請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82032完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 呂良鴻(Liang-Hung Lu) | |
| dc.contributor.author | Hao-Yu Kao | en |
| dc.contributor.author | 高晧瑜 | zh_TW |
| dc.date.accessioned | 2022-11-25T05:34:25Z | - |
| dc.date.available | 2026-07-05 | |
| dc.date.copyright | 2021-08-18 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-07-16 | |
| dc.identifier.citation | [1]Qualcomm Announces Advanced Fingerprint Scanning and Authentication Technology, Qualcomm Technologies, Inc. Released 28 June 2017. Available from https://www.qualcomm.com/news/releases/2017/06/28/qualcomm-announces-advanced-fingerprint-scanning-and-authentication. [2]K. Khade, V. Gadget, H. patil and S. Velankar, 'Autonomous Electric Vehicle Using Ultrasonic Sensor Skirt Approach,' 2018 3rd International Conference for Convergence in Technology (I2CT), pp. 1-6, Apr. 2018. [3]Y. Wu, Y. Wang, W.K.C, Yung, M. Pecht, “Ultrasonic Health Monitoring of Lithium-Ion Batteries,” Electronics 8, no 7: 751, July 2019. Available from https://doi.org/10.3390/electronics8070751. [4]M. Berecibar, I. Gandiaga, I. Villarreal, N. Omar, J. Van Mierlo, P. Van den Bossche, “Critical review of state of health estimation methods of Li-ion batteries for real applications” Renewable and Sustainable Energy Reviews, vol. 56, pp. 572-587, Apr. 2016. [5]J. Jaguemont, N. Omar, F. Martel, P. Van den Bossche, J. Van Mierlo, “Streamline three-dimensional thermal model of a lithium titanate pouch cell battery in extreme temperature conditions with module simulation,” Journal of Power Sources, vol. 367, pp. 24-33, Nov. 2017. [6]H. Li, Z. Zhou, “Numerical Simulation and Experimental Study of Fluid-Solid Coupling-Based Air-Coupled Ultrasonic Detection of Stomata Defect of Lithium-Ion Battery,” Sensors (Basel, Switzerland), vol. 19: 2391, May 2019. [7]A. Nuhic, T. Terzimehic, T. Soczka-Guth, M. Buchholz, K. Dietmayer, “Health diagnosis and remaining useful life prognostics of lithium-ion batteries using data-driven methods,” Journal of Power Sources, vol. 239, pp. 680-688, Oct. 2013. [8]C. Kuratli and Q. Huang, “A CMOS ultrasound range-finder microsystem,” IEEE Journal of Solid-State Circuits, vol. 35, no. 12, pp. 2005-2017, Dec. 2000. [9]B. Sood, M. Osterman and M. Pecht, 'Health monitoring of lithium-ion batteries,' 2013 IEEE Symposium on Product Compliance Engineering (ISPCE), pp. 1-6, Oct. 2013. [10]Physical and Piezoelectric properties of APC Materials, APC International, Ltd. Updated Jan. 2019. Available from https://www.americanpiezo.com/apc-materials/piezoelectric-properties.html. [11]A. Ballato, 'Modeling piezoelectric and piezomagnetic devices and structures via equivalent networks,' IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 48, no. 5, pp. 1189-1240, Sept. 2001. [12]F.J. Arnold, M.S. Gonçalves, L.L. Bravo-Roger, S.S. Muhlen, “Electrical Impedance of Piezoelectric Ceramics under Acoustic Loads,” ECTI Transactions on Electrical Engineering, Electronics, and Communications, vol. 12, pp. 48-54, Aug. 2014. [13]R. J. Przybyla, H. Tang, A. Guedes, S. E. Shelton, D. A. Horsley and B. E. Boser, '3D Ultrasonic Rangefinder on a Chip,' IEEE Journal of Solid-State Circuits, vol. 50, no. 1, pp. 320-334, Jan. 2015. [14]D. T. Blackstock, Fundamentals of Physical Acoustics. New York: Wiley, 2000. [15]3828 eTape Continous Fluid Level Sensor, document 3828, Adafruit Industries LLC, 2007. Available from https://www.whiteboxes.ch/shop/etape/. [16]P. Petlach and M. Dub, 'Possibilities of COTS ultrasonic fuel quantity measurement,' 2016 IEEE/AIAA 35th Digital Avionics Systems Conference (DASC), pp. 1-6, 2016. [17]J. Terzic, C.R. Nagarajah, M. Alamgir, “Fluid level measurement in dynamic environments using a single ultrasonic sensor and Support Vector Machine (SVM),” Sensors and Actuators A: Physical, vol. 161, issues 1–2, pp. 278-287, June 2010. [18]FGX Magnetic Float Level Transmitter, document Magnetic Float Level Transmitter, FineTek Co., Ltd, 2015 [19]D. Zhao et al., 'High-voltage pulser for ultrasound medical imaging applications,' 2011 International Symposium on Integrated Circuits, pp. 408-411, 2011. [20]R. W. Erickson, D. Maksimović, Fundamentals of power electronics. Norwell, Mass: Kluwer Academic, 2001. [21]D. Ø. Larsen, P. L. Muntal, I. H. H. Jørgensen and E. Bruun, 'High-voltage pulse-triggered SR latch level-shifter design considerations,' 2014 NORCHIP, pp. 1-6, 2014. [22]H. Cha, D. Zhao, J. H. Cheong, B. Guo, H. Yu and M. Je, 'A CMOS High-Voltage Transmitter IC for Ultrasound Medical Imaging Applications,' IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 60, no. 6, pp. 316-320, June 2013. [23]顧博智(2018)。應用於超音波影像系統之類比接收前端設計。國立臺灣大學電子工程學研究所博士論文,台北市。取自https://hdl.handle.net/11296/v79j8p [24]B. Razavi, Design of Analog CMOS Integrated Circuits. New York: McGraw-Hill, 2001. [25]Y. Zhang, Y. Fei, Z. Peng and F. Huang, 'A 250MHz 60dB gain control range 1dB gain step programmable gain amplifier with DC-offset calibration,' 2015 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS), pp. 227-230, 2015. [26]J. P. Alegre, S. Celma, C. Aldea, and B. Calvo, “Fast-settling envelope detectors,” Proc. IEEE Instrum. Meas. Technol. Conf., pp. 926–929, Apr. 2006. [27]J. P. Alegre, S. Celma, B. Calvo and J. M. Garcia del Pozo, 'Design of a Novel Envelope Detector for Fast-Settling Circuits,' IEEE Transactions on Instrumentation and Measurement, vol. 57, no. 1, pp. 4-9, Jan. 2008. [28]L. Gold, T. Bach, W. Virsik, A. Schmitt, J. Müller, T. E. Staab, G. Sextl, “Probing lithium-ion batteries' state-of-charge using ultrasonic transmission – Concept and laboratory testing,” Journal of Power Sources, vol. 343, pp. 536-544, Mar. 2017. [29]TDC1000-C2000EVM Evolution Module, document TDC1000-C2000EVM, Texas Instruments Inc., 2014. [30]HC-SR04 Distance Measurement with Ultrasound, document HC-SR04, Adafruit Industries LLC, 2017. [31]ULM-70 Ultrasonic Level Meters, document ULM-70, Jetec Electronics Co., Ltd, 2007. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82032 | - |
| dc.description.abstract | 市面上以鋰電池為電源供應的電子產品越來越多,包含電動車與手機等等。然而,鋰電池的安全與耐用度問題仍尚未完全解決,尤其在電動車的應用中,電池的蓄電力下降與爆炸問題,仍然是電動車存在的主要問題之一。本篇論文整理近年電池管理系統的研究,並依照其規格,設計出一微小化的量測系統。此系統亦能成為一超音波液位計,其不接觸到液體的特性,可有許多工業上的應用。 本系統由兩個晶片與兩個超音波換能器 (Transducer) 所組成,兩個晶片分別為發射器與接收器。發射器的製程為 0.18μm DMOS製程,其輸出為脈波,頻率為超音波換能器的共振頻率,目的為驅動超音波換能器。同時,發射器內部有 停滯時間控制器 (dead-time controller) 的電路,使晶片不會產生大的瞬間電流,以免在電動車內部的環境產生無法預估的化學反應。接收器的製程為0.18μm CMOS製程,晶片內部包含低雜訊放大器 (LNA)、自動增益控制器 (AGC)、帶通濾波器 (BPF)、包絡檢波器 (envelope detector),接收器的目標是讀出接受訊號的時間及振幅大小。由於超音波在傳遞時會衰減,為了讀出不受衰減影響的接收訊號,時間增益補償(time-gain compensation) 會被應用在AGC內。此外,AGC有取樣保值電路(sample and hold circuit),當晶片感應到接收訊號時,會對AGC控制增益大小的數位訊號進行取樣,並輸出此數位訊號。由於數位訊號是由計數器 (counter)所產生的,故此訊號亦可作為時間數位轉換器的輸出。 根據系統需求,整個系統內各個重要設計參數都進行詳細計算。本論文使用30V、5V、1.8V的電源電壓,接受器的類比前端輸入雜訊小於3nV/√Hz,而接收訊號時間的準確度小於5μs,兩顆晶片的總功耗約為55mW。此設計可與部分市售超音波液位計規格匹敵,能多方應用在許多產業中。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-25T05:34:25Z (GMT). No. of bitstreams: 1 U0001-1607202111464400.pdf: 3209136 bytes, checksum: 06813936b58843121dc90684390b3d8a (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | 致謝 i 摘要 iii Abstract v Content vii List of Figures x List of Tables xiv Chapter 1 Introduction 1 Chapter 2 The Overview of the Ultrasonic Battery Detection System 4 2.1 Commercial lithium-ion batteries 4 2.2 Ultrasonic battery detection system 7 2.3 Equivalent Circuit of the Piezoelectric Transducer 9 2.4 Ultrasonic Transducer 13 2.5 Dissertation Motivation and Target 17 2.6 System Architecture 19 Chapter 3 Transmitter 21 3.1 Architecture 21 3.2 Circuit Implementation 24 3.2.1 Dead-time controller 24 3.2.2 Level Shifter 25 3.2.3 Low-voltage Driver 27 3.3 Dead-time Analysis 28 3.4 Measurement Result 31 3.4.1 Electrical Characteristic 31 3.4.2 Driving Ability 33 3.5 Brief Summary 36 Chapter 4 Receiver 37 4.1 Architecture 37 4.2 System Analysis 41 4.3 Circuit Implementation 45 4.3.1 LNA 45 4.3.2 AGC 48 4.3.3 Band-pass Filter 52 4.3.4 Envelope Detector 54 4.3.5 Comparator 57 4.4 Experimental Result 59 4.5 Brief Summary 65 Chapter 5 Implementation of Ultrasonic Battery Detection System 66 5.1 System Architecture 66 5.2 Interface Electronics 67 5.3 Detailed System Implementation 69 5.3.1 Target 69 5.3.2 System Setup 71 5.4 Measurement Result 75 5.5 Conclusion 78 Chapter 6 Conclusion 79 Reference 80 | |
| dc.language.iso | en | |
| dc.subject | 超音波系統 | zh_TW |
| dc.subject | 電動車 | zh_TW |
| dc.subject | 高低壓整合 | zh_TW |
| dc.subject | Electric Car | en |
| dc.subject | HV Circuit Integration | en |
| dc.subject | Ultrasound System | en |
| dc.title | 一個應用時間增益補償的TSMC 180nm DMOS製程的微小化超音波液位計之設計 | zh_TW |
| dc.title | Design of a Miniature Ultrasonic Fluid Level Gauge Utilizing Time-gain Compensation in TSMC 180nm DMOS Process | en |
| dc.date.schoolyear | 109-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳巍仁(Hsin-Tsai Liu),郭建男(Chih-Yang Tseng),蔡宗亨 | |
| dc.subject.keyword | 電動車,超音波系統,高低壓整合, | zh_TW |
| dc.subject.keyword | Electric Car,Ultrasound System,HV Circuit Integration, | en |
| dc.relation.page | 83 | |
| dc.identifier.doi | 10.6342/NTU202101506 | |
| dc.rights.note | 同意授權(限校園內公開) | |
| dc.date.accepted | 2021-07-19 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電子工程學研究所 | zh_TW |
| dc.date.embargo-lift | 2026-07-05 | - |
| 顯示於系所單位: | 電子工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1607202111464400.pdf 未授權公開取用 | 3.13 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
