請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82078完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳中明(Chung-Ming Chen) | |
| dc.contributor.author | Li-Wei Chen | en |
| dc.contributor.author | 陳力維 | zh_TW |
| dc.date.accessioned | 2022-11-25T05:35:24Z | - |
| dc.date.available | 2026-11-01 | |
| dc.date.copyright | 2022-01-03 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-11-01 | |
| dc.identifier.citation | 1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: a cancer journal for clinicians 2021;71(3):209-249. 2. Matsuda T, Machii R. Morphological distribution of lung cancer from Cancer Incidence in Five Continents Vol. X. Japanese journal of clinical oncology 2015;45(4):404-404. 3. Travis WD, Brambilla E, Noguchi M, Nicholson AG, Geisinger KR, Yatabe Y, Beer DG, Powell CA, Riely GJ, Van Schil PE. International association for the study of lung cancer/american thoracic society/european respiratory society international multidisciplinary classification of lung adenocarcinoma. Journal of thoracic oncology 2011;6(2):244-285. 4. Yoshizawa A, Motoi N, Riely GJ, Sima CS, Gerald WL, Kris MG, Park BJ, Rusch VW, Travis WD. Impact of proposed IASLC/ATS/ERS classification of lung adenocarcinoma: prognostic subgroups and implications for further revision of staging based on analysis of 514 stage I cases. Modern pathology 2011;24(5):653-664. 5. Motoi N, Szoke J, Riely GJ, Seshan VE, Kris MG, Rusch VW, Gerald WL, Travis WD. Lung adenocarcinoma: modification of the 2004 WHO mixed subtype to include the major histologic subtype suggests correlations between papillary and micropapillary adenocarcinoma subtypes, EGFR mutations and gene expression analysis. The American journal of surgical pathology 2008;32(6):810-827. 6. Lee HY, Lee SW, Lee KS, Jeong JY, Choi JY, Kwon OJ, Song SH, Kim EY, Kim J, Shim YM. Role of CT and PET imaging in predicting tumor recurrence and survival in patients with lung adenocarcinoma: a comparison with the International Association for the Study of Lung Cancer/American Thoracic Society/European Respiratory Society classification of lung adenocarcinoma. Journal of Thoracic Oncology 2015;10(12):1785-1794. 7. Zhang J, Wu J, Tan Q, Zhu L, Gao W. Why do pathological stage IA lung adenocarcinomas vary from prognosis?: a clinicopathologic study of 176 patients with pathological stage IA lung adenocarcinoma based on the IASLC/ATS/ERS classification. Journal of Thoracic Oncology 2013;8(9):1196-1202. 8. Nitadori J-i, Bograd AJ, Kadota K, Sima CS, Rizk NP, Morales EA, Rusch VW, Travis WD, Adusumilli PS. Impact of micropapillary histologic subtype in selecting limited resection vs lobectomy for lung adenocarcinoma of 2cm or smaller. Journal of the National Cancer Institute 2013;105(16):1212-1220. 9. Bittar HET, Incharoen P, Althouse AD, Dacic S. Accuracy of the IASLC/ATS/ERS histological subtyping of stage I lung adenocarcinoma on intraoperative frozen sections. Modern Pathology 2015;28(8):1058-1063. 10. Rodriguez EF, Monaco SE, Dacic S. Cytologic subtyping of lung adenocarcinoma by using the proposed International Association for the Study of Lung Cancer/American Thoracic Society/European Respiratory Society (IASLC/ATS/ERS) adenocarcinoma classification. Cancer cytopathology 2013;121(11):629-637. 11. Chu Z-g, Yang Z-g, Shao H, Zhu Z-y, Deng W, Tang S-s, Chen J, Li Y. Small peripheral lung adenocarcinoma: CT and histopathologic characteristics and prognostic implications. Cancer Imaging 2011;11(1):237. 12. Lee SM, Goo JM, Park CM, Hyun-Ju L, Im J-G. A new classification of adenocarcinoma: what the radiologists need to know. Diagnostic and Interventional Radiology 2012;18(6):519. 13. Goo JM, Park CM, Lee HJ. Ground-glass nodules on chest CT as imaging biomarkers in the management of lung adenocarcinoma. American Journal of Roentgenology 2011;196(3):533-543. 14. Suzuki K, Koike T, Asakawa T, Kusumoto M, Asamura H, Nagai K, Tada H, Mitsudomi T, Tsuboi M, Shibata T. A prospective radiological study of thin-section computed tomography to predict pathological noninvasiveness in peripheral clinical IA lung cancer (Japan Clinical Oncology Group 0201). Journal of Thoracic Oncology 2011;6(4):751-756. 15. Lee KH, Goo JM, Park SJ, Wi JY, Chung DH, Go H, Park HS, Park CM, Lee SM. Correlation between the size of the solid component on thin-section CT and the invasive component on pathology in small lung adenocarcinomas manifesting as ground-glass nodules. Journal of Thoracic Oncology 2014;9(1):74-82. 16. Hosny A, Parmar C, Quackenbush J, Schwartz LH, Aerts HJ. Artificial intelligence in radiology. Nature Reviews Cancer 2018;18(8):500-510. 17. Honda T, Kondo T, Murakami S, Saito H, Oshita F, Ito H, Tsuboi M, Nakayama H, Yokose T, Kameda Y. Radiographic and pathological analysis of small lung adenocarcinoma using the new IASLC classification. Clinical Radiology 2013;68(1):e21-e26. 18. Lee SM, Park CM, Goo JM, Lee H-J, Wi JY, Kang CH. Invasive pulmonary adenocarcinomas versus preinvasive lesions appearing as ground-glass nodules: differentiation by using CT features. Radiology 2013;268(1):265-273. 19. Lederlin M, Puderbach M, Muley T, Schnabel PA, Stenzinger A, Kauczor H-U, Heussel CP, Herth FJ, Hoffmann H, Dienemann H. Correlation of radio-and histomorphological pattern of pulmonary adenocarcinoma. European Respiratory Journal 2013;41(4):943-951. 20. Lee H-J, Kim YT, Kang CH, Zhao B, Tan Y, Schwartz LH, Persigehl T, Jeon YK, Chung DH. Epidermal growth factor receptor mutation in lung adenocarcinomas: relationship with CT characteristics and histologic subtypes. Radiology 2013;268(1):254-264. 21. Lee HY, Choi Y-L, Lee KS, Han J, Zo JI, Shim YM, Moon JW. Pure ground-glass opacity neoplastic lung nodules: histopathology, imaging, and management. American Journal of Roentgenology 2014;202(3):W224-W233. 22. Eguchi T, Yoshizawa A, Kawakami S, Kumeda H, Umesaki T, Agatsuma H, Sakaizawa T, Tominaga Y, Toishi M, Hashizume M. Tumor size and computed tomography attenuation of pulmonary pure ground-glass nodules are useful for predicting pathological invasiveness. PLoS One 2014;9(5):e97867. 23. Son JY, Lee HY, Lee KS, Kim J-H, Han J, Jeong JY, Kwon OJ, Shim YM. Quantitative CT analysis of pulmonary ground-glass opacity nodules for the distinction of invasive adenocarcinoma from pre-invasive or minimally invasive adenocarcinoma. PloS one 2014;9(8):e104066. 24. Chae H-D, Park CM, Park SJ, Lee SM, Kim KG, Goo JM. Computerized texture analysis of persistent part-solid ground-glass nodules: differentiation of preinvasive lesions from invasive pulmonary adenocarcinomas. Radiology 2014;273(1):285-293. 25. Ko JP, Suh J, Ibidapo O, Escalon JG, Li J, Pass H, Naidich DP, Crawford B, Tsai EB, Koo CW. Lung adenocarcinoma: correlation of quantitative CT findings with pathologic findings. Radiology 2016;280(3):931-939. 26. Xiang W, Xing Y, Jiang S, Chen G, Mao H, Labh K, Jia X, Sun X. Morphological factors differentiating between early lung adenocarcinomas appearing as pure ground-glass nodules measuring≤ 10 mm on thin-section computed tomography. Cancer Imaging 2014;14(1):1-8. 27. Zhao W, Yang J, Sun Y, Li C, Wu W, Jin L, Yang Z, Ni B, Gao P, Wang P. 3D deep learning from CT scans predicts tumor invasiveness of subcentimeter pulmonary adenocarcinomas. Cancer research 2018;78(24):6881-6889. 28. Wang X, Li Q, Cai J, Wang W, Xu P, Zhang Y, Fang Q, Fu C, Fan L, Xiao Y. Predicting the invasiveness of lung adenocarcinomas appearing as ground-glass nodule on CT scan using multi-task learning and deep radiomics. Translational Lung Cancer Research 2020;9(4):1397. 29. Yanagawa M, Niioka H, Kusumoto M, Awai K, Tsubamoto M, Satoh Y, Miyata T, Yoshida Y, Kikuchi N, Hata A. Diagnostic performance for pulmonary adenocarcinoma on CT: comparison of radiologists with and without three-dimensional convolutional neural network. European Radiology 2021;31(4):1978-1986. 30. Gatta R, Depeursinge A, Ratib O, Michielin O, Leimgruber A. Integrating radiomics into holomics for personalised oncology: from algorithms to bedside. European radiology experimental 2020;4(1):1-9. 31. Thawani R, McLane M, Beig N, Ghose S, Prasanna P, Velcheti V, Madabhushi A. Radiomics and radiogenomics in lung cancer: a review for the clinician. Lung cancer 2018;115:34-41. 32. Lee G, Lee HY, Park H, Schiebler ML, van Beek EJ, Ohno Y, Seo JB, Leung A. Radiomics and its emerging role in lung cancer research, imaging biomarkers and clinical management: state of the art. European journal of radiology 2017;86:297-307. 33. Ravì D, Wong C, Deligianni F, Berthelot M, Andreu-Perez J, Lo B, Yang G-Z. Deep learning for health informatics. IEEE journal of biomedical and health informatics 2016;21(1):4-21. 34. Wu J, Qian T. A survey of pulmonary nodule detection, segmentation and classification in computed tomography with deep learning techniques. J Med Artif Intell 2019;2(8):1-12. 35. Babicz D, Kontár S, Pető M, Fülöp A, Szabó G, Horváth A. Receptive Field Size Optimization with Continuous Time Pooling. 2021 IEEE Winter Conference on Applications of Computer Vision (WACV): IEEE, 2021; p. 1448-1457. 36. Choi E-R, Lee HY, Jeong JY, Choi Y-L, Kim J, Bae J, Lee KS, Shim YM. Quantitative image variables reflect the intratumoral pathologic heterogeneity of lung adenocarcinoma. Oncotarget 2016;7(41):67302. 37. Austin JH, Garg K, Aberle D, Yankelevitz D, Kuriyama K, Lee H-J, Brambilla E, Travis WD. Radiologic implications of the 2011 classification of adenocarcinoma of the lung. Radiology 2013;266(1):62-71. 38. Giti R, Hosseinzadeh M. Efficacy of bronchial washing and brushing cytology in the diagnosis of non-neoplastic lung diseases. Acta Medica Iranica 2017:636-641. 39. Lederle FA, Wilson SE, Johnson GR, Reinke DB, Littooy FN, Acher CW, Messina LM, Ballard DJ, Ansel HJ, Center CSPC. Variability in measurement of abdominal aortic aneurysms. Journal of vascular surgery 1995;21(6):945-952. 40. Oxnard GR, Zhao B, Sima CS, Ginsberg MS, James LP, Lefkowitz RA, Guo P, Kris MG, Schwartz LH, Riely GJ. Variability of lung tumor measurements on repeat computed tomography scans taken within 15 minutes. Journal of Clinical Oncology 2011;29(23):3114. 41. Thiesse P, Ollivier L, Di Stefano-Louineau D, Négrier S, Savary J, Pignard K, Lasset C, Escudier B. Response rate accuracy in oncology trials: reasons for interobserver variability. Groupe Français d'Immunothérapie of the Fédération Nationale des Centres de Lutte Contre le Cancer. Journal of Clinical Oncology 1997;15(12):3507-3514. 42. Wormanns D, Diederich S, Lentschig M, Winter F, Heindel W. Spiral CT of pulmonary nodules: interobserver variation in assessment of lesion size. European radiology 2000;10(5):710-713. 43. Zhao B, Schwartz LH, Moskowitz CS, Wang L, Ginsberg MS, Cooper CA, Jiang L, Kalaigian JP. Pulmonary metastases: effect of CT section thickness on measurement—initial experience. Radiology 2005;234(3):934-939. 44. Song SH, Park H, Lee G, Lee HY, Sohn I, Kim HS, Lee SH, Jeong JY, Kim J, Lee KS. Imaging phenotyping using radiomics to predict micropapillary pattern within lung adenocarcinoma. Journal of Thoracic Oncology 2017;12(4):624-632. 45. Ding H, Xia W, Zhang L, Mao Q, Cao B, Zhao Y, Xu L, Jiang F, Dong G. CT-based deep learning model for invasiveness classification and micropapillary pattern prediction within lung adenocarcinoma. Frontiers in Oncology 2020;10:1186. 46. Huang G, Liu Z, Van Der Maaten L, Weinberger KQ. Densely connected convolutional networks. Proceedings of the IEEE conference on computer vision and pattern recognition2017; p. 4700-4708. 47. Wang X, Zhang L, Yang X, Tang L, Zhao J, Chen G, Li X, Yan S, Li S, Yang Y. Deep learning combined with radiomics may optimize the prediction in differentiating high-grade lung adenocarcinomas in ground glass opacity lesions on CT scans. European journal of radiology 2020;129:109150. 48. Chen L-C, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence 2017;40(4):834-848. 49. Wang C, Shao J, Lv J, Cao Y, Zhu C, Li J, Shen W, Shi L, Liu D, Li W. Deep learning for predicting subtype classification and survival of lung adenocarcinoma on computed tomography. Translational oncology 2021;14(8):101141. 50. Galar M, Fernández A, Barrenechea E, Bustince H, Herrera F. An overview of ensemble methods for binary classifiers in multi-class problems: Experimental study on one-vs-one and one-vs-all schemes. Pattern Recognition 2011;44(8):1761-1776. 51. Hu S, Hoffman EA, Reinhardt JM. Automatic lung segmentation for accurate quantitation of volumetric X-ray CT images. IEEE transactions on medical imaging 2001;20(6):490-498. 52. Zhang Y, Matuszewski BJ, Shark L-K, Moore CJ. Medical image segmentation using new hybrid level-set method. 2008 fifth international conference biomedical visualization: information visualization in medical and biomedical informatics: IEEE, 2008; p. 71-76. 53. Kuhnigk J-M, Dicken V, Bornemann L, Bakai A, Wormanns D, Krass S, Peitgen H-O. Morphological segmentation and partial volume analysis for volumetry of solid pulmonary lesions in thoracic CT scans. IEEE transactions on medical imaging 2006;25(4):417-434. 54. Frangi AF, Niessen WJ, Vincken KL, Viergever MA. Multiscale vessel enhancement filtering. International conference on medical image computing and computer-assisted intervention: Springer, 1998; p. 130-137. 55. Lee HY, Lee KS. Ground-glass opacity nodules: histopathology, imaging evaluation, and clinical implications. Journal of thoracic imaging 2011;26(2):106-118. 56. Yanagawa M, Tanaka Y, Kusumoto M, Watanabe S, Tsuchiya R, Honda O, Sumikawa H, Inoue A, Inoue M, Okumura M. Automated assessment of malignant degree of small peripheral adenocarcinomas using volumetric CT data: correlation with pathologic prognostic factors. Lung Cancer 2010;70(3):286-294. 57. Soh L-K, Tsatsoulis C. Texture analysis of SAR sea ice imagery using gray level co-occurrence matrices. IEEE Transactions on geoscience and remote sensing 1999;37(2):780-795. 58. Clausi DA. An analysis of co-occurrence texture statistics as a function of grey level quantization. Canadian Journal of remote sensing 2002;28(1):45-62. 59. Galloway MM. Texture analysis using grey level run lengths. NASA STI/Recon Technical Report N 1974;75:18555. 60. Chu A, Sehgal CM, Greenleaf JF. Use of gray value distribution of run lengths for texture analysis. Pattern Recognition Letters 1990;11(6):415-419. 61. Dasarathy BV, Holder EB. Image characterizations based on joint gray level—run length distributions. Pattern Recognition Letters 1991;12(8):497-502. 62. Thibault G, FERTIL B, NAVARRO C, PEREIRA S, CAU P, LEVY N, SEQUEIRA J, MARI J-L. Texture Indexes and Gray Level Size Zone Matrix Application to Cell Nuclei Classification. In: 10th International Conference on Pattern Recognition and Information Processing. Minsk, Belarus2009; p. 140–145. 63. Kilday J, Palmieri F, Fox MD. Classifying mammographic lesions using computerized image analysis. IEEE transactions on medical imaging 1993;12(4):664-669. 64. Petrick N, Chan HP, Sahiner B, Helvie MA. Combined adaptive enhancement and region‐growing segmentation of breast masses on digitized mammograms. Medical physics 1999;26(8):1642-1654. 65. Sahiner B, Chan HP, Petrick N, Helvie MA, Hadjiiski LM. Improvement of mammographic mass characterization using spiculation measures and morphological features. Medical physics 2001;28(7):1455-1465. 66. Sladoje N, Nyström I, Saha PK. Measurements of digitized objects with fuzzy borders in 2D and 3D. Image and Vision Computing 2005;23(2):123-132. 67. Legland D, Kiêu K, Devaux M-F. Computation of Minkowski measures on 2D and 3D binary images. Image Analysis Stereology 2007;26(2):83-92. 68. Lee J, Nishikawa RM, Reiser I, Boone JM, Lindfors KK. Local curvature analysis for classifying breast tumors: preliminary analysis in dedicated breast CT. Medical physics 2015;42(9):5479-5489. 69. Fürnkranz J. Round robin classification. The Journal of Machine Learning Research 2002;2:721-747. 70. Hsu C-W, Lin C-J. A comparison of methods for multiclass support vector machines. IEEE transactions on Neural Networks 2002;13(2):415-425. 71. Tahir MA, Bouridane A. Novel round-robin tabu search algorithm for prostate cancer classification and diagnosis using multispectral imagery. IEEE transactions on information technology in biomedicine 2006;10(4):782-793. 72. Galar M, Fernández A, Barrenechea E, Bustince H, Herrera F. Dynamic classifier selection for one-vs-one strategy: avoiding non-competent classifiers. Pattern Recognition 2013;46(12):3412-3424. 73. Galar M, Fernández A, Barrenechea E, Herrera F. DRCW-OVO: distance-based relative competence weighting combination for one-vs-one strategy in multi-class problems. Pattern recognition 2015;48(1):28-42. 74. Yang S-M, Chen L-W, Wang H-J, Chen L-R, Lor K-L, Chen Y-C, Lin M-W, Hsieh M-S, Chen J-S, Chang Y-C. Extraction of radiomic values from lung adenocarcinoma with near-pure subtypes in the International Association for the Study of Lung Cancer/the American Thoracic Society/the European Respiratory Society (IASLC/ATS/ERS) classification. Lung Cancer 2018;119:56-63. 75. Yanagawa N, Shiono S, Abiko M, Ogata S-y, Sato T, Tamura G. New IASLC/ATS/ERS classification and invasive tumor size are predictive of disease recurrence in stage I lung adenocarcinoma. Journal of Thoracic Oncology 2013;8(5):612-618. 76. Russell PA, Wainer Z, Wright GM, Daniels M, Conron M, Williams RA. Does lung adenocarcinoma subtype predict patient survival?: A clinicopathologic study based on the new International Association for the Study of Lung Cancer/American Thoracic Society/European Respiratory Society international multidisciplinary lung adenocarcinoma classification. Journal of Thoracic Oncology 2011;6(9):1496-1504. 77. Zhao Z-R, Xi S-Y, Li W, Situ D-R, Chen K-M, Yang H, Su X-D, Lin Y-B, Long H. Prognostic impact of pattern-based grading system by the new IASLC/ATS/ERS classification in Asian patients with stage I lung adenocarcinoma. Lung cancer 2015;90(3):604-609. 78. Zhao Z-R, To KF, Mok TS, Ng CS. Is there significance in identification of non-predominant micropapillary or solid components in early-stage lung adenocarcinoma? Interactive cardiovascular and thoracic surgery 2017;24(1):121-125. 79. Wang W, Hu Z, Zhao J, Huang Y, Rao S, Yang J, Xiao S, Cao R, Ye L. Both the presence of a micropapillary component and the micropapillary predominant subtype predict poor prognosis after lung adenocarcinoma resection: a meta-analysis. Journal of cardiothoracic surgery 2020;15(1):1-8. 80. Ito H, Nakayama H, Murakami S, Yokose T, Katayama K, Miyata Y, Okada M. Does the histologic predominance of pathological stage IA lung adenocarcinoma influence the extent of resection? General thoracic and cardiovascular surgery 2017;65(9):512-518. 81. Tsao M-S, Marguet S, Le Teuff G, Lantuejoul S, Shepherd FA, Seymour L, Kratzke R, Graziano SL, Popper HH, Rosell R. Subtype classification of lung adenocarcinoma predicts benefit from adjuvant chemotherapy in patients undergoing complete resection. Journal of clinical oncology 2015;33(30):3439. 82. Hung J-J, Jeng W-J, Chou T-Y, Hsu W-H, Wu K-J, Huang B-S, Wu Y-C. Prognostic value of the new International Association for the Study of Lung Cancer/American Thoracic Society/European Respiratory Society lung adenocarcinoma classification on death and recurrence in completely resected stage I lung adenocarcinoma. Annals of surgery 2013;258(6):1079-1086. 83. Okada M. Subtyping lung adenocarcinoma according to the novel 2011 IASLC/ATS/ERS classification: correlation with patient prognosis. Thoracic surgery clinics 2013;23(2):179-186. 84. Hung J-J, Yeh Y-C, Jeng W-J, Wu K-J, Huang B-S, Wu Y-C, Chou T-Y, Hsu W-H. Predictive value of the International Association for the Study of Lung Cancer/American Thoracic Society/European Respiratory Society classification of lung adenocarcinoma in tumor recurrence and patient survival. Journal of Clinical Oncology 2014;32(22):2357-2364. 85. Huang K-Y, Ko P-Z, Yao C-W, Hsu C-N, Fang H-Y, Tu C-Y, Chen H-J. Inaccuracy of lung adenocarcinoma subtyping using preoperative biopsy specimens. The Journal of thoracic and cardiovascular surgery 2017;154(1):332-339. e331. 86. Yeh YC, Nitadori Ji, Kadota K, Yoshizawa A, Rekhtman N, Moreira AL, Sima CS, Rusch VW, Adusumilli PS, Travis WD. Using frozen section to identify histological patterns in stage I lung adenocarcinoma of≤ 3 cm: accuracy and interobserver agreement. Histopathology 2015;66(7):922-938. 87. Zhao Z-R, Lau RW, Long H, Mok TS, Chen GG, Underwood MJ, Ng CS. Novel method for rapid identification of micropapillary or solid components in early-stage lung adenocarcinoma. The Journal of thoracic and cardiovascular surgery 2018;156(6):2310-2318. e2312. 88. Lee H-J, Lee CH, Jeong YJ, Chung DH, Goo JM, Park CM, Austin JH. IASLC/ATS/ERS International Multidisciplinary Classification of Lung Adenocarcinoma: novel concepts and radiologic implications. Journal of thoracic imaging 2012;27(6):340-353. 89. Travis WD, Brambilla E, Nicholson AG, Yatabe Y, Austin JH, Beasley MB, Chirieac LR, Dacic S, Duhig E, Flieder DB. The 2015 World Health Organization classification of lung tumors: impact of genetic, clinical and radiologic advances since the 2004 classification. Journal of thoracic oncology 2015;10(9):1243-1260. 90. Kadota K, Nitadori J-i, Sima CS, Ujiie H, Rizk NP, Jones DR, Adusumilli PS, Travis WD. Tumor spread through air spaces is an important pattern of invasion and impacts the frequency and location of recurrences after limited resection for small stage I lung adenocarcinomas. Journal of Thoracic Oncology 2015;10(5):806-814. 91. Jia M, Yu S, Gao H, Sun P-L. Spread Through Air Spaces (STAS) in Lung Cancer: A Multiple-Perspective and Update Review. Cancer Management and Research 2020;12:2743. 92. Hu S-Y, Hsieh M-S, Hsu H-H, Tsai T-M, Chiang X-H, Tsou K-C, Liao H-C, Lin M-W, Chen J-S. Correlation of tumor spread through air spaces and clinicopathological characteristics in surgically resected lung adenocarcinomas. Lung Cancer 2018;126:189-193. 93. Cao C, Gupta S, Chandrakumar D, Tian DH, Black D, Yan TD. Meta-analysis of intentional sublobar resections versus lobectomy for early stage non-small cell lung cancer. Annals of cardiothoracic surgery 2014;3(2):134. 94. Chiang X-H, Hsu H-H, Hsieh M-S, Chang C-H, Tsai T-M, Liao H-C, Tsou K-C, Lin M-W, Chen J-S. Propensity-matched analysis comparing survival after sublobar resection and lobectomy for cT1N0 lung adenocarcinoma. Annals of surgical oncology 2020;27(3):703-715. 95. Eguchi T, Kameda K, Lu S, Bott MJ, Tan KS, Montecalvo J, Chang JC, Rekhtman N, Jones DR, Travis WD. Lobectomy is associated with better outcomes than sublobar resection in spread through air spaces (STAS)-positive T1 lung adenocarcinoma: a propensity score–matched analysis. Journal of thoracic oncology 2019;14(1):87-98. 96. Gu Y, She Y, Xie D, Dai C, Ren Y, Fan Z, Zhu H, Sun X, Xie H, Jiang G. A Texture Analysis–Based Prediction Model for Lymph Node Metastasis in Stage IA Lung Adenocarcinoma. The Annals of thoracic surgery 2018;106(1):214-220. 97. Chen D, She Y, Wang T, Xie H, Li J, Jiang G, Chen Y, Zhang L, Xie D, Chen C. Radiomics-based prediction for tumour spread through air spaces in stage I lung adenocarcinoma using machine learning. European Journal of Cardio-Thoracic Surgery 2020;58(1):51-58. 98. Jiang C, Luo Y, Yuan J, You S, Chen Z, Wu M, Wang G, Gong J. CT-based radiomics and machine learning to predict spread through air space in lung adenocarcinoma. European radiology 2020;30(7):4050-4057. 99. Zhuo Y, Feng M, Yang S, Zhou L, Ge D, Lu S, Liu L, Shan F, Zhang Z. Radiomics nomograms of tumors and peritumoral regions for the preoperative prediction of spread through air spaces in lung adenocarcinoma. Translational oncology 2020;13(10):100820. 100. Dai C, Xie H, Su H, She Y, Zhu E, Fan Z, Zhou F, Ren Y, Xie D, Zheng H. Tumor spread through air spaces affects the recurrence and overall survival in patients with lung adenocarcinoma> 2 to 3 cm. Journal of Thoracic Oncology 2017;12(7):1052-1060. 101. Onozato ML, Kovach AE, Yeap BY, Morales-Oyarvide V, Klepeis VE, Tammireddy S, Heist RS, Mark EJ, Dias-Santagata D, Iafrate AJ. Tumor islands in resected early stage lung adenocarcinomas are associated with unique clinicopathological and molecular characteristics and worse prognosis. The American journal of surgical pathology 2013;37(2):287. 102. Warth A, Muley T, Kossakowski CA, Goeppert B, Schirmacher P, Dienemann H, Weichert W. Prognostic impact of intra-alveolar tumor spread in pulmonary adenocarcinoma. The American journal of surgical pathology 2015;39(6):793-801. 103. Katsumata S, Aokage K, Nakasone S, Sakai T, Okada S, Miyoshi T, Tane K, Hayashi R, Ishii G, Tsuboi M. Radiologic criteria in predicting pathologic less invasive lung cancer according to tnm 8th edition. Clinical lung cancer 2019;20(2):e163-e170. 104. Matsunaga T, Suzuki K, Takamochi K, Oh S. What is the radiological definition of part-solid tumour in lung cancer? European Journal of Cardio-Thoracic Surgery 2017;51(2):242-247. 105. Kouwenhoven E, Giezen M, Struikmans H. Measuring the similarity of target volume delineations independent of the number of observers. Physics in Medicine Biology 2009;54(9):2863. 106. Yutaka Y, Sonobe M, Kawaguchi A, Hamaji M, Nakajima D, Ohsumi A, Menju T, Chen-Yoshikawa TF, Sato T, Date H. Prognostic impact of preoperative comorbidities in geriatric patients with early-stage lung cancer: Significance of sublobar resection as a compromise procedure. Lung Cancer 2018;125:192-197. 107. Okami J. Treatment strategy and decision-making for elderly surgical candidates with early lung cancer. Journal of thoracic disease 2019;11(Suppl 7):S987. 108. Wu J, Gensheimer MF, Dong X, Rubin DL, Napel S, Diehn M, Loo Jr BW, Li R. Robust intratumor partitioning to identify high-risk subregions in lung cancer: a pilot study. International Journal of Radiation Oncology* Biology* Physics 2016;95(5):1504-1512. 109. Chen L-W, Yang S-M, Wang H-J, Chen Y-C, Lin M-W, Hsieh M-S, Song H-L, Ko H-J, Chen C-M, Chang Y-C. Prediction of micropapillary and solid pattern in lung adenocarcinoma using radiomic values extracted from near-pure histopathological subtypes. European Radiology 2021:1-12. 110. Kohli M, Prevedello LM, Filice RW, Geis JR. Implementing machine learning in radiology practice and research. American journal of roentgenology 2017;208(4):754-760. 111. Erickson BJ, Korfiatis P, Akkus Z, Kline TL. Machine learning for medical imaging. Radiographics 2017;37(2):505-515. 112. Wu G, Woodruff HC, Shen J, Refaee T, Sanduleanu S, Ibrahim A, Leijenaar RT, Wang R, Xiong J, Bian J. Diagnosis of invasive lung adenocarcinoma based on chest CT radiomic features of part-solid pulmonary nodules: a multicenter study. Radiology 2020;297(2):451-458. 113. Lin T, Goyal P, Girshick R, He K, Dollar P. Focal Loss for Dense Object Detection. IEEE Transactions on Pattern Analysis and Machine Intelligence 2018;42(2):318-327. 114. Selvaraju RR, Cogswell M, Das A, Vedantam R, Parikh D, Batra D. Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based Localization. International Journal of Computer Vision 2020;128(2):336-359. 115. Moreira AL, Ocampo PS, Xia Y, Zhong H, Russell PA, Minami Y, Cooper WA, Yoshida A, Bubendorf L, Papotti M. A grading system for invasive pulmonary adenocarcinoma: a proposal from the International Association for the Study of Lung Cancer Pathology Committee. Journal of Thoracic Oncology 2020;15(10):1599-1610. 116. Mackin D, Ger R, Gay S, Dodge C, Zhang L, Yang J, Jones AK, Court L. Matching and homogenizing convolution kernels for quantitative studies in computed tomography. Investigative radiology 2019;54(5):288. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82078 | - |
| dc.description.abstract | 自2011年起,國際肺癌研究協會、美國胸科學會和歐洲呼吸學會建立了新的肺腺癌亞型分類系統;據研究報導,新亞型具有重要的預後價值,特別是對於浸潤性腺癌 (Invasive Adenocarcinoma,IA)已被表明會影響手術的預後結果。因此,術前 IA 亞型的診斷對於最佳化手術規劃具有重要的價值。然而,常規侵入性的IA亞型斷診被認為是不准確的,另一方面,即使組織學證據表明 IA 亞型與電腦斷層掃描 (Computed Tomography,CT) 特徵之間存在相關性,基於 CT 的 IA 亞型診斷仍然存在三個主要挑戰,包括:(i) ADC 的腫瘤內組織學異質性,(ii) IA 亞型之間不同的 CT 外觀,以及 (iii) 用於深度學習 (Deep Learning,DL) 模型訓練的有限醫學影像樣本量。為了克服這些困難並達到術前基於 CT 的 IA亞型預測,本論文實施了兩種開發途徑,包括利用“hand-craft-features”和基於 DL 的放射組學方法。 對於基於“hand-craft-features”的影像組學方法,本論文對CT上特定IA亞型的預測進行了兩步驟的研究。首先,我們收集了“近純”的 IA 亞型數據,以盡量減少組織異質性的影響,達到提取特定 IA 亞型代表性的放射組學特徵之目的。此外,針對IA亞型間多樣的CT外觀,本研究提出了Component Difference Texture Features(CDTF)來描述每個CT灰階強度區域的特徵,並開發了Competing One-Vs-One(COVO)分類器,以達到五類IA亞型的多類別分類。透過“近純”的數據和提出的方法,所提出的模型對五個 IA 亞型和三個預後等級的預測分別達到了 86% 和 92% 的準確率。此外,對於五種 IA 亞型的分類,所提出基於 CDTF 特徵的 COVO 模型可以優於常規和先前研究改進的 OVO 方法(P < 0.05),並且明顯優於僅基於傳統放射組學特徵的 COVO模型(P < 0.05)。這些結果表明,“近純”數據有潛力能提取出具IA亞型鑑別力的放射組學特徵。此外,從每個CT灰階強度區域中提取的特徵可以提供比僅從整個病變區域提取的特徵提供更多的亞型預測信息,並且 COVO 有望減少多類分類的無能力問題的影響,提高五個 IA 亞型分類的性能。 第二步驟中,由於high-grade亞型(Micropapillary 和 Solid)在生存率和復發風險上的預後價值,我們專注於基於CT的high-grade亞型檢測。利用提取自“近純”數據的放射組學特徵,本研究建立了一個patch-wise預測模型,利用局部信息預測腫瘤區域內每個體素的high-grade亞型,進一步減少腫瘤內異質性的影響。 基於 patch-wise 模型,該模型實現了 0.85 的 AUC。 此外,考慮到high-grade亞型與 Spread Through Air Spaces (STAS) 之間的高度關聯,我們使用high-grade亞型的“近純”影像組學特徵來預測肺腺癌中的 STAS,並獲得了 0.83 的 AUC。 這些結果表明,patch-wise 模型有可能用於high-grade亞型成分檢測,並且使用來自high-grade亞型的放射組學信息具有預測 STAS 的潛力。 對於基於 DL 的放射組學方法,為了克服醫學數據樣本量有限的困難,我們提出了具有較少層數的Solid Attenuation Components Attention Deep Learning (SACA-DL) 模型,以防止模型過度擬合和訓練不足。 同時,考慮到侵入性組織學模式和Solid Attenuation Components(SACs)之間的關聯,SACA-DL 被建構為引導模型的特徵提取專注於 SACs 區域。 SACA-DL模型可以達到0.91的AUC,用於預測high-grade亞型的存在,並且顯著優於所提出的patch-wise模型、沒有專注 SACs 區域的DL模型和Consolidation/Tumor ratio (C/T ratio)(P<0.05)。 這些結果表明,使用來自 SACs 的信息可以潛在地提高預測高級成分的性能,並且 SACA-DL 有可能為高級成分提供比C/T ratio和放射組學特徵更多的預測信息。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-25T05:35:24Z (GMT). No. of bitstreams: 1 U0001-2210202115562900.pdf: 8097382 bytes, checksum: 7efa3e43fc927b453aabbc09f9bb9da0 (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | 口試委員審定書 i 誌謝 ii 中文摘要 iii ABSTRACT v CONTENTS viii LIST OF FIGURES xii LIST OF TABLES xviii Chapter 1 Introduction 1 1.1. Clinical Background 1 1.2. Background of Basic Technologies 4 1.3. Problem Description 7 1.3.1. The difficulty of intratumoral histological heterogeneity 8 1.3.2. The difficulty of varying CT appearance among IA subtypes 9 1.3.3. The difficulty of limited medical imaging sample size for DL model training 11 1.4. Related Works 11 1.4.1. Qualitative Features Analysis for ADCs Subtyping 11 1.4.2. Quantitative Features Analysis for ADCs Subtyping 12 1.4.3. Radiomics Analysis for IA subtyping 13 1.5. Overview of the Research Framework 17 Chapter 2 “Near-pure” Invasive Adenocarcinoma Subtypes Classification on Pulmonary CT 20 2.1. Introduction 20 2.2. Materials and Methods 21 2.2.1. Participants and Image Acquisition 21 2.2.2. Image Analysis 23 2.2.3. Previous OVO Methods for Non-competent Problem 35 2.2.4. Statistical Analysis 36 2.3. Results 36 2.3.1. Patients’ Subtypes Information 36 2.3.2. Performance of COVO for IA Subtyping and Prognostic Grading 37 2.3.3. Comparing Conventional Radiomics Features with Combination Features 38 2.3.4. Comparing Other OVO Methods with COVO 39 2.4. Discussion 43 Chapter 3 Prediction of Micropapillary and Solid Pattern and Spread Through Air Spaces (STAS) in Lung Adenocarcinoma on Pulmonary CT 46 3.1. Introduction 46 3.1.1. Prediction of Micropapillary and Solid Pattern 46 3.1.2. Prediction of Spread Through Air Spaces 47 3.2. Materials and Methods 49 3.2.1. Participants and Image Acquisition 49 3.2.2. Image Analysis 51 3.2.3. Statistical Analysis 57 3.3. Results 58 3.3.1. Demographic and Radiomic Features of High-grade Subtypes 58 3.3.2. Demographic and Radiomic Features of STAS 60 3.3.3. Patch-wise Prediction Model Applied to Cohort 1 and 2 for High-grade Subtypes 63 3.3.4. Patch-wise Prediction Model Applied to Cohort 3 and 4 for STAS 67 3.3.5. Comparison of the Prediction Results between the Patch-wise and Whole-lesion-based Predictions for High-grade Subtypes 70 3.3.6. Comparison of the Prediction Results between the Patch-wise Model and Radiological Invasiveness for High-grade Subtypes 72 3.3.7. Combined Models Applied to Cohort 1 and 2 for High-grade Subtypes 72 3.3.8. Comparison of the prediction results between current study and previously published studies for STAS 73 3.4. Discussion 74 3.4.1. Prediction of Micropapillary and Solid Pattern 74 3.4.2. Prediction of Spread Through Air Spaces 77 Chapter 4 Solid Attenuation Components Attention Deep Learning Model to Predict Micropapillary and Solid Subtypes in Lung Adenocarcinoma 80 4.1. Introduction 80 4.2. Materials and Methods 81 4.2.1. Participants and Image Acquisition 81 4.2.2. Nodule Annotation and Data Preprocessing 83 4.2.3. Solid Attenuation Components Attention Deep Learning Model (SACA-DL) Development 84 4.2.4. Statistical Analysis 86 4.3. Results 87 4.3.1. Demographics 87 4.3.2. Performance of SACA-DL 89 4.3.3. Comparing the DL Model Without SACs Attention Channel with SACs Attention Deep Learning Model 97 4.3.4. Comparing the Prior Radiomics-Based Model with SACs Attention Deep Learning Model 97 4.3.5. Comparing the C/T ratio with SACs Attention Deep Learning Model 98 4.4. Discussion 99 Chapter 5 Conclusions 102 5.1. Summary and Contributions 102 5.2. Future Works 104 Reference 106 Appendix 123 A.1. CT Acquisition in National Taiwan University Hospital Hsin-Chu Branch 123 A.2. CT Acquisition in National Taiwan University Hospital 125 A.3. CT Acquisition in University of Texas MD Anderson Cancer Center 128 A.4. Disease-free-survival and Overall Survival Curve for STAS Prediction in each Tumor Stage 130 | |
| dc.language.iso | en | |
| dc.subject | 深度學習 | zh_TW |
| dc.subject | 電腦斷層 | zh_TW |
| dc.subject | 放射體學 | zh_TW |
| dc.subject | 組織學亞型 | zh_TW |
| dc.subject | 肺腺癌 | zh_TW |
| dc.subject | 腫瘤內組織學異質性 | zh_TW |
| dc.subject | Intratumoral histological heterogeneity | en |
| dc.subject | Computed tomography | en |
| dc.subject | Deep learning | en |
| dc.subject | Radiomics | en |
| dc.subject | Histological subtypes | en |
| dc.subject | Lung adenocarcinoma | en |
| dc.title | 電腦斷層掃描之侵犯性肺腺癌組織學亞型的術前預測 | zh_TW |
| dc.title | Preoperative Prediction of Invasive Adenocarcinoma Histological Subtypes in Computed Tomography | en |
| dc.date.schoolyear | 110-1 | |
| dc.description.degree | 博士 | |
| dc.contributor.author-orcid | 0000-0002-3618-0256 | |
| dc.contributor.advisor-orcid | 陳中明(0000-0002-0023-5817) | |
| dc.contributor.oralexamcommittee | 潘亭壽(Hsin-Tsai Liu),張允中(Chih-Yang Tseng),林孟暐,林文澧 | |
| dc.subject.keyword | 肺腺癌,組織學亞型,放射體學,深度學習,腫瘤內組織學異質性,電腦斷層, | zh_TW |
| dc.subject.keyword | Lung adenocarcinoma,Histological subtypes,Radiomics,Deep learning,Intratumoral histological heterogeneity,Computed tomography, | en |
| dc.relation.page | 138 | |
| dc.identifier.doi | 10.6342/NTU202104034 | |
| dc.rights.note | 同意授權(限校園內公開) | |
| dc.date.accepted | 2021-11-01 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 醫學工程學研究所 | zh_TW |
| dc.date.embargo-lift | 2026-11-01 | - |
| 顯示於系所單位: | 醫學工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2210202115562900.pdf 未授權公開取用 | 7.91 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
