-1033. Liguori, I., Russo, G., Curcio, F., Bulli, G., Aran, L., Della-Morte, D., Gargiulo, G., Testa, G., Cacciatore, F., Bonaduce, D. (2018). Oxidative stress, aging, and diseases. Clinical Interventions in Aging, 13, 757. Lim, H. J., Kim, S. Y., Lee, W. K. (2004). Isolation of cholesterol-lowering lactic acid bacteria from human intestine for probiotic use. Journal of Veterinary Science, 5(4), 391-395. Lindbäck, T., Fagerlund, A., Rødland, M. S., Granum, P. E. (2004). Characterization of the Bacillus cereus Nhe enterotoxin. Microbiology, 150(12), 3959-3967. Markowiak, P., Śliżewska, K. (2018). The role of probiotics, prebiotics and synbiotics in animal nutrition. Gut Pathogens, 10(1), 1-20. Menon, V. P., Sudheer, A. R. (2007). Antioxidant and anti-inflammatory properties of curcumin. The Molecular Targets and Therapeutic Uses of Curcumin in Health and Disease, 105-125. Mercken, E. M., Carboneau, B. A., Krzysik-Walker, S. M., de Cabo, R. (2012). Of mice and men: the benefits of caloric restriction, exercise, and mimetics. Ageing Research Reviews, 11(3), 390-398. Moskalev, A., Zhikrivetskaya, S., Shaposhnikov, M., Dobrovolskaya, E., Gurinovich, R., Kuryan, O., Pashuk, A., Jellen, L. C., Aliper, A., Peregudov, A. (2016). Aging Chart: a community resource for rapid exploratory pathway analysis of age-related processes. Nucleic Acids Research, 44(D1), D894-D899. Nicholson, W. (2002). Roles of Bacillus endospores in the environment. Cellular and Molecular Life Sciences CMLS, 59(3), 410-416. Nicolai, S., Rossi, A., Di Daniele, N., Melino, G., Annicchiarico-Petruzzelli, M., Raschellà, G. (2015). DNA repair and aging: the impact of the p53 family. Aging (Albany NY), 7(12), 1050. Nyanzi, R., Awouafack, M. D., Steenkamp, P., Jooste, P. J., Eloff, J. N. (2014). Anticandidal activity of cell extracts from 13 probiotic Lactobacillus strains and characterisation of lactic acid and a novel fatty acid derivative from one strain. Food Chemistry, 164, 470-475. Palva, I. (1982). Molecular cloning of α-amylase gene from Bacillus amyloliquefaciens and its expression in B. subtilis. Gene, 19(1), 81-87. Pazzi, P., Puviani, A. C., Dalla Libera, M., Guerra, G., Ricci, D., Gullini, S., Ottolenghi, C. (1997). Bile salt-induced cytotoxicity and ursodeoxycholate cytoprotection: in-vitro study in perifused rat hepatocytes. European Journal of Gastroenterology Hepatology, 9(7), 703-709. Prüß, B. M., Dietrich, R., Nibler, B., Märtlbauer, E., Scherer, S. (1999). The hemolytic enterotoxin HBL is broadly distributed among species of the Bacillus cereus group. Applied and Environmental Microbiology, 65(12), 5436-5442. Pu, X., Yu, S., Fan, W., Liu, L., Ma, X., Ren, J. (2015). Guiqi polysaccharide protects the normal human fetal lung fibroblast WI-38 cells from H2O2-induced premature senescence. International Journal of Clinical and Experimental Pathology, 8(5), 4398. Rayess, H., Wang, M. B., Srivatsan, E. S. (2012). Cellular senescence and tumor suppressor gene p16. International journal of cancer, 130(8), 1715-1725. Relph, K. L., Harrington, K. J., Pandha, H. (2005). Adenoviral strategies for the gene therapy of cancer. Seminars in Oncology, 32(6), 573-582. Revu, S., Wu, J., Henkel, M., Rittenhouse, N., Menk, A., Delgoffe, G. M., Poholek, A. C., McGeachy, M. J. (2018). IL-23 and IL-1β drive human Th17 cell differentiation and metabolic reprogramming in absence of CD28 costimulation. Cell Reports, 22(10), 2642-2653. Rufini, A., Tucci, P., Celardo, I., Melino, G. (2013). Senescence and aging: the critical roles of p53. Oncogene, 32(43), 5129-5143. Ruiz-Garcia, C., Bejar, V., Martinez-Checa, F., Llamas, I., Quesada, E. (2005). Bacillus velezensis sp. nov., a surfactant-producing bacterium isolated from the river Velez in Malaga, southern Spain. International Journal of Systematic and Evolutionary Microbiology, 55(1), 191-195. Saha, S. K., Lee, S. B., Won, J., Choi, H. Y., Kim, K., Yang, G.-M., Dayem, A. A., Cho, S.-g. (2017). Correlation between oxidative stress, nutrition, and cancer initiation. International Journal of Molecular Sciences, 18(7), 1544. Sahadeva, R., Leong, S., Chua, K., Tan, C., Chan, H., Tong, E., Wong, S., Chan, H. (2011). Survival of commercial probiotic strains to pH and bile. International Food Research Journal, 18(4). Sánchez, B., Arias, S., Chaignepain, S., Denayrolles, M., Schmitter, J.-M., Bressollier, P., Urdaci, M. C. (2009). Identification of surface proteins involved in the adhesion of a probiotic Bacillus cereus strain to mucin and fibronectin. Microbiology, 155(5), 1708-1716. Sawiphak, S., Wongjiratthiti, A. (2021). Optimisation of Culture Conditions for PLA-food-packaging Degradation by Bacillus sp. SNRUSA4. Pertanika Journal of Science Technology, 29(1). Sharma, P., Tomar, S. K., Goswami, P., Sangwan, V., Singh, R. (2014). Antibiotic resistance among commercially available probiotics. Food Research International, 57, 176-195. Sohal, R. S., Orr, W. C. (2012). The redox stress hypothesis of aging. Free Radical Biology and Medicine, 52(3), 539-555. Sorokulova, I. B., Pinchuk, I. V., Denayrolles, M., Osipova, I. G., Huang, J. M., Cutting, S. M., Urdaci, M. C. (2008). The safety of two Bacillus probiotic strains for human use. Digestive diseases and sciences, 53(4), 954-963. Urdaneta, V., Casadesús, J. (2017). Interactions between bacteria and bile salts in the gastrointestinal and hepatobiliary tracts. Frontiers in Medicine, 4, 163. Wang, C., Liu, Y., Sun, G., Li, X., Liu, Z. (2019). Growth, immune response, antioxidant capability, and disease resistance of juvenile Atlantic salmon (Salmo salar L.) fed Bacillus velezensis V4 and Rhodotorula mucilaginosa compound. Aquaculture, 500, 65-74. Wang, L.-T., Lee, F.-L., Tai, C.-J., Kasai, H. (2007). Comparison of gyrB gene sequences, 16S rRNA gene sequences and DNA–DNA hybridization in the Bacillus subtilis group. International Journal of Systematic and Evolutionary Microbiology, 57(8), 1846-1850. Wang, Y., Wu, Y., Wang, Y., Fu, A., Gong, L., Li, W., Li, Y. (2017). Bacillus amyloliquefaciens SC06 alleviates the oxidative stress of IPEC-1 via modulating Nrf2/Keap1 signaling pathway and decreasing ROS production. Applied Microbiology and Biotechnology, 101(7), 3015-3026. Wang, Y. Q., Wu, Y. Y., Li, L. H., Wang, X. C., Cai, Q. X., Yang, X. Q. (2015). Comparative study of eight strains of lactic acid bacteria in vitro antioxidant activity. Advanced Materials Research, Wei, H., Li, L., Song, Q., Ai, H., Chu, J., Li, W. (2005). Behavioural study of the D-galactose induced aging model in C57BL/6J mice. Behavioural Brain Research, 157(2), 245-251. Williams, C. M., Richter, C., MacKenzie Jr, J., Shih, J. C. (1990). Isolation, identification, and characterization of a feather-degrading bacterium. Applied and Environmental Microbiology, 56(6), 1509-1515. Wu, B., Zhang, T., Guo, L., Lin, J. (2011). Effects of Bacillus subtilis KD1 on broiler intestinal flora. Poultry Science, 90(11), 2493-2499. Yang, Y., Chen, S., Tao, L., Gan, S., Luo, H., Xu, Y., Shen, X. (2019). Inhibitory effects of oxymatrine on transdifferentiation of neonatal rat cardiac fibroblasts to myofibroblasts induced by aldosterone via keap1/nrf2 signaling pathways in vitro. Medical Science Monitor: International Medical Journal of Experimental and Clinical Research, 25, 5375. Ye, M., Tang, X., Yang, R., Zhang, H., Li, F., Tao, F., Li, F., Wang, Z. (2018). Characteristics and application of a novel species of Bacillus: Bacillus velezensis. ACS Chemical Biology, 13(3), 500-505. Yilmaz, M., Soran, H., Beyatli, Y. (2006). Antimicrobial activities of some Bacillus spp. strains isolated from the soil. Microbiological Research, 161(2), 127-131. Zhang, F.-m., Tian, F.-w., Chen, W., ZHAO, J.-x., ZHANG, G.-y. (2007). Screening of antioxidative lactic acid bacteria. China Dairy Industry, 35(2), 4-7.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82080-
dc.description.abstract"近年來,由於科學證據不斷地表明益生菌對人類健康有益,有關益生菌的保健食品已經在商業市場上占據一席之地。益生菌具有免疫調節、抗發炎、抗氧化等功效,且益生菌易被攝取和其經濟價值高。本實驗針對土壤中篩選出的Bacillus sp. AC,進行基本分子與生化特性分析。經鑑定試驗結果顯示,AC屬於Bacillus velezensis。本實驗並探討AC及其産物之抗氧化活性,一方面從清除1,1-diphenyl-2-picrylhydrazyl(DPPH)自由基能力測定和清除氫氧自由基能力測定;另一方面,以人類胚肺成纖維細胞MRC-5建立早期衰老細胞模式,以過氧化氫(H2O2)誘導MRC-5使細胞衰老,並以流式細胞儀分析細胞老化週期,以及將芽孢桿菌及其產物以預處理方式在過氧化氫誘導細胞老化前給予保護作用。結果顯示,Bacillus velezensis AC其清除DPPH自由基能力和清除氫氧自由基能力在特定濃度下有顯著提升。在過氧化氫誘導氧化損傷之前,MRC-5細胞用AC或其細胞成分進行預處理。對MRC-5細胞氧化損傷主要指標為超氧化物歧化酶(superoxide dismutase, SOD)、穀胱甘肽過氧化物酶(glutathione peroxidase, GPx)等抗氧化酶的表達進行分析,結果表明其胞內液(intracellular fraction, ICF)具有較高的抗氧化酶活性。在這項研究中,我們證明 B. velezensis AC 的細胞胞內液具有顯著的自由基清除能力和抗氧化活性。通過細胞模型實驗,我們也證明 B. velezensis AC 可能是益生菌食品補充劑的候選者。綜上所述, B. velezensis AC 具有清除自由基的分子,且富含抗氧化活性,期望未來在動物實驗上能有好的表現並發展爲健康保健食品。"zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-25T05:35:26Z (GMT). No. of bitstreams: 1
U0001-0309202116360500.pdf: 3115852 bytes, checksum: 12c8b09049edf353c2f24ee123e3e40c (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents致謝 i 中文摘要 ii Abstract iii 目錄 iv 第一章、文獻回顧 1 第一節、老化 1 一、 老化之定義 1 二、 老化學說 1 三、 氧化壓力與氧化應激 3 四、 細胞凋亡 4 五、 細胞週期 4 第二節、益生菌 9 一、 益生菌定義及鑑定 9 二、 芽孢桿菌作為益生菌之特性 10 三、 芽孢桿菌種類 12 四、 芽孢桿菌的抗氧化能力 16 第二章、材料與方法 20 第一節、 實驗架構 20 第二節、 實驗藥品與儀器 21 一、 試藥 21 二、 實驗儀器與器材 22 三、 實驗菌株 23 四、 細胞株 23 五、 培養液 24 第三節、芽胞桿菌之基本生理生化特性 25 一、 菌種活化與保存 25 二、 基本特性分析 25 三、 菌株碳源利用能力 25 四、 16S rRNA和gyrB基因定序 26 五、 親緣關係樹的建立 26 六、 生長曲線 27 七、 抗病原菌能力 27 八、 耐膽鹽試驗 28 九、 耐酸試驗 28 十、 抗生素敏感性試驗 28 十一、 芽孢桿菌之胞內萃取物與細胞壁樣品製備 29 十二、 腸道貼附 30 十三、 內毒素測定 31 第四節、Bacillus spp.的胞內液和細胞壁之抗氧化力測定 31 一、 清除DPPH自由基能力測定 31 二、 清除氫氧自由基能力測定 32 第五節、Bacillus spp.及其產物之抗氧化細胞試驗 33 一、 細胞培養 33 二、 過氧化氫誘導細胞早期衰老之測定結果 34 三、 細胞預處理以抗細胞早期衰老 35 四、 SOD活性分析 35 五、 GPx活性分析 36 六、 細胞週期檢測 37 七、 老化相關基因mRNA表現量分析 38 八、 統計分析 39 第三章、結果 46 第一節、Bacillus velezensis AC之基本生理生化特性 46 一、 菌株菌落型態觀察與革蘭氏染色 46 二、 菌株碳源利用性 46 三、 菌株分子鑑定 47 第二節、Bacillus velezensis AC 作為益生菌之潛力 48 一、 病原菌抑制能力評估 48 二、 酸耐受性試驗 48 三、 膽鹽耐受性試驗 49 四、 抗生素敏感性試驗 49 五、 腸道貼附能力評估 50 六、 内毒素测定 50 第三節、Bacillus spp.的胞內液和細胞壁之抗氧化力測定 65 一、 Bacillus spp.之胞內液和細胞壁之清除DPPH自由基能力測定結果 65 二、 Bacillus spp之胞內液和細胞壁之清除氫氧自由基能力測定結果 65 第四節、Bacillus spp. 及其産物之抗氧化及抗老化機制探討 66 一、 過氧化氫誘導細胞早期衰老之測定結果 66 二、 SOD活性分析 66 三、 GPx活性分析 67 四、 細胞週期檢測 67 五、 老化相關基因mRNA表現量分析 68 第四章 討論 86 第一節、菌種鑑定結果 86 第二節、Bacillus velezensis AC 作為益生菌之潛力 87 一、 病原菌抑制能力評估 87 二、 酸耐受性試驗 88 三、 膽鹽耐受性試驗 89 四、 抗生素敏感性試驗 90 五、 腸道貼附能力評估 91 六、 內毒素基因評估 91 第三節、Bacillus spp. 及其産物之抗氧化及抗老化機制探討 92 一、 Bacillus spp.的胞內液和細胞壁抗氧化能力測定結果 92 二、 過氧化氫誘導細胞早期衰老之測定結果 95 三、 SOD活性分析 95 四、 GPx活性分析 95 五、 細胞週期檢測 96 六、 老化相關基因mRNA表現量分析 96 第五章 結論 98 第六章 參考資料 99
dc.language.isozh-TW
dc.subject抗氧化zh_TW
dc.subject芽孢桿菌zh_TW
dc.subject氧化應激zh_TW
dc.subject抗老化zh_TW
dc.subjectoxidative stress.en
dc.subjectanti-senescenceen
dc.subjectantioxidanten
dc.subjectBacillus velezensisen
dc.title貝萊斯芽孢桿菌AC菌株的鑑定及抗氧化能力分析zh_TW
dc.titleIdentification of a Bacillus sp. AC strain and analysis of its antioxidant abilityen
dc.date.schoolyear110-1
dc.description.degree碩士
dc.contributor.oralexamcommittee張慧雯(Hsin-Tsai Liu),謝建元(Chih-Yang Tseng),鄭永祥,劉啟德
dc.subject.keyword芽孢桿菌,抗氧化,抗老化,氧化應激,zh_TW
dc.subject.keywordBacillus velezensis,oxidative stress.,antioxidant,anti-senescence,en
dc.relation.page108
dc.identifier.doi10.6342/NTU202102980
dc.rights.note同意授權(限校園內公開)
dc.date.accepted2021-09-08
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept生物科技研究所zh_TW
dc.date.embargo-lift2023-09-01-
顯示於系所單位:生物科技研究所

文件中的檔案:
檔案 大小格式 
U0001-0309202116360500.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
3.04 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved