請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82061完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 江茂雄(Mao-Hsiung Chiang) | |
| dc.contributor.author | Tsung-Chin Tsai | en |
| dc.contributor.author | 蔡宗親 | zh_TW |
| dc.date.accessioned | 2022-11-25T05:34:59Z | - |
| dc.date.available | 2027-01-01 | |
| dc.date.copyright | 2022-02-17 | |
| dc.date.issued | 2022 | |
| dc.date.submitted | 2022-01-20 | |
| dc.identifier.citation | [1] Ministry of Health and Welfare/Health and Welfare Statistics Area/Social Welfare Statistics/2. Welfare Services/2.3 Welfare for the Disabled. [Online]. Available: https://dep.mohw.gov.tw/DOS/cp-5224-62359-113.html. [2] Health Promotion Administration Ministry of Health and Welfare ,Stroke Prevention GUIDEBOOK. [3] Hsiao Chun-jen, 'Golden Period after Stroke─Early Intervention of Physical Therapy', National Yang Ming Chiao Tung University Hospital. [Online]. Available: https://www.ymuh.ym.edu.tw/tw/departments/health-care/other/rehabilitation/education/3423. [4] Schulte H. F., 'The characteristics of the McKibben artificial pneumatic muscle,' In the Application of External Power in Prosthetics and Orthotics, Appendix H. Publ. 874, National Academy of Sciences: Washington, DC, USA, pp. 94–115, 1961. [5] Zhang Yuanshen, Liu Mingchun, Zhao Na, 'The development history of McKibben pneumatic artificial muscle technology,' Hydraulics and Pneumatics, vol. 7, pp. 13-15, 2008. [6] Yang Gang, Li Baoren, Liu Jun, 'A new type of pneumatic actuator-pneumatic artificial muscles,' China Mechanical Engineering, vol. 15, pp. 22-24, 2003. [7] Stephen D.Prior and Peter R.Warner, 'A New Development in Low Cost Pneumatic Actuators,' Proceedings of Fifth International Conference on Advanced Robotics, Pisa, Italy, vol. 2, pp. 1590-1593, 1991. [8] G.K.Klute, J.M. Czerniecki, B.Hannaford, 'McKibben Artificial Muscles: Pneumatic Actuators with Biomechanical Intelligence,' Proceedings of IEEE/ASME 1999 International Conference on Advanced Intelligent Mechatronics, Atlanta, USA, pp. 1-6, 1999. [9] [Online]. Available: https://www.festo.com/rep/en_corp/assets/pdf/info_501_en.pdf. [10] Godage I S, Branson D T, Guglielmino E, 'Pneumatic muscle actuated continuum arms: Modeling and experimental assessment,' 2012 IEEE International Conference on Robotics and Automation, pp. 4980-4985, 2012. [11] Colbrunn R W, Nelson G M, Quinn RD, 'Design and control of a robotic leg with braided pneumatic actuators,' 2001 IEEE/RSJ International Conference on Intelligent Robots Systems, pp. 992-998, 2001. [12] Honda Y, Miyazaki F, Nishikawa A, 'Control of pneumatic five-fingered robot hand using antagonistic muscle ratio and antagonistic muscle activity,' 2010 3rd IEEE Ras Embs International Conference in Biomedical Robotics Biomechatronics, pp. 337–342, 2010. [13] Jamwal P K, Hussain S, Ghayesh MH, 'Impedance control of an intrinsically compliant parallel ankle rehabilitation,' IEEE Transactions on Industrial Electronics, vol. 63, Issue 6, pp. 3638-3647, 2016. [14] Fan Jizhuang, Qiu Yulong, Zhang Wei, 'Mechanism design of frog-like swimming robot,' Robot, vol. 2, pp. 168-175, 2015. [15] Caldwell D G, Tsagarakis N, Medrano-Cerda G A, 'A pneumatic muscle actuator driven manipulator for nuclear waste retrieval,' Control Engineering Practice, vol. 9, Issue 1, pp. 23-36, 2001. [16] Wang Yang, Zhang Qiang, Xiao Xiaohui, 'Trajectory tracking control of bionic joints driven by pneumatic artificial muscles based on robust modeling,' Robot, vol. 38, Issue 2, pp. 248-256, 2016. [17] Li Fang, Xu Jiaqi, Liu Kai, 'Three-degree-of-freedom bionic shoulder joint dynamic modeling and simulation control analysis,' Mechanical Transmission, vol.10, pp. 65-69, 2017. [18] C. P. Chou and B. Hannaford, 'Static and Dynamic Characteristics of McKibben Pneumatic Artificial Muscles,' Proceedings of 1994 IEEE International Conference on Robotic and Automation, San Diego, USA, vol.1, pp. 281-286, 1994. [19] C. P. Chou and B. Hannaford, 'Measurement and Modeling of McKibben Pneumatic Artificial Muscle,' IEEE Transactions on Robotics and Automation, vol.12, issue1, pp. 90-102, 1996. [20] N.Tsagarakis, Darwin G. Caldwell, 'Improved Modeling and Assessment of pneumatic Muscle Actuators,' Proceedings of the 2000 IEEE international Conference on Robotics Automation, San Francisco, pp. 3641-3646, 2000. [21] D. B. REYNOLDS, D. W. REPPERGER, and C. A. PHILLIPS, 'Modeling the Dynamic Characteristics of Pneumatic Muscle,' Annals of Biomedical Engineering, vol. 31, pp. 310–317, 2003. [22] D.G. Caldwell, N. Tsagarakis, G. A, 'Medrano-Cerda, Biomimetic actuators: Polymeric pseudo muscular actuators and pneumatic muscle actuators for biological emulation,' Mechatronics, vol. 10, pp. 499-530, 2000. [23] B.Tondu and P.Lopez, 'Modeling and control of McKibben artilicial muscle robot aetuators' IEEE Control Systens Magazine, vol. 20, Issue 2, pp. 15-38, 2000. [24] D. W. Repperger, K. R. Johnson and C. A Phillips, 'Nonlinear Feedback Controller Design of A Pneumatic Muscle Actuator System,' Proceedings of the American Control Conference, San Diego, California, vol. 3, pp. 1525-1529, 1999. [25] Ji Aihong, Dai Zhendong, Zhou Laishui, 'Research progress of biomimetic robots,' Robot, vol. 27, Issue 3, pp. 284-288, 2005. [26] Fan Wei, Peng Guangzheng, Huang Yu, 'Research status and development trend of pneumatic artificial muscle actuators,' Machine Tool and Hydraulics, vol. 5, pp. 39-42, 1997. [27] V. L. Nickel, J. Perry, A. L. Garrett, 'Development of useful function in the severely paralysed hand,' vol. 45, Issue 5, pp. 933-952, 1963. [28] Costa N, Caldwell D G, 'Control of a biomimetic 'soft-actuated' 10 DOF lower body exoskeleton,' The First IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics, pp. 495-501, 2006. [29] Caldwell D G, Tsagarakis N G, 'Soft exoskeletons for upper and lower body rehabilitation—design, control and testing,' International Journal of Humanoids Robotics, vol. 4, Issue 3, pp. 549-573, 2007. [30] Richard Q. van der Linde, 'Design, Analysis, and Control of a Low Power Joint for Walking Robots by Phasic Activation of McKibben Muscles,' IEEE Transactions on Robotics and Automation, vol.15, Issue 4, pp. 599-604, 1999. [31] B. Tondu, V. Boitier, P. Lopez, 'Naturally compliant robot-arms actuated by McKibben artificial muscles,' Proceedings of IEEE International Conference on Systems, Man, and Cybernetics, San Antonio, USA, vol. 3, pp. 2635-2640, 1994. [32] D. C. Johnson, D. W. Repperger, G. Thompson, 'Development of a mobility assist for the paralyzed amputee, and spastic patient,' Proceedings of the 1996 Fifteenth Southern Conference on Biomedical Engineering, Dayton, USA, pp. 67-70, 1996. [33] D. W. Repperger, C. A. Phillips, D. C. Johnson, 'A Study of Pneumatic Muscle Technology for Possible Assistant in Mobility,' Proceedings of 19th International Conference on Engineering in Medicine and Biology Society, Chicago, USA, vol. 5, pp. 1884-1887, 1997. [34] D. G. Caldwell, N. Tsagarakis, D. Badihi, 'Pneumatic Muscle Actuator Technology a light weight power system for a Humanoid Robot,' Proceedings of the 1998 IEEE International Conference on Robotics Automation, Leuven, Belgium, vol. 4, pp. 3053-3058, 1998. [35] Chang M, 'An adaptive self-organizing fuzzy sliding mode controller for a 2- DOF rehabilitation robot actuated by pneumatic muscle actuators,' Control Engineering Practice, vol.18, Issue 1, pp. 13-22, 2010. [36] Ahn K. K., Nguyen H. T. C., 'Intelligent switching control of a pneumatic muscle robot arm using learning vector quantization neural network,' Mechatronics, vol.17, Issue 4-5, pp. 255-262, 2007. [37] Caldwell D.G, Andersen U, Bowler C.J, 'High power/weight dextereous manipulator using 'sensory glove' based motion control and tactile feedback,' Transactions of the Institute of Measurement and Control, vol. 17, Issue 5, pp. 234-241, 1995. [38] [Online]. Available: http://www.festo.com/INetDomino/coorp_sites/zh. [39] K. Naruse,S. Kawai, H. Yokoi, Y. Kakazu, 'Design of Wearable Power Assist Device for Lower Back Support,' Robotics and Mechatronics, vol.16, Issue 5, pp. 489-496, 2004. [40] Luu T P, Low K H, Qu X, 'Hardware Development and Locomotion Control Strategy for an Over-Ground Gait Trainer: Na TUre-Gaits,' Translational Engineering in Health and Medicine, IEEE Journal, vol. 2, pp. 1-9, 2014. [41] Daisuke S, Toshiro N, Masahiro T, 'Development of Active Support Splint driven by Pneumatic Soft Actuator (ASSIST),' Proceedings of the IEEE International Conference on Robotics and Automation, Barcelona, Spain, pp. 5202-5205, 2005. [42] Kobayashi H, Hiramatsu K, 'Development of muscle suit for upper limb,' Proceedings of the IEEE International Conference on Robotics and Automation, Piscataway, USA, pp. 2206-2211, 2004. [43] Satoshi K, Keitaro N, Hiroshi Y, 'A study for control of a power assist device development of an EMG based controller considering a human model,' Proceedings of the 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems, New York, pp. 2283-2288, 2004. [44] Pietrusinski M, Cajigas I, Severini G, 'Robotic gait rehabilitation trainer,' Mechatronics, IEEE/ASME Transactions, vol. 19, Issue 2, pp. 490-499, 2014. [45] Krebs H.I, Hogan N, Aisen M.L, Volpe B.T, 'Robot-aided Neurorehabilitation,' IEEE Transactions on Rehabilitation Engineering, vol. 6, Issue 1, pp. 75-87, 1998. [46] J. Walsh, K. Pasch, H. Herr, 'An autonomous, underactuated exoskeleton for load-carrying augmentation,' 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1410-1415, 2006. [47] H. Kawamoto, Y. Sankai, 'Power Assist System HAL-3 for Gait Disorder Person,' Proc.int.conf.on Computers Helping People with Special Needs Berlin, pp. 196-203, 2002. [48] Strausser K A, Swift T A, Zoss A B, 'Prototype medical exoskeleton for paraplegic mobility: first experimental results,' ASME 2010 Dynamic Systems and Control Conference. American Society of Mechanical Engineers, pp. 453-458, 2010. [49] Strausser K A, Kazerooni H, 'The development and testing of a human machine interface for a mobile medical exoskeleton,' Intelligent Robots and Systems(IROS), 2011 IEEE/RSJ International Conference on IEEE, pp. 4911-4916, 2011. [50] Strickland E, 'Good-bye, wheelchair,' Spectrum, IEEE, vol. 49, Issue 1, pp. 30-32, 2012. [51] R.J. Farris, H.A. Quintero, and M. Goldfarb, 'Preliminary Evaluation of a Powered Lower Limb Orthosis to Aid Walking in Paraplegic Individuals,' Neural Systems and Rehabilitation Engineering, IEEE Transactions, vol. 19, Issue 6, pp. 652-659, 2011. [52] S. Murray, M. Goldfarb, 'Towards the Use of a Lower Limb Exoskeleton for Locomotion Assistant in Individuals with Neuromuscular Locomotor Deficits,' 34th Annual International Conference of the IEEE EMBS, San Diego, California USA, 2012. [53] Farris R J, Quintero H A, Murray S A, 'A preliminary assessment of legged mobility provided by a lower limb exoskeleton for persons with paraplegia,' Neural Systems and Rehabilitation Engineering, IEEE Transactions, vol. 22, Issue 3, pp. 482- 490, 2014. [54] H. Kim, C. Seo, Y. Shin, 'Locomotion control strategy of hydraulic lower extremity exoskeleton robot,' IEEE International Conference on Advanced Intelligent Mechatronics, 2015. [55] L. Greenemeier, Trouble walking? Try Honda's new exoskeleton legs. [56] Reinkensmeyer D.J, Kahn L.E, Averbuch A, 'Understanding and Treating Arm Movement Impairment after Chronic Brain Injury: Progress with the ARM Guide,' Journal of Rehabilitation Research and Development, vol. 37, Issue 6, pp. 653-662, 2000. [57] Colombo G, Matthias J, Reinhard S, 'Treadmill training of paraplegic patients using a robotic orthosis,' Journal of Rehabilitation Research and Development, vol. 37, Issue 6, pp. 693-700, 2000. [58] Colombo G, Wirz M, Dietz V, 'Driven gait orthosis for improvement of locomotor training in paraplegic patients,' Spinal Cord, vol. 39, pp. 252-255, 2001. [59] Riener R, Lunenburger L, Colombo G, 'Human-centered robotics applied to gait training and assessment,' Journal of Rehabilitation Research Development, vol. 43, Issue 5, pp. 679-694, 2006. [60] Hidler J, Wisman W, Neckel N, 'Kinematic trajectories while walking within the lokomat robotic gait-orthosis,' Clinical Biomechanics, vol. 23, Issue 10, pp. 1251-1259, 2008. [61] Bernhardt M, Frey M, Colombo G, 'Hybrid force-position control yields cooperative behaviour of the rehabilitation robot LOKOMAT,' Rehabilitation Robotics, 2005. ICORR 2005. 9th International Conference on IEEE, pp. 536-539, 2005. [62] Lunenburger L, Colombo G, Riener R, Dietz V, 'Clinical assessments performed during robotic rehabilitation by the gait training robot Lokomat,' Proceedings of the IEEE 9th International Conference on Rehabilitation Robotics, pp. 345-348, 2005. [63] Faolo D, Eugenio G, 'Robotic for medical applications,' IEEE Robotics and Automation Magazine, vol. 54, Issue 6, pp. 44-56, 1996. [64] Mirbagheri M, Tsao C, Pelosin E, Rymer W, 'Therapeutic effects of robotic-assisted locomotor training on neuromuscular properties,' Proceedings of the IEEE 9th International Conference on Rehabilitation Robotics, pp. 561-564, 2005. [65] Chen G , Chan C K , Guo Z, 'A review of lower extremity assistive robotic exoskeletons in rehabilitation therapy,' Critical Reviews in Biomedical Engineering, vol. 41, Issue 4-5, pp. 343-363, 2013. [66] Veneman JF, Kruidhof R, Hekman EE, 'Design and Evaluation of the Lopes Exoskeleton Robot for Interactive Gait Rehabilitation,' IEEE Transactions on Neural Systems Rehabilitation Engineering a Publication of the IEEE Engineering in Medicine Biology Society, vol. 15, Issue 3, pp. 379-386, 2007. [67] Veneman, J. F, 'A series elastic- and bowden-cable-based actuation system for use astorque, actuator in exoskeleton-type robots,' The International Journal of Robotics Research, vol. 25, Issue 3, pp. 261-281, 2006. [68] Vallery H, Ekkelenkamp R, Buss M, 'Complementary limb motion estimation based on interjoint coordination: experimental evaluation,' IEEE 10th International Conference on Rehabilitation Robotics, pp. 361-364, 2007. [69] Veneman J F, Ekkelenkamp R, Kruidhof R, 'Design of a series elastic and bowden-cable-based actuation system for use as torque-actuator in exoskeleton-type training,' IEEE 9th International Conference on Rehabilitation Robotics, pp. 496-499, 2005. [70] Veneman J F, Asseldonk E V, Ekkelenkamp R, 'Evaluation of the effect on walking of balance-related degrees of freedom in a robotic gait training device,' Proceedings of the 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 868-875, 2007. [71] Schmidt H, Stefan Hesse, Rolf Bernhard, 'Haptic Walker—a Novel Haptic Foot Device,' ACM Transactions on Applied Perception, vol. 2, Issue 2, pp. 166-180, 2005. [72] Schmidt H, Sorowka D, Hesse S, 'Development of a Robotic Walking Simulator for Gait Rehabilitation,' Biomed Tech, vol. 48, Issue 10, pp. 281-286, 2003. [73] Sankai Y, 'HAL: Hybrid assistive limb based on cybernics,' Robotics Research, vol. 66, Issue 34, pp. 25-34, 2011. [74] Hayashi T, Kawamoto H, Sankai Y, 'Control Method of Robot Suit Hal Working as Operator's Muscle Using Biological and Dynamical Information,' IEEE International Conference on Intelligent Robots and Systems, pp. 3063-3068, 2005. [75] Kyousuke G, Kotani N, Hiroyuki F, 'Effectiveness of the Single-joint Hal® Robot Suit for Rehabilitation After Orthopedic Surgery,' Physiotherapy, vol. 101, Issue 7, pp. 48-50. [76] Kawamoto.hiroki, 'Power assist method for HAL-3 using EMG-based feedback controller,' Systems, Man and Cybernetics IEEE International Conference, pp. 1648-1653, 2003. [77] Sankai, Y., 'Leading edge of cybernics Robot suit HAL,' China: International Joint Conference, pp. 1-5, 2006. [78] Tsukahara, A., Kawanishi, R., 'Sit-to-Stand and Stand-to-Sit Transfer Support for Complete Paraplegic Patients with Robot Suit HAL,' Advanced robotics, vol. 24, Issue 11, pp. 1615-1638, 2010. [79] Kasaoka, K. , Sankai, Y., 'Predictive control estimating operator's intention for stepping-up motion by exo-sckeleton type power assist system HAL,' Intelligent Robots and Systems. Proceedings 2001 IEEE/RSJ International Conference, pp. 1578-1583, 2001. [80] Lovrenovic Z, Doumit M., 'Review and analysis of recent development of lower extremity exoskeletons for walking assist,' 2016 IEEE EMBS International Student Conference (ISC), pp. 1-4, 2016. [81] H. Kawamoto, Y. Sankai, 'Power Assist Method Based on Phase Sequence Driven by Interaction between Human and Robot Suit,' Proc. of the 2004 IEEE Int. Workshop on Robot and Human Interactive Communication, vol. 9, pp. 491-496, 2004. [82] Lee S., Sankai Y., 'Power Assist Control for Walking aid With HAL-3 Based on EMG and Impedance Adjustment around Knee Joint,' Proc. of the 2002 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, vol. 10, pp. 1499-1504, 2002. [83] H. Imai, M. Nozawa, Y. Kawamura, Y. Sankai, 'Human Motion Oriented Control Method for Humanoid Robot,' Proc. of the 11th IEEE Int. Workshop on Robot and Human Interactive Communication, vol. 6, pp. 221-226, 2002. [84] Ishida T, Kiyama T, Osuka K, 'Movement analysis of power-assistive machinery with high strength-amplification,' 2010 SICE Annual Conference, Taipei, Taiwan, pp. 2022-2025, 2010. [85] A Tsukahara,Y Hasegawa,Y Sankai, 'Standing-up motion support for paraplegic patient with Robot Suit HAL,' 2009 IEEE International Conference on Rehabilitation Robotics, pp. 211-217, 2009. [86] H. Kawamoto, S. Taal, H. Niniss, 'Voluntary motion support control of Robot Suit HAL triggered by bioelectrical signal for hemiplegia,' 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) , pp. 462-466, 2010. [87] H Kawamoto, T Hayashi, T Sakurai, K Eguchi, Y Sanka, 'Development of single leg version of HAL for hemiplegia,' 31st Annual International Conference of the IEEE EMBS, Minnesota, USA, pp. 5038-5043, 2009. [88] Y. Sankai, 'Leading Edge of Cybernics: Robot Suit HAL,' Proc. of the Int. Joint Conference, vol. 10, pp. 1-2, 2006. [89] Adam Zoss, H. Kazerooni, Andrew Chu, 'Biomechanical Design of the Berkeley Lower Extremity Exoskeleton (BLEEX),' IEEE/ASME Trans. on Mechatronics, vol. 11, Issue 4, pp. 128-138, 2006. [90] STEGER R, KIM S H, KAZEROONI H, 'Control scheme and networked control architecture for the Berkeley lower extremity exoskeleton(BLEEX),' 2006 International Conference on Robotics and Automation, Orlando, Florida, pp. 3469-3477, May 15-19, 2006. [91] H. Kazerooni, J. L. Racine, L. Huang, R. Stegre, 'On the Control of the Berkeley Lower Extremity Exoskeleton (BLEEX),', Proc. of the 2005 IEEE Int. Conference on Robotics and Automation, vol. 4, pp. 4353-4360, 2005. [92] Adam Zoss, H. Kazerooni, Andrew Chu, 'Biomechanical Design of the Berkeley Lower Extremity Exoskeleton (BLEEX),' IEEE/ASME Trans. on Mechatronics, vol. 11, Issue 4, pp. 128-138, 2006. [93] Kazerooni H., Stegre R., Huang L, 'Hybrid Control of the Berkeley Lower Extremity Exoskeleton BLEEX,' Int. J. of Robotics Research, vol. 25, Issue 5, pp. 561-573, 2006. [94] Zoss Adam, Kazerooni, H, 'Design of an electrically actuated lower extremity exoskeleton,' Advanced Robotics, vol. 20, Issue 9, pp. 967-988, 2006. [95] Schiffman J M , Gregorczyk K N , Bensel C K, 'The effects of a lower body exoskeleton load carriage assistive device on limits of stability and postural sway,' Ergonomics, vol. 51, Issue 10, pp. 1515-1529, 2008. [96] Kong K, Moon H, Jeon D, Tomizuka M, 'Control of an exoskeleton for realization of aquatic therapy effects,' IEEE/ASME Transactions on Mechatronics, vol. 15, Issue 2, pp. 191-200, 2010. [97] Zeilig G, Weingarden H, Zwecker M, Dudkiewicz I, Bloch A, Esquenazi A, ' Safety and tolerance of the ReWalkTM exoskeleton suit for ambulation by people with complete spinal cord injury: A pilot study,' Journal of Spinal Cord Medicine, vol. 35, Issue 2, pp. 96-101, 2012. [98] Esquenazi A., 'New bipedal locomotion option for individuals with thoracic level motor complete spinal cord injury,' J. Spinal Res. Fundation, vol. 8, pp. 26-28, 2013. [99] Fineberg D B , Asselin P , Harel N Y, 'Vertical ground reaction force-based analysis of powered exoskeleton-assisted walking in persons with motor-complete paraplegia,' Journal of Spinal Cord Medicine, vol. 36, Issue 4, pp. 313-321, 2013. [100] Talaty M, Esquenazi A, Briceno J E, 'Differentiating ability in users of the ReWalk TM powered exoskeleton: An analysis of walking kinematics,' Rehabilitation Robotics (ICORR), 2013 IEEE International Conference on IEEE, pp. 1-5, 2013. [101] Erico Guizzp, Harry Goldstein, 'Exoskeletons are Strutting Out of the Lab and They are Carrying Their Creators with Them,', IEEE Spectrum, vol. 42, Issue 10, pp. 51-56, 2005. [102] Kilicarslan A , Prasad S , Grossman R G, 'High accuracy decoding of user intentions using EEG to control a lower-body exoskeleton,' Conference of the IEEE Engineering in Medicine and Biology Society, Osaka:IEEE, pp. 5606-5609, 2013. [103] Gancet J , Ilzkovitz M , Motard E, 'MINDWALKER: Going one step further with assistive lower limbs exoskeleton for SCI condition subjects,' Proceedings of the IEEE RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics. Rome:IEEE, pp. 1794-1800, 2012. [104] M. Parnichkun, C. Ngaecharoenkul, 'Hybrid of fuzzy and PID in kinematics control of a pneumatic system,' Proceedings of the 26th International Conference on Industrial Electronics, Control and Instrumentation, Nagoya Japan, vol. 2, pp. 1485-1490, 2000. [105] K. Balasubramanian, K. S. Rattan, 'Fuzzy logic control of a pneumatic muscle system using a linearizing control scheme,' The 22nd International Conference of the North American Fuzzy Information Processing Society, pp. 432-436, 2003. [106] K. Balasubramanian, K. S. Rattan, 'Feedforward control of a non-linear pneumatic muscle system using fuzzy logic,' The 12th IEEE International Conference on Fuzzy Systems, vol. 1, pp. 272-277, 2003. [107] S. W. Chan, J. H. Lilly, D. W. Repperger, 'Fuzzy PD+I learning control for a pneumatic muscle,' The 12th IEEE International Conference on Fuzzy Systems, vol. 1, pp. 278-283, 2003. [108] Zhang Cuifang, Lu Qiang, Duan Yunbo, 'Application of neural network in pneumatic PWM position servo system,' Journal of Harbin Institute of Technology, vol. 29, Issue 2, pp. 1-3, 1997. [109] D. C. Gross, K. S. Rattan, 'An adaptive multilayer neural network for trajectory tracking control of a pneumatic cylinder,' IEEE International Conference on Systems, Man, and Cybernetics, San Diego, USA, vol. 2, pp. 1662-1667, 1998. [110] Mohammed S, Huo W, Jian H, 'Nonlinear disturbance observer based sliding mode control of a human-driven knee joint orthosis,' Robotics Autonomous Systems, vol. 75, Issue 2, pp. 41-49, 2016. [111] Chen M S, Hwang Y R, Tomizuka M, 'A state-dependent boundary layer design for sliding mode control,' IEEE Transactions on Automatic Control, vol. 47, Issue 10, pp. 1677-1681, 2010. [112] Schindele D, Aschemann H, 'Trajectory tracking of a pneumatically driven parallel robot using higher-order SMC,' In 2010 15th International Conference on Methods and Models in Automation and Robotics, pp. 387-392, 2010. [113] Madani T, Daachi B, Djouani K, 'Adaptive controller based on uncertainty parametric estimation using backstepping and sliding mode techniques: Application to an active orthosis,' In 2014 European Control Conference (ECC), pp. 1869-1874, 2014. [114] Rifai H, Mohammed S, Daachi B, 'Adaptive control of a human-driven knee joint orthosis,' In 2012 IEEE International Conference on Robotics and Automation, pp. 2486-2491, 2012. [115] Pan D, Gao F, Miao Y, 'Co-simulation research of a novel exoskeleton-human robot system on humanoid gaits with fuzzy-PID/PID algorithms,' Advances in Engineering Software, vol. 79, Issue 1, pp. 36-46, 2015. [116] Yu W, Rosen J, 'Neural PID control of robot manipulators with application to an upper limb exoskeleton,' IEEE Transactions on cybernetics, vol. 43, Issue 2, pp. 673-684, 2013. [117] Chen C S., 'Dynamic Structure Neural-Fuzzy Networks for Robust Adaptive Control of Robot Manipulators,' IEEE Transactions on Industrial Electronics, vol. 55, Issue 9, pp. 3402-3414, 2008. [118] Xiaocong Zhu, Guoliang Tao, Bin Yao, Jian Cao, 'Adaptive robust posture control of a parallel manipulator driven by pneumatic muscles,' Automatica, vol. 44, pp. 2248-2257, 2008. [119] Balasubramanian S., Ward J., Sugar T., Jiping He., 'Characterization of the Dynamic Properties of Pneumatic Muscle Actuators,' IEEE 10th International Conference on Rehabilitation Robotics, pp. 764-770, 2007. [120] Vo-Minh T., Tjahjowidodo T., Ramon H., Van Brussel H., 'A New Approach to Modeling Hysteresis in a Pneumatic Artificial Muscle Using The Maxwell-Slip Model,' IEEE/ASME Transactions on Mechatronics, pp. 1-10, 2010. [121] Tae-Tong Choi, Jeong-Jung Kim, Ju-Jang Lee, 'Study of the effect of stiffness modification at pneumatic muscle actuated manipulator,' SICE Annual Conference, pp. 2007-2012, 2008. [122] Samarasekara A.P.K.G.S, 'Static analysis of the Pneumatic Muscles used in robot arms,' International Conference on Industrial and Information Systems, pp. 516-519, 2009. [123] [Online]. Available: https://es.wikipedia.org/wiki/Esqueleto_humano. [124] [Online]. Available: https://sportandspinalphysio.com.au/hip-joint-impingement-explained-how-you-can-fix-it/. [125] [Online]. Available: https://www.wnyurology.com/content.aspx?chunkiid=103620. [126] Vibhav B., ReddyMark R., JonesAlan David Kaye, 'Ankle Joint,' 2019. [127] [Online]. Available: https://www.pinterest.com/pin/816347869943031096/. [128] [Online]. Available: https://www.knee-pain-explained.com/knee-range-of-motion.html. [129] Cristina Magda Racu Cazacu, Ioan Doroftei, 'Structural and Kinematic Aspects of a New Ankle Rehabilitation Device,' Applied Mechanics and Materials, vol 658, pp. 507-512, 2014. [130] Anthropometric database/Introduction to the Anthropometric Database and important measurement values/ [Online]. Available: https://www.ilosh.gov.tw/menu/1188/1201/. [131] Wai-Yan Liu, Martijn A. Spruit, Jeannet M. Delbressine, Paul J, et al., 'Spatiotemporal gait characteristics in patients with COPD during the Gait Real-time Analysis Interactive Lab-based 6-minute walk test,' PLOS ONE, December 28, 2017. [132] S. Chen, J. Lach, B. Lo, 'Toward Pervasive Gait Analysis With Wearable Sensors: A Systematic Review,' IEEE J. Biomedical and Health Informatics, vol. 20, Issue 6, pp. 1521-1537, 2016. [133] Normative Gait Database. [Online]. Available: http://www.clinicalgaitanalysis.com/CGA. [134] Kirtley, C, 'CGA Normative Gait Database,' Hong Kong Polytechnic University, 10 Young Adults. [Online]. Available: http://guardian.curtin.edu.au/cga/data/. [135] Winter, A., 'International Society of Biomechanics, Biomechanical Data Resources,' Gait Data. [Online]. Available: http://www.isbweb.org/data/. [136] Linskell, J., 'CGA Normative Gait Database,' Limb Fitting Centre, Dundee, Scotland, Young Adult. [Online]. Available: http://guardian.curtin.edu.au/cga/data/. [137] Mudie MH, Winzeler-MercayU, Radwan S., 'Training Symmetry of Weight Distribution after Stroke: a Ra-ndomized Controlled Pilot Study Comparing Task-related Research, Bobath and Feedback Training Approaches,' Clin R-ehabil, vol. 16, pp. 582-592, 2002. [138] Lennon S., 'The Bobath Concept: A Critical Review of the Theoretical Assumptions that Guide Physiother-apy Practice in Stroke-rehabilitation,' Phys Ther Review, vol.1, pp. 35-45, 1996. [139] Wagennar RC, Meijer OG, van Wieringen PC., 'The Functional Recovery of Stroke: a Comparison between Neuro-developmental Treatment and the Brunnstrom Method,' vol. 22, pp. 1-8, 1990. [140] J. Carrand, R. Shepherd, 'Neurological Rehabilitation, Oxford: Butterworth Heinemann,' 1998. [141] Wang W Q, Wang A H, Yu L M, 'Constraint-induced movement therapy promotes brain functional reorganization in stroke patients with hemiplegia,' Neural Regeneration Research, vol. 7, Issue 32, pp. 2548-2553, 2012. [142] Veerbeek J M, van Wegen E, van Peppen R, 'What is the evidence for physical therapy poststroke? A systematic review and meta-analysis,' 2014. [143] Singh P, Heera P K, Kaur G, 'Expression of neuronal plasticity markers in hypoglycemia induced brain injury,' Mol Cell Biochem, vol.247, Issue 1, pp. 69-74, 2003. [144] Jui-Lin Liang, 'Design and Control of a 1-DOF Forearm Robotic System Driven by Pneumatic Artificial Muscle Actuator, Master Thesis,' Department of Engineering Science and Ocean Engineering, National Taiwan University, 2013. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82061 | - |
| dc.description.abstract | "隨著全球進入高齡化社會,年長者的醫療與照護成為十分重要的課題,機器人應用於復健輔助訓練機領域越來越受重視,因復健輔助訓練系統作為機器人技術與醫工技術結合的產物,為一種提升人體活動能力的裝置,取代傳統輔助復健治療師,可以輔助行動不方便的年長者移動,也可以幫助四肢受創的患者或是降低勞力工作者工作時的身體負擔,使用機器人對下肢功能障礙患者進行步態復健訓練,為國際先進的復健醫療方式。 在復健輔助訓練機器人系統各種致動器中,氣壓人造肌肉(PAM) 致動器對於復健輔助訓練設備而言具有很大的優勢,由於其固有的可彎曲性及良好的柔順性且工作方式類似於人體肌肉運動,同時又具有力量大、重量輕、柔順性好及安全性高,保證了復健者和設備之間的安全,此外該高出力-重量比和重量輕也是復健輔助訓練設備所需要的理想特性。 本研究提出以氣壓人造肌肉致動器應用於下肢復健輔助訓練機器人系統。有別於以往雙氣壓人造肌肉龐大及高成本機構的設計,本研究所開發下肢復健輔助訓練機器人系統可分為髖關節與膝關節兩軸,各關節均以氣壓比例閥控制單一氣壓人造肌肉致動器並搭配使用扭力彈簧進行模擬人體下肢關節伸展及收縮的仿生機構特性,達成類似於人類下肢之兩自由度機器人系統設計及實驗原型系統建立。透過分析機器人的正逆向運動學,來驗證所推導出來之運動學符合人體下肢運動模式。由於氣壓人造肌肉致動器是高度非線性的致動器,所以在控制上採用不需要建立系統數學模型的模糊滑動模式控制器 (Fuzzy Sliding Mode Control, FSMC)及自組織學習修正器 (Self-organizing modifier) ,並引入適應性控制設計成適應性自組織模糊滑動模式控制器 (Adaptive Self-Organizing Fuzzy Sliding Mode Control, ASOFSMC)。實驗分別先以單關節定位及軌跡追蹤控制及雙軸(髖關節與膝關節)同動位置定位控制,接著進一步引入臨床步態分析(CGA)下肢關節角度作為下肢軌跡追蹤命令,進行步態軌跡控制實驗,並加上一定負載做為模擬實際人體下肢重量進行負載下的步態軌跡追蹤控制。 由實驗結果顯示FSMC可以有效控制氣壓比例閥運用在兩自由度下肢復健輔助訓練機器人系統,而具有線上修正模糊滑動規則能力的自組織學習修正器,可解決當外在環境或負載急遽變化所造成系統不穩定時及時修正規則提高控制性能,適應性控制可以匹配控制器參數以達到更良好的控制效果。證明所提出之單一氣壓人造肌肉致動器搭配扭力彈簧的結合應用於下肢關節機構的設計,可達成如同雙氣壓人造肌肉致動器的性能,更具機構設計之優點,整體機構更小及成本更低。而由實驗結果證明本研究所提出創新式機構設計及控制系統的可行性和可靠性均可以滿足應用在復健輔具訓練的需求。" | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-25T05:34:59Z (GMT). No. of bitstreams: 1 U0001-2001202218051800.pdf: 11236158 bytes, checksum: 3ad4c6ff8e3e54bb1930c91646902202 (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | 博士學位論文口試委員會審定書 i 誌謝 iii 中文摘要 v ABSTRACT vii CONTENTS xi LIST OF FIGURES xv LIST OF TABLES xxv NOMENCLATURE xxvii ABBREVIATIONS xxxiii Chapter 1 Introduction 1 1.1 Preface 1 1.2 Literature Survey 5 1.2.1 Pneumatic Artificial Muscle (PAM) 5 1.2.2 Mathematical Model of PAM 10 1.2.3 Applications of PAM 14 1.2.4 Rehabilitation Assistant and Exoskeleton Robot System 18 1.2.5 Control Theory 30 1.3 Motivation and Purpose 33 1.4 Organization of Dissertation 36 Chapter 2 Human Biology and Walking Gait Analysis 41 2.1 Basic Human Biology 42 2.1.1 Lower Limb Bones 42 2.1.2 Lower Limb Joints 43 2.2 Lower Limb Motion Anatomy 46 2.2.1 Axis and plane of Anatomical 46 2.2.2 Motion characteristics 51 2.2.3 Measurement of Lower Limb Size 56 2.3 Gait Trajectory Analysis and Planning of Human Lower Limb 59 2.3.1 Analysis of Lower Limb Walking Gait Cycle 60 2.3.2 Gait Trajectory Planning of Human Lower Limb 61 2.4 Rehabilitation Exercise Therapy Theory 65 Chapter 3 Bionic Joint Design and Layout of Test Rig 69 3.1 Mechanism Design Concept of Bionic Lower Limb Joint 69 3.2 Layout of Test Rig 76 3.2.1 PAM Specification Selection 77 3.2.2 Torsion Spring Selection 79 3.2.3 Test rig layout of the 2-DOF lower limb robotic rehabilitation assistant system 83 Chapter 4 Kinematic Analysis 89 4.1 Forward Kinematics 89 4.2 Inverse Kinematics 96 4.3 Simulation of Kinematics and Gait Trajectory Planning 99 Chapter 5 Control Strategy and Controller Design 107 5.1 Fuzzy Sliding Mode Control 108 5.1.1 Sliding surface 114 5.1.2 Fuzzy controller 115 5.1.3 Membership function establishment 115 5.1.4 The defuzzification rule 120 5.1.5 Parameter setting 121 5.2 Self-Organizing Rules 122 5.3 Self-Organizing Fuzzy Sliding Mode Control 131 5.4 Adaptive Self-Organizing Fuzzy Sliding Mode Controller 134 5.5 Controller Design of the Assistant Training Robot System for Lower Limb Rehabilitation 137 Chapter 6 Experimental Results and Discussions 141 6.1 Experiments of 1-DOF Joint Angle Tracking Control 142 6.1.1 Experimental Results of Positioning Step Response 142 6.1.2 Experimental Results of Sinusoidal Wave Path Tracking Control 145 6.1.3 Experimental Results of Triangular Wave Path Tracking Control 155 6.1.4 Discussions of Experimental Results 165 6.2 Experiments of 2-DOF Simultaneous Positioning Tracking Control 167 6.2.1 Experimental Results of Simultaneous Positioning Tracking Control for Sinusoidal Wave 168 6.2.2 Experimental Results of Simultaneous Positioning Tracking Control for Triangular Wave 171 6.2.3 Discussions of Experimental Results 174 6.3 Experiments of Human Gait Planning Tracking Control 177 6.3.1 Experimental Results of gait planning tracking control 178 6.3.2 Discussions of Experimental Results 183 Chapter 7 Conclusions and Outlooks 185 7.1 Conclusions 185 7.2 Outlooks 189 REFERENCE 193 Published Journals During PhD Study 207 | |
| dc.language.iso | en | |
| dc.subject | 步態軌跡控制 | zh_TW |
| dc.subject | 氣壓人造肌肉致動器 | zh_TW |
| dc.subject | 復健輔具系統 | zh_TW |
| dc.subject | 扭力彈簧 | zh_TW |
| dc.subject | 模糊滑動控制 | zh_TW |
| dc.subject | 自組織 | zh_TW |
| dc.subject | 臨床步態分析 | zh_TW |
| dc.subject | Fuzzy sliding control | en |
| dc.subject | Gait trajectory control | en |
| dc.subject | Clinical gait analysis | en |
| dc.subject | Pneumatic artificial muscle actuator | en |
| dc.subject | Rehabilitation assistant system | en |
| dc.subject | Torsion spring | en |
| dc.subject | Self-organization | en |
| dc.title | 創新氣壓人造肌肉致動器應用於下肢復健輔助訓練機器人系統之研究 | zh_TW |
| dc.title | Development of an Innovative Pneumatic Artificial Muscle Actuator Driving Lower Limb Rehabilitation Assistant Training Robot System | en |
| dc.date.schoolyear | 110-1 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 郭振華,任志強,陳明飛,吳聰能,郭正山,蘇玉本,鍾清枝 | |
| dc.subject.keyword | 氣壓人造肌肉致動器,復健輔具系統,扭力彈簧,模糊滑動控制,自組織,臨床步態分析,步態軌跡控制, | zh_TW |
| dc.subject.keyword | Pneumatic artificial muscle actuator,Rehabilitation assistant system,Torsion spring,Fuzzy sliding control,Self-organization,Clinical gait analysis,Gait trajectory control, | en |
| dc.relation.page | 207 | |
| dc.identifier.doi | 10.6342/NTU202200124 | |
| dc.rights.note | 同意授權(限校園內公開) | |
| dc.date.accepted | 2022-01-21 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 工程科學及海洋工程學研究所 | zh_TW |
| dc.date.embargo-lift | 2027-01-01 | - |
| 顯示於系所單位: | 工程科學及海洋工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2001202218051800.pdf 未授權公開取用 | 10.97 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
