Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 地質科學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82064
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃信樺(Hsin-Hua Huang)
dc.contributor.authorKuan-Fu Fengen
dc.contributor.author馮冠芙zh_TW
dc.date.accessioned2022-11-25T05:35:03Z-
dc.date.available2025-01-31
dc.date.copyright2022-02-17
dc.date.issued2022
dc.date.submitted2022-01-20
dc.identifier.citationAndajani, R. D., Tsuji, T., Snieder, R., Ikeda, T. (2020). Spatial and temporal influence of rainfall on crustal pore pressure based on seismic velocity monitoring. Earth, Planets and Space, 72(1), 1-17. Bennington, N., Haney, M., Thurber, C., Zeng, X. (2018). Inferring magma dynamics at Veniaminof Volcano via application of ambient noise. Geophysical Research Letters, 45(21), 11–650. Bensen, G. D., Ritzwoller, M. H., Barmin, M. P., Levshin, A. L., Lin, F., Moschetti, M. P., ... Yang, Y. (2007). Processing seismic ambient noise data to obtain reliable broad-band surface wave dispersion measurements. Geophysical Journal International, 169(3), 1239-1260. Brenguier, F., Campillo, M., Hadziioannou, C., Shapiro, N. M., Nadeau, R. M., Larose, E. (2008a). Postseismic relaxation along the San Andreas fault at Parkfield from continuous seismological observations. Science, 321(5895), 1478-1481. Brenguier, F., Campillo, M., Takeda, T., Aoki, Y., Shapiro, N. M., Briand, X., ... Miyake, H. (2014). Mapping pressurized volcanic fluids from induced crustal seismic velocity drops. Science, 345(6192), 80-82. Brenguier, F., Shapiro, N. M., Campillo, M., Ferrazzini, V., Duputel, Z., Coutant, O., Nercessian, A. (2008b). Towards forecasting volcanic eruptions using seismic noise. Nature Geoscience, 1(2), 126-130. Campillo, M. (2006). Phase and correlation inrandom'seismic fields and the reconstruction of the green function. Pure and applied geophysics, 163(2), 475-502. Campillo, M., Paul, A. (2003). Long-range correlations in the diffuse seismic coda. Science, 299(5606), 547-549. Campillo, M., Roux, P., Romanowicz, B., Dziewonski, A. (2014). Seismic imaging and monitoring with ambient noise correlations. Treatise on Geophysics, 1, 256-271. Clarke, D., Zaccarelli, L., Shapiro, N. M., Brenguier, F. (2011). Assessment of resolution and accuracy of the Moving Window Cross Spectral technique for monitoring crustal temporal variations using ambient seismic noise. Geophysical Journal International, 186(2), 867-882. Clements, T., Denolle, M. A. (2018). Tracking groundwater levels using the ambient seismic field. Geophysical Research Letters, 45(13), 6459-6465. Colombi, A., Chaput, J., Brenguier, F., Hillers, G., Roux, P., Campillo, M. (2014). On the temporal stability of the coda of ambient noise correlations. Comptes Rendus Geoscience, 346(11-12), 307-316. Donaldson, C., Caudron, C., Green, R. G., Thelen, W. A., White, R. S. (2017). Relative seismic velocity variations correlate with deformation at Kīlauea volcano. Science advances, 3(6), e1700219. Donaldson, C., Winder, T., Caudron, C., White, R. S. (2019). Crustal seismic velocity responds to a magmatic intrusion and seasonal loading in Iceland’s Northern Volcanic Zone. Science advances, 5(11), eaax6642. Duputel, Z., Ferrazzini, V., Brenguier, F., Shapiro, N., Campillo, M., Nercessian, A. (2009). Real time monitoring of relative velocity changes using ambient seismic noise at the Piton de la Fournaise volcano (La Réunion) from January 2006 to June 2007. Journal of Volcanology and Geothermal Research, 184(1-2), 164-173. Feng, K. F., Huang, H. H., Wu, Y. M. (2020). Detecting pre-eruptive magmatic processes of the 2018 eruption at Kilauea, Hawaii volcano with ambient noise interferometry. Earth, Planets and Space, 72, 1-15. Feng, K. F., Huang, H. H., Hsu, Y. J., Wu, Y. M. (2021). Controls on Seasonal Variations of Crustal Seismic Velocity in Taiwan Using Single‐Station Cross‐Component Analysis of Ambient Noise Interferometry. Journal of Geophysical Research: Solid Earth, 126(11), e2021JB022650. Heliker, C., Swanson, D. A., Takahashi, T. J. (Eds.). (2003). The Pu'u'Ō'ō-Kūpaianaha eruption of Kīlauea Volcano, Hawai'i: the first 20 years (No. 1676). U.S. Geological Survey Professional Paper 1676, pp 29–51 Herrmann, R. B. (1987). Surface wave inversion. Computer programs in seismology, 4. Hillers, G., Campillo, M., Ma, K. F. (2014). Seismic velocity variations at TCDP are controlled by MJO driven precipitation pattern and high fluid discharge properties. Earth and Planetary Science Letters, 391, 121–127. Hsu, Y. J., Kao, H., Bürgmann, R., Lee, Y. T., Huang, H. H., Hsu, Y. F., ... Zhuang, J. (2021). Synchronized and asynchronous modulation of seismicity by hydrological loading: A case study in Taiwan. Science advances, 7(16), eabf7282. Huang, H. H., Lin, F. C., Tsai, V. C., Koper, K. D. (2015). High‐resolution probing of inner core structure with seismic interferometry. Geophysical Research Letters, 42(24), 10-622. Huang, H. H., Wu, Y. M., Song, X., Chang, C. H., Lee, S. J., Chang, T. M., Hsieh, H. H. (2014). Joint Vp and Vs tomography of Taiwan: Implications for subduction-collision orogeny. Earth and Planetary Science Letters, 392, 177–191. Hutapea, F. L., Tsuji, T., Ikeda, T. (2020). Real-time crustal monitoring system of Japanese Islands based on spatio-temporal seismic velocity variation. Earth, Planets and Space, 72(1), 1-16. Institute of Earth Sciences, Academia Sinica. (1996). Broadband Array in Taiwan for seismology. James, S. R., Knox, H. A., Abbott, R. E., Screaton, E. J. (2017). Improved moving window cross‐spectral analysis for resolving large temporal seismic velocity changes in permafrost. Geophysical Research Letters, 44(9), 4018-4026. Le Breton, M., Bontemps, N., Guillemot, A., Baillet, L., Larose, É. (2021). Landslide monitoring using seismic ambient noise correlation: Challenges and applications. Earth-Science Reviews, 216, 103518. Lecocq, T., Longuevergne, L., Pedersen, H. A., Brenguier, F., Stammler, K. (2017). Monitoring ground water storage at mesoscale using seismic noise: 30 years of continuous observation and thermo-elastic and hydrological modeling. Scientific reports, 7(1), 1-16. Legendre, C. P., Tseng, T. L., Chen, Y. N., Huang, T. Y., Gung, Y. C., Karakhanyan, A., Huang, B. S. (2017). Complex deformation in the Caucasus region revealed by ambient noise seismic tomography. Tectonophysics, 712, 208-220. Lin, G., Shearer, P. M., Matoza, R. S., Okubo, P. G., Amelung, F. (2014). Three‐dimensional seismic velocity structure of Mauna Loa and Kilauea volcanoes in Hawaii from local seismic tomography. Journal of Geophysical Research: Solid Earth, 119(5), 4377-4392. Lin, F. C., Li, D., Clayton, R. W., Hollis, D. (2013). High-resolution 3D shallow crustal structure in Long Beach, California: Application of ambient noise tomography on a dense seismic array. Geophysics, 78(4), Q45-Q56. Lin, F. C., Moschetti, M. P., Ritzwoller, M. H. (2008). Surface wave tomography of the western United States from ambient seismic noise: Rayleigh and Love wave phase velocity maps. Geophysical Journal International, 173(1), 281-298. Liu, C. N., Lin, F. C., Huang, H. H., Wang, Y., Berg, E. M., Lin, C. H. (2021). High Resolution 3‐D Shear Wave Velocity Model of Northern Taiwan via Bayesian Joint Inversion of Rayleigh Wave Ellipticity and Phase Velocity with Formosa Array. Journal of Geophysical Research: Solid Earth, e2020JB021610. Lobkis, O. I., Weaver, R. L. (2001). On the emergence of the Green’s function in the correlations of a diffuse field. The Journal of the Acoustical Society of America, 110(6), 3011-3017. Lobkis, O. I., Weaver, R. L. (2003). Coda-wave interferometry in finite solids: Recovery of P-to-S conversion rates in an elastodynamic billiard. Physical review letters, 90(25), 254302. Machacca-Puma, R., Lesage, P., Larose, E., Lacroix, P., Anccasi-Figueroa, R. M. (2019). Detection of pre-eruptive seismic velocity variations at an andesitic volcano using ambient noise correlation on 3-component stations: Ubinas volcano, Peru, 2014. Journal of Volcanology and Geothermal Research, 381, 83-100. Mordret, A., Jolly, A. D., Duputel, Z., Fournier, N. (2010). Monitoring of phreatic eruptions using interferometry on retrieved cross-correlation function from ambient seismic noise: Results from Mt. Ruapehu, New Zealand. Journal of Volcanology and Geothermal Research, 191(1-2), 46-59. Mordret, A., Mikesell, T. D., Harig, C., Lipovsky, B. P., Prieto, G. A. (2016). Monitoring southwest Greenland’s ice sheet melt with ambient seismic noise. Science advances, 2(5), e1501538. Nakata, N., Boué, P., Brenguier, F., Roux, P., Ferrazzini, V., Campillo, M. (2016). Body and surface wave reconstruction from seismic noise correlations between arrays at Piton de la Fournaise volcano. Geophysical Research Letters, 43(3), 1047-1054. Neal, C. A., Brantley, S. R., Antolik, L., Babb, J. L., Burgess, M., Calles, K., ... Damby, D. (2019). The 2018 rift eruption and summit collapse of Kīlauea Volcano. Science, 363(6425), 367-374. Obermann, A., Hillers, G. (2019). Seismic time-lapse interferometry across scales. In Advances in Geophysics (Vol. 60, pp. 65-143). Elsevier. Obermann, A., Froment, B., Campillo, M., Larose, E., Planès, T., Valette, B., ... Liu, Q. Y. (2014). Seismic noise correlations to image structural and mechanical changes associated with the Mw 7.9 2008 Wenchuan earthquake. Journal of Geophysical Research: Solid Earth, 119(4), 3155-3168. Obermann, A., Planès, T., Larose, E., Campillo, M. (2013). Imaging preeruptive and coeruptive structural and mechanical changes of a volcano with ambient seismic noise. Journal of Geophysical Research: Solid Earth, 118(12), 6285-6294. Obermann, A., Planes, T., Larose, E., Sens-Schönfelder, C., Campillo, M. (2013b). Depth sensitivity of seismic coda waves to velocity perturbations in an elastic heterogeneous medium. Geophysical Journal International, 194(1), 372-382. Olivier, G., Brenguier, F., Carey, R., Okubo, P., Donaldson, C. (2019). Decrease in seismic velocity observed prior to the 2018 eruption of Kīlauea volcano with ambient seismic noise interferometry. Geophysical Research Letters, 46(7), 3734-3744. Pacheco, C., Snieder, R. (2005). Time-lapse travel time change of multiply scattered acoustic waves. The Journal of the Acoustical Society of America, 118(3), 1300-1310. Patrick, M. R., Dietterich, H. R., Lyons, J. J., Diefenbach, A. K., Parcheta, C., Anderson, K. R., ... Kauahikaua, J. P. (2019). Cyclic lava effusion during the 2018 eruption of Kīlauea Volcano. Science, 366(6470). Patrick, M. R., Houghton, B. F., Anderson, K. R., Poland, M. P., Montgomery-Brown, E., Johanson, I., ... Elias, T. (2020). The cascading origin of the 2018 Kīlauea eruption and implications for future forecasting. Nature Communications, 11(1), 1-13. Paul, A., Campillo, M., Margerin, L., Larose, E., Derode, A. (2005). Empirical synthesis of time‐asymmetrical Green functions from the correlation of coda waves. Journal of Geophysical Research: Solid Earth, 110(B8). Pietruszka, A. J., Heaton, D. E., Marske, J. P., Garcia, M. O. (2015). Two magma bodies beneath the summit of Kīlauea Volcano unveiled by isotopically distinct melt deliveries from the mantle. Earth and Planetary Science Letters, 413, 90-100. Planès, T., Larose, E., Margerin, L., Rossetto, V., Sens-Schoenfelder, C. (2014). Decorrelation and phase-shift of coda waves induced by local changes: multiple scattering approach and numerical validation. Waves in Random and Complex Media, 24(2), 99-125. Poland, M. P., Miklius, A., Montgomery-Brown, E. K. (2014). Magma supply, storage, and transport at shield-stage Hawaiian volcanoes. Characteristics of Hawaiian volcanoes, 1801, 179-234. Poupinet, G., Ellsworth, W. L., Frechet, J. (1984). Monitoring velocity variations in the crust using earthquake doublets: An application to the Calaveras Fault, California. Journal of Geophysical Research: Solid Earth, 89(B7), 5719-5731. Rivet, D., Brenguier, F., Cappa, F. (2015). Improved detection of preeruptive seismic velocity drops at the Piton de La Fournaise volcano. Geophysical Research Letters, 42(15), 6332-6339. Seats, K. J., Lawrence, J. F., Prieto, G. A. (2012). Improved ambient noise correlation functions using Welch′ s method. Geophysical Journal International, 188(2), 513-523. Sens‐Schönfelder, C., Wegler, U. (2006). Passive image interferometry and seasonal variations of seismic velocities at Merapi Volcano, Indonesia. Geophysical Research Letters, 33(21). Shapiro, N. M., Campillo, M., Stehly, L., Ritzwoller, M. H. (2005). High-resolution surface-wave tomography from ambient seismic noise. Science, 307(5715), 1615-1618. Snieder, R. (2006). The theory of coda wave interferometry. Pure and Applied geophysics, 163(2), 455-473. Snieder, R., Grêt, A., Douma, H., Scales, J. (2002). Coda wave interferometry for estimating nonlinear behavior in seismic velocity. Science, 295(5563), 2253-2255. Steer, P., Jeandet, L., Cubas, N., Marc, O., Meunier, P., Simoes, M., ... Hovius, N. (2020). Earthquake statistics changed by typhoon-driven erosion. Scientific reports, 10(1), 1-11. Taira, T. A., Nayak, A., Brenguier, F., Manga, M. (2018). Monitoring reservoir response to earthquakes and fluid extraction, Salton Sea geothermal field, California. Science advances, 4(1), e1701536. Talwani, P., Chen, L., Gahalaut, K. (2007). Seismogenic permeability, ks. Journal of Geophysical Research, 112(B7). Vidal, C. A., Zaccarelli, L., Pintori, F., Bragato, P. L., Serpelloni, E. (2021). Hydrological effects on seismic-noise monitoring in karstic media. Geophysical Research Letters, 48, e2021GL093191. Viens, L., Denolle, M. A., Hirata, N., Nakagawa, S. (2018). Complex near‐surface rheology inferred from the response of greater Tokyo to strong ground motions. Journal of Geophysical Research: Solid Earth, 123(7), 5710-5729. Wang, Q. Y., Brenguier, F., Campillo, M., Lecointre, A., Takeda, T., Aoki, Y. (2017). Seasonal crustal seismic velocity changes throughout Japan. Journal of Geophysical Research: Solid Earth, 122(10), 7987-8002. Wang, Q. Y., Campillo, M., Brenguier, F., Lecointre, A., Takeda, T., Hashima, A. (2019). Evidence of Changes of Seismic Properties in the Entire Crust Beneath Japan After the Mw 9.0, 2011 Tohoku‐oki Earthquake. Journal of Geophysical Research: Solid Earth, 124(8), 8924-8941. Weaver, R. L., Lobkis, O. I. (2004). Diffuse fields in open systems and the emergence of the Green’s function (L). The Journal of the Acoustical Society of America, 116(5), 2731-2734. Weaver, R. L., Hadziioannou, C., Larose, E., Campillo, M. (2011). On the precision of noise correlation interferometry. Geophysical Journal International, 185(3), 1384-1392. Wu, C., Delorey, A., Brenguier, F., Hadziioannou, C., Daub, E. G., Johnson, P. (2016). Constraining depth range of S wave velocity decrease after large earthquakes near Parkfield, California. Geophysical Research Letters, 43(12), 6129-6136. Wu, S. M., Lin, F. C., Farrell, J., Shiro, B., Karlstrom, L., Okubo, P., Koper, K. (2020). Spatiotemporal seismic structure variations associated with the 2018 Kīlauea eruption based on temporary dense geophone arrays. Geophysical Research Letters, 47(9), e2019GL086668. Yu, T. C., Hung, S. H. (2012). Temporal changes of seismic velocity associated with the 2006 Mw 6.1 Taitung earthquake in an arc‐continent collision suture zone. Geophysical research letters, 39(12). Zhan, Z. (2019). Seismic noise interferometry reveals transverse drainage configuration beneath the surging Bering Glacier. Geophysical Research Letters, 46(9), 4747-4756.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82064-
dc.description.abstract地震噪訊干涉法是很有潛力的研究技術,透過分析地殼地震波速度的時序變化,可以進一步探究地殼隨時間的行為表現。然而,地殼地震波速度的時序變化會受到地殼內部(構造活動)與外部(環境變動)作用,反映複雜的地殼行為,而這樣的行為反應更是因地而異。本研究分別分析了在活躍火山地區(夏威夷基拉韋厄火山)與活躍造山帶地區(臺灣)的地殼地震波速度隨時間變動的行為表現,分別探討2018年基拉韋厄火山噴發前岩漿侵入地殼的過程,以及臺灣地殼對於環境因子影響的季節性反應。 在火山的案例中,為了瞭解基拉韋厄火山在2018年噴發事件前岩漿侵入地殼的過程,使用噪訊干涉技術搭配雙站交相關函數的時序觀測,分析12個寬頻地震站近一年半的垂直向連續地震紀錄,並透過頻率相依的特性,以三個頻段(0.3-0.6、0.6-0.9、0.9-2.0赫茲)來分析該區地震波速度的時序變化。藉由地震波速度變化頻率相依的特性,發現地震活動相關的速度變化和與岩漿相關的速度變化發生在不同的深度。透過速度變化在時空分佈上的分析,結果揭示了三個時期的岩漿侵入過程,最初期的岩漿侵入活動可能於火山噴發至地表前六個月就已經開始。而針對臺灣的案例,同樣使用地震噪訊干涉技術,分析臺灣寬頻地震網自1998年至2019年的長期連續紀錄。為了直接與鄰近地震測站的氣象測站資料進行比對,選用單站異軸向的交相關函數法,分析頻段0.1-0.9赫茲的訊號。地殼地震波速度變化結果顯示了數起同震震波速度下降以及明顯的年週期訊號。年週期的地震波速度變化有明顯的地域特性,經由與各項環境因子(雨量、氣溫、氣壓、風速)的比對,發現降雨所造成的地殼內液壓變化是主要影響地殼地震波速度變化的原因,其他氣象因子的影響則相對次要。了解與修正降雨對於地殼地震波速度變化影響的同時,能讓地震相關的速度變化訊號變得更加清楚容易辨識,有助於進一步更精確的分析。 以上述兩個研究案例為基礎,本研究計畫建立臺灣地殼地震波速度變化監測系統。為了即時處理與分析資料,提出移動參考法,測試與展示運用此方法進行近即時監測的可能性。在透過一系列的時間與空間解析力的測試與考量後,現階段的監測系統預期將有49個地震站,其中25個來自臺灣寬頻地震網、6個來自中正大學西南部觀測站、以及8個來自氣象局。以每小時為計算單位運行。期望未來可以透過多計算核心進行循序分散式運算的方式,朝向近即時速度變化監測的目標邁進。zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-25T05:35:03Z (GMT). No. of bitstreams: 1
U0001-1801202218220600.pdf: 44733256 bytes, checksum: 90b2899645d61ef20ca3be51454f6910 (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents"[目錄] 論文口試委員審定書 i 誌謝 ii 摘要 iii Abstract v Contents vii List of Figures ix List of Tables xiii Chapter 1 Introduction 1 1.1 BACKGROUND 2 1.2 MOTIVATION 3 1.3 CONTENTS OF DISSERTATION 4 Chapter 2 Methodology 8 2.1 SEISMIC NOISE INTERFEROMETRY 9 2.2 TEMPORAL SEISMIC VELOCITY CHANGES (DV/V) 10 2.3 MEASUREMENTS OF DV/V 13 2.5 SENSITIVITY OF MEASURING SIGNALS 17 2.6 RAINFALL-INDUCED PORE PRESSURE CHANGES 21 Chapter 3 Crustal seismic velocity variation in an active volcano area: Detecting the pre-eruptive magmatic processes of the 2018 Kilauea volcano eruption 23 Chapter 4 Crustal seismic velocity variation in an active orogenic belt: Revealing the controls of seasonal seismic velocity variations in Taiwan 37 Chapter 5 Toward a noise-based monitoring system on crustal seismic velocity changes in Taiwan 56 5.1 INTRODUCTION 57 5.2 SYSTEM WORKFLOW 59 5.3 MONITORING SYSTEM TESTS AND ESTABLISHMENT 61 5.4 TOWARD HIGHER RESOLUTION MONITORING 78 5.5 SUMMARY 89 Chapter 6 Conclusions 97 References 100 Appendix A Detecting pre-eruptive magmatic processes of the 2018 eruption at Kilauea, Hawaii volcano with ambient noise interferometry 110 Appendix B Controls on Seasonal Variations of Crustal Seismic Velocity in Taiwan Using Single-Station Cross- Component Analysis of Ambient Noise Interferometry 126 Appendix C Results of moving reference tests 144 Appendix D Results of earthquake co-seismic dv/v 157 Appendix E Relationship between peak ground motions and dv/v listed by stations 172 Appendix F Performance of BATS stations 197 Appendix G Performance of CWB stations 211 Appendix H Hourly detection performance on 2018/02/06 earthquake 258 Appendix I Hourly detection performance on 2018/10/23 earthquake 280 Appendix J Hourly detection performance on 2019/04/18 earthquake 302 Appendix K Hourly detection performance on 2019/08/07 earthquake 324 [圖目錄] Figure 1.1 An example of the co-seismic changes and post-seismic relaxation in dv/v in Parkfield. 6 Figure 1.2 An example of the comparison of observed dv/v and groundwater level in San Gabriel Valley.. 6 Figure 1.3 An example of the comparison of observed δτ/τ, rainfall, groundwater level, GPS displacement, and local seismicity in southeastern Taiwan. 7 Figure 2.1 The general workflow for seismic data processing. 12 Figure 2.2 Schematic figures illustrate the construction of inter-station cross-correlation. 12 Figure 2.3 The stretching method 15 Figure 2.4 The moving-window cross-spectrum (MWCS) method 16 Figure 2.5 The 1‐D velocity model and corresponding Rayleigh‐wave depth sensitivity kernels of Kilauea area 19 Figure 2.6 The average 1-D velocity and corresponding Rayleigh‐wave depth sensitivity kernels of Taiwan 20 Figure 2.7 An example of fitting process between observed dv/v and predicted dv/v 22 Figure 3.1 Distribution of volcano craters, used seismic stations, M ≥ 3.5 earthquakes and the fissures of the 2018 eruptionin the Kilauea area 28 Figure 3.2 Stack length tests of constructing the daily representative noise cross-correlation functions (NCFs) 29 Figure 3.3 Daily NCFs for station pair DEVL–STCD 30 Figure 3.4 Comparison of time series of daily cc, dv/v, amplitude root mean square (RMS), peak ground velocity (PGV), and earthquake numbers in the Kilauea area 31 Figure 3.5 Time series of cc values and estimated dv/v in three frequency bands 32 Figure 3.6 Map of coseismic dv/v drops in three frequency bands 33 Figure 3.7 Map of frequency‐dependent magma‐related dv/v changes in three time periods marked in Figure 3.5. 34 Figure 3.8 Schematic model of proposed magmatic processes prior to the 2018 eruption. P1, P2, and P3 denote the time periods of deep magma intrusion, summit inflation, and damage accumulation of edifice 35 Figure 4.1 Distribution of seismic stations and selected weather stations for Gaussian smoothing analysis. 42 Figure 4.2 An example of cross-component correlations of single station (SC) at Station SSLB. 43 Figure 4.3 The temporal evolutions of dv/v at Station NACB, TDCB, SSLB, and TWGB selected for illustration 44 Figure 4.4 Amplitude of annual variation on dv/v at stations across Taiwan 45 Figure 4.5 An example of dv/v time series at Station MASB and weather data averaged from the adjacent sites 46 Figure 4.6 Examples of the normalized spectrum at the stations MASB, NACB, TDCB, and WFSB 47 Figure 4.7 The year-average examples of the Station MASB in southern Taiwan, Station NACB in eastern Taiwan, Station TDCB in central Taiwan, and Station WFSB in northern Taiwan 48 Figure 4.8 Normalized annual stacks at all stations 49 Figure 4.9 Spatial distribution of the correlation coefficients (Cmax) between the observed and predicted dv/v and corresponding diffusion rate at which Cmax > 0.6 50 Figure 4.10 Hypothetical model of the crustal seismic velocity responses in Taiwan 51 Figure 4.11 Time evolution of dv/v before and after the rainfall-related dv/v correction 52 Figure 4.12 Location of M6+ crustal earthquake after 2000 54 Figure 5.1 The schematic shows a part of internal and external factors potentially affecting on crustal dv/v behaviors 57 Figure 5.2 Stepwise workflow of noise-based dv/v monitoring system. 60 Figure 5.3 The schematic graphs show the dv/v estimate by the fixed reference method and moving reference method 65 Figure 5.4 The conceptual waveform of Figure 5.3 66 Figure 5.5 The comparison of the results in Chapter 4 and the reconstructing long-term dv/v evolution by the moving reference method at station ANPB 67 Figure 5.6 The comparison of the results in Chapter 4 and the reconstructing long-term dv/v evolution by the moving reference method at station SSLB 68 Figure 5.7 The comparison of the results in Chapter 4 and the reconstructing long-term dv/v evolution by the moving reference method at station TPUB 69 Figure 5.8 Co-seismic dv/v of Earthquake No. 14 70 Figure 5.9 Co-seismic dv/v of Earthquake No. 15 71 Figure 5.10 Co-seismic dv/v of Earthquake No. 16 72 Figure 5.11 Co-seismic dv/v of Earthquake No. 17 73 Figure 5.12 Co-seismic dv/v of each earthquake at station NACB. 76 Figure 5.13 Co-seismic dv/v of each earthquake at station TWGB 77 Figure 5.14 Ideal station map toward a monitoring system. 81 Figure 5.15 The data number can be used to check the station quality 82 Figure 5.16 The average dv/v difference between the stretching and MWCS methods. 83 Figure 5.17 The stations meet the criteria and can be potentially used in the monitoring system at this stage. 84 Figure 5.18 Tests of the stacking number by hourly segments.. 85 Figure 5.19 The performance of detecting dv/v by the hourly analysis with the moving reference method at station NACB 86 Figure 5.20 The performance of detecting dv/v by the hourly analysis with the moving reference method at station SSLB 87 Figure 5.21 The performance of detecting dv/v by the hourly analysis with the moving reference method at station WARB 88 [表目錄] Table 3.1 Information for the earthquakes with ML ≥3.5 in the Kilauea area in the study period 36 Table 4.1 Information for the 17 crustal moderate-to-large earthquakes after the 1999 Chi-Chi earthquake sequence 55 Table 5.1 The quality of potential BATS stations. 90 Table 5.2 The quality of potential CWB stations.. 92 Table 5.3 Earthquake information of the four cases in Section 5.4.3. 96 "
dc.language.isoen
dc.subject岩漿侵入過程zh_TW
dc.subject地震噪訊干涉zh_TW
dc.subject臺灣zh_TW
dc.subject監測系統zh_TW
dc.subject基拉韋厄火山zh_TW
dc.subject地殼地震波速度變化zh_TW
dc.subjectmonitoring systemen
dc.subjectseismic noise interferometryen
dc.subjectcrustal seismic velocity changesen
dc.subjectmagmatic intrusionen
dc.subjectKilauea volcanoen
dc.subjectTaiwanen
dc.title以噪訊干涉技術監測地殼地震波速度變化zh_TW
dc.titleNoise-based monitoring on crustal seismic velocity variationsen
dc.date.schoolyear110-1
dc.description.degree博士
dc.contributor.coadvisor吳逸民(Yih-Min Wu)
dc.contributor.oralexamcommittee許雅儒(Yao-Ting Wang),李憲忠(Ching-fei Shih),郭陳澔(Kuo-tung Chen),温士忠(Chuan-Hsing Ho),洪淑蕙
dc.subject.keyword地震噪訊干涉,地殼地震波速度變化,岩漿侵入過程,基拉韋厄火山,臺灣,監測系統,zh_TW
dc.subject.keywordseismic noise interferometry,crustal seismic velocity changes,magmatic intrusion,Kilauea volcano,Taiwan,monitoring system,en
dc.relation.page345
dc.identifier.doi10.6342/NTU202200093
dc.rights.note同意授權(限校園內公開)
dc.date.accepted2022-01-20
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept地質科學研究所zh_TW
dc.date.embargo-lift2025-01-31-
顯示於系所單位:地質科學系

文件中的檔案:
檔案 大小格式 
U0001-1801202218220600.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
43.68 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved