請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82060完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 魏安祺(An-Chi Wei) | |
| dc.contributor.author | Chien-Hsun Huang | en |
| dc.contributor.author | 黃建勛 | zh_TW |
| dc.date.accessioned | 2022-11-25T05:34:58Z | - |
| dc.date.available | 2026-02-23 | |
| dc.date.copyright | 2021-03-30 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-02-24 | |
| dc.identifier.citation | 1. Wang, X., et al., Interplay between up-regulation of cytochrome-c-oxidase and hemoglobin oxygenation induced by near-infrared laser. Sci Rep, 2016. 6: p. 30540. 2. Ferraresi, C., et al., Low-level laser (light) therapy increases mitochondrial membrane potential and ATP synthesis in C2C12 myotubes with a peak response at 3-6 h. Photochem Photobiol, 2015. 91(2): p. 411-6. 3. Mester, E., B. Szende, and P. Gärtner, [The effect of laser beams on the growth of hair in mice]. Radiobiol Radiother (Berl), 1968. 9(5): p. 621-6. 4. Wong-Riley, M.T., et al., Photobiomodulation directly benefits primary neurons functionally inactivated by toxins: role of cytochrome c oxidase. J Biol Chem, 2005. 280(6): p. 4761-71. 5. Karu, T.I. and N.I. Afanas'eva, [Cytochrome c oxidase as the primary photoacceptor upon laser exposure of cultured cells to visible and near IR-range light]. Dokl Akad Nauk, 1995. 342(5): p. 693-5. 6. Caterina, M.J. and Z. Pang, TRP Channels in Skin Biology and Pathophysiology. Pharmaceuticals (Basel), 2016. 9(4). 7. Salehpour, F., et al., Brain Photobiomodulation Therapy: a Narrative Review. Mol Neurobiol, 2018. 55(8): p. 6601-6636. 8. Sarti, P., et al., Cytochrome c oxidase and nitric oxide in action: molecular mechanisms and pathophysiological implications. Biochim Biophys Acta, 2012. 1817(4): p. 610-9. 9. Hamblin, M.R., Mechanisms and Mitochondrial Redox Signaling in Photobiomodulation. Photochem Photobiol, 2018. 94(2): p. 199-212. 10. Pannala, V.R., A.K. Camara, and R.K. Dash, Modeling the detailed kinetics of mitochondrial cytochrome c oxidase: Catalytic mechanism and nitric oxide inhibition. J Appl Physiol (1985), 2016. 121(5): p. 1196-1207. 11. de Freitas, L.F. and M.R. Hamblin, Proposed Mechanisms of Photobiomodulation or Low-Level Light Therapy. IEEE J Sel Top Quantum Electron, 2016. 22(3). 12. Huang, Y.Y., et al., Biphasic dose response in low level light therapy - an update. Dose Response, 2011. 9(4): p. 602-18. 13. McGuff, P.E., R.A. Deterling, Jr., and L.S. Gottlieb, Tumoricidal effect of laser energy on experimental and human malignant tumors. N Engl J Med, 1965. 273(9): p. 490-2. 14. Gál, P., et al., Effect of equal daily doses achieved by different power densities of low-level laser therapy at 635 nm on open skin wound healing in normal and corticosteroid-treated rats. Lasers Med Sci, 2009. 24(4): p. 539-47. 15. Hamblin, M. and T. Demidova, Mechanisms of low level light therapy. Proc SPIE, 2006. 6140: p. 1-12. 16. Mason, M., P. Nicholls, and C. Cooper, Re-evaluation of the Near Infrared spectra of mitochondrial cytochrome c oxidase: implications for non invasive in vivo monitoring of tissues. Biochimica et biophysica acta, 2014. 1837. 17. Avci, P., et al., Low-level laser (light) therapy (LLLT) in skin: stimulating, healing, restoring. Semin Cutan Med Surg, 2013. 32(1): p. 41-52. 18. Quaresima, V., S. Bisconti, and M. Ferrari, A brief review on the use of functional near-infrared spectroscopy (fNIRS) for language imaging studies in human newborns and adults. Brain Lang, 2012. 121(2): p. 79-89. 19. Kolyva, C., et al., Cytochrome c oxidase response to changes in cerebral oxygen delivery in the adult brain shows higher brain-specificity than haemoglobin. Neuroimage, 2014. 85 Pt 1(Pt 1): p. 234-44. 20. Tachtsidis, I., et al., Functional optical topography analysis using statistical parametric mapping (SPM) methodology with and without physiological confounds. Advances in experimental medicine and biology, 2010. 662: p. 237-243. 21. Kolyva, C., et al., Systematic investigation of changes in oxidized cerebral cytochrome c oxidase concentration during frontal lobe activation in healthy adults. Biomed Opt Express, 2012. 3(10): p. 2550-66. 22. Sanderson, T.H., et al., Inhibitory modulation of cytochrome c oxidase activity with specific near-infrared light wavelengths attenuates brain ischemia/reperfusion injury. Scientific Reports, 2018. 8(1): p. 3481. 23. Butt, W.D. and D. Keilin, Absorption Spectra and Some Other Properties of Cytochrome c and of Its Compounds with Ligands. Proceedings of the Royal Society of London. Series B, Biological Sciences, 1962. 156(965): p. 429-458. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82060 | - |
| dc.description.abstract | 光生物調節(Photobiomodulation)是一種新穎且具有潛力的治療方式,一方面光治療本身是無創的,且光治療使用的波長較長,對於人體的傷害較低;另一方面是LED的取得相當容易,不論是臨床治療或是居家應用,都非常容易實行。光生物調節的應用相當廣泛,根據治療的部位不同會達到不同的治療效果,例如:促進傷口復原、舒緩肌肉痠痛以及提升大腦的認知能力等,不只是使用在特定病患上,而是幾乎適用於每一個人。Cytochrome c Oxidase,電子傳遞鏈裡其中一個蛋白質複合體,是促進氧氣還原成水的關鍵酵素。在近期的研究中被認為是參與光生物調節中,吸收紅外光和近紅外光的重要的發色團(Chromophore)。 在本研究中,我們使用電極作為偵測氧氣消耗的工具,測量人類心肌細胞AC16在照射750 nm、810 nm、940 nm及1050 nm(約2 J/cm2,持續照射五分鐘)後得到的不同耗氧結果;從結果中得到750 nm及940 nm會造成粒線體耗氧率下降,810 nm及1050 nm則會造成粒線體耗氧率上升。同時本篇研究除了AC16之外,還對其他細胞株Panc-1、HEK-293、HepG2和IMR-32照射1050 nm(約2 J/cm2,持續照射五分鐘)光處理,並測量各株細胞對其控制組氧氣消耗的結果,從實驗結果發現,AC16及HepG2在照射1050 nm對上其對照組的氧氣消耗有顯著提升。本篇研究還使用了Cytochrome c Oxidase Assay做為粒線體活性測量的工具,對細胞照射810 nm及1050 nm(1.07~3.06 J/cm2,持續照射五分鐘),發現照射810 nm後,細胞活性有顯著提升。最後對粒線體染TMRM,使用Confocal拍攝螢光訊號來確認膜電位的高低,我們對細胞AC16、Panc-1、HEK-293、HepG2和IMR-32細胞照射1050 nm(6.37 mW/cm2),發現照射後能夠減緩AC16膜電位下降。儘管對於光生物調節的機制尚未完全了解,但從多篇研究及本篇實驗結果可以確定,使用近紅外光是一種很有潛力的治療手段。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-25T05:34:58Z (GMT). No. of bitstreams: 1 U0001-0702202123260000.pdf: 3033896 bytes, checksum: e453da14b0a5cb5186b6197d0f0430de (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | 中文摘要 3 Abstract 4 目錄 5 圖目錄 7 表目錄 9 第一章:緒論 10 第一節:研究背景 10 光生物調節 10 發色團 10 Cytochrome c Oxidase 11 假說 12 紅光與近紅外光 13 雙向劑量效應 13 第二節:文獻探討 15 光學窗口(Optical window) 15 照射人體前臂 16 照射細胞株 19 抑制性波長 20 第三節:研究動機 21 第二章:研究方法與材料 22 第一節:細胞培養 22 第二節:儀器 23 第三節:光學平台搭建 25 第四節:尋找實驗條件 26 第五節:氧氣消耗實驗 27 照射劑量的決定 27 810 nm光源照射於不同細胞 28 對AC16細胞照射不同波長之光源 29 1050 nm光源照射於不同細胞 30 第六節:Cytochrome c oxidase assay 32 第七節:細胞影像 33 第八節:資料統計與分析 35 第三章:結果 36 第一節:氧氣消耗實驗 36 確認光照條件 36 810 nm光源照射於不同細胞 37 對AC16照射不同波長之光源 38 1050 nm光源照射於不同細胞 39 第二節:Cytochrome c Oxidase Assay 40 第三節:細胞影像 42 第四章:討論 44 第五章:結論 47 參考文獻 48 | |
| dc.language.iso | zh-TW | |
| dc.subject | 近紅外光 | zh_TW |
| dc.subject | 細胞色素c氧化酶 | zh_TW |
| dc.subject | 粒線體 | zh_TW |
| dc.subject | 光生物調節 | zh_TW |
| dc.subject | near infrared | en |
| dc.subject | mitochondria | en |
| dc.subject | cytochrome c oxidase | en |
| dc.subject | photobiomodulation | en |
| dc.title | 使用寬範圍近紅外光對細胞色素c氧化酶活性的光生物調節 | zh_TW |
| dc.title | Broad range near infrared photobiomodulation of cytochrome c oxidase activity | en |
| dc.date.schoolyear | 109-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 黃立達(Hsin-Tsai Liu),宋孔彬(Chih-Yang Tseng),何亦平 | |
| dc.subject.keyword | 光生物調節,粒線體,細胞色素c氧化酶,近紅外光, | zh_TW |
| dc.subject.keyword | photobiomodulation,mitochondria,cytochrome c oxidase,near infrared, | en |
| dc.relation.page | 50 | |
| dc.identifier.doi | 10.6342/NTU202100653 | |
| dc.rights.note | 同意授權(限校園內公開) | |
| dc.date.accepted | 2021-02-25 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 生醫電子與資訊學研究所 | zh_TW |
| dc.date.embargo-lift | 2026-02-23 | - |
| 顯示於系所單位: | 生醫電子與資訊學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-0702202123260000.pdf 未授權公開取用 | 2.96 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
