請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82031完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳建彰(Jian-Zhang Chen) | |
| dc.contributor.author | Jung-Hsien Chang | en |
| dc.contributor.author | 張榮憲 | zh_TW |
| dc.date.accessioned | 2022-11-25T05:34:24Z | - |
| dc.date.available | 2024-07-31 | |
| dc.date.copyright | 2021-08-18 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-07-22 | |
| dc.identifier.citation | 1. Chu, S., Y. Cui, and N. Liu, The path towards sustainable energy. Nature materials, 2017. 16(1): p. 16-22. 2. Singh, S., et al., Hydrogen: A sustainable fuel for future of the transport sector. Renewable and Sustainable Energy Reviews, 2015. 51: p. 623-633. 3. Weigelt, C. and E. Shittu, Competition, regulatory policy, and firms’ resource investments: The case of renewable energy technologies. Academy of Management Journal, 2016. 59(2): p. 678-704. 4. Yan, J., et al., Recent Advances in Design and Fabrication of Electrochemical Supercapacitors with High Energy Densities. Advanced Energy Materials, 2014. 4(4): p. 1300816. 5. Yang, P., et al., Low-cost high-performance solid-state asymmetric supercapacitors based on MnO2 nanowires and Fe2O3 nanotubes. Nano letters, 2014. 14(2): p. 731-736. 6. Shao, Y., et al., Graphene-based materials for flexible supercapacitors. Chemical Society Reviews, 2015. 44(11): p. 3639-3665. 7. Kim, D.W., S.M. Jung, and H.Y. Jung, Long term thermostable supercapacitor using in-situ SnO2 doped porous graphene aerogel. Journal of Power Sources, 2020. 448: p. 8. 8. Chen, X.Y., et al., Nitrogen-doped porous carbon for supercapacitor with long-term electrochemical stability. Journal of Power Sources, 2013. 230: p. 50-58. 9. Sikdar, A., et al., Ultra-large area graphene hybrid hydrogel for customized performance supercapacitors: High volumetric, areal energy density and potential wearability. Electrochimica Acta, 2020. 332: p. 135492. 10. Kaempgen, M., et al., Printable thin film supercapacitors using single-walled carbon nanotubes. Nano letters, 2009. 9(5): p. 1872-1876. 11. Kuok, F.-H., et al., Atmospheric-pressure-plasma-jet processed carbon nanotube (CNT)–reduced graphene oxide (rGO) nanocomposites for gel-electrolyte supercapacitors. RSC advances, 2018. 8(6): p. 2851-2857. 12. Chen, Y.J., et al., High capacity and excellent cycling stability of single-walled carbon nanotube/SnO2 core-shell structures as Li-insertion materials. Applied Physics Letters, 2008. 92(22): p. 3. 13. Sivaraman, P., et al., All-solid-supercapacitor based on polyaniline and sulfonated polymers. Synthetic Metals, 2006. 156(16-17): p. 1057-1064. 14. Zhi, M., et al., Nanostructured carbon–metal oxide composite electrodes for supercapacitors: a review. Nanoscale, 2013. 5(1): p. 72-88. 15. Novoselov, K.S., et al., Electric field effect in atomically thin carbon films. Science, 2004. 306(5696): p. 666-669. 16. Aydın, C., Synthesis of SnO2:rGO nanocomposites by the microwave-assisted hydrothermal method and change of the morphology, structural, optical and electrical properties. Journal of Alloys and Compounds, 2019. 771: p. 964-972. 17. Rames, S., et al., Porous materials of nitrogen doped graphene oxide@SnO2 electrode for capable supercapacitor application. Scientific Reports, 2019. 9. 18. Arivu, M., et al., Facile synthesis of Ni3B/rGO nanocomposite as an efficient electrocatalyst for the oxygen evolution reaction in alkaline media. Electrochemistry Communications, 2018. 86: p. 121-125. 19. Lim, S.P., N.M. Huang, and H.N. Lim, Solvothermal synthesis of SnO2/graphene nanocomposites for supercapacitor application. Ceramics International, 2013. 39(6): p. 6647-6655. 20. Zheng, W., et al., Synthesis of hierarchical reduced graphene oxide/SnO2/polypyrrole ternary composites with high electrochemical performance. Materials Research Bulletin, 2016. 80: p. 303-308. 21. Xiang, C., et al., A reduced graphene oxide/Co3O4 composite for supercapacitor electrode. Journal of Power Sources, 2013. 226: p. 65-70. 22. Selvan, R.K., et al., Synthesis of hexagonal-shaped SnO2 nanocrystals and SnO2@C nanocomposites for electrochemical redox supercapacitors. Journal of Physical Chemistry C, 2008. 112(6): p. 1825-1830. 23. Velmurugan, V., et al., Synthesis of tin oxide/graphene (SnO2/G) nanocomposite and its electrochemical properties for supercapacitor applications. Materials Research Bulletin, 2016. 84: p. 145-151. 24. Li, F.H., et al., One-step synthesis of graphene/SnO2 nanocomposites and its application in electrochemical supercapacitors. Nanotechnology, 2009. 20(45). 25. Garino, N., et al., Microwave-Assisted Synthesis of Reduced Graphene Oxide/SnO2 Nanocomposite for Oxygen Reduction Reaction in Microbial Fuel Cells. Acs Applied Materials Interfaces, 2016. 8(7): p. 4633-4643. 26. Chen, M.X., et al., Novel and Facile Method, Dynamic Self-Assemble, To Prepare SnO2/rGO Droplet Aerogel with Complex Morphologies and Their Application in Supercapacitors. Acs Applied Materials Interfaces, 2014. 6(16): p. 14327-14337. 27. Choudhari, A., et al., Sonochemical preparation and characterization of rGO/SnO2 nanocomposite: Electrochemical and gas sensing performance. Ceramics International, 2020. 46(8, Part A): p. 11290-11296. 28. Tendero, C., et al., Atmospheric pressure plasmas: A review. Spectrochimica Acta Part B-Atomic Spectroscopy, 2006. 61(1): p. 2-30. 29. Schutze, A., et al., The atmospheric-pressure plasma jet: A review and comparison to other plasma sources. Ieee Transactions on Plasma Science, 1998. 26(6): p. 1685-1694. 30. Laroussi, M. and T. Akan, Arc-free atmospheric pressure cold plasma jets: A review. Plasma Processes and Polymers, 2007. 4(9): p. 777-788. 31. Bornholdt, S., M. Wolter, and H. Kersten, Characterization of an atmospheric pressure plasma jet for surface modification and thin film deposition. The European Physical Journal D, 2010. 60(3): p. 653-660. 32. Fricke, K., et al., High rate etching of polymers by means of an atmospheric pressure plasma jet. Plasma Processes and Polymers, 2011. 8(1): p. 51-58. 33. Shashurin, A., et al., Living tissue under treatment of cold plasma atmospheric jet. Applied Physics Letters, 2008. 93(18): p. 181501. 34. Hsu, Y.-w., et al., Deposition of zinc oxide thin films by an atmospheric pressure plasma jet. Thin Solid Films, 2011. 519(10): p. 3095-3099. 35. Mikkelsen, M., M. Jorgensen, and F.C. Krebs, The teraton challenge. A review of fixation and transformation of carbon dioxide. Energy Environmental Science, 2010. 3(1): p. 43-81. 36. Centi, G., E.A. Quadrelli, and S. Perathoner, Catalysis for CO2 conversion: a key technology for rapid introduction of renewable energy in the value chain of chemical industries. Energy Environmental Science, 2013. 6(6): p. 1711-1731. 37. Pruess, K., Enhanced geothermal systems (EGS) using CO2 as working fluid - A novel approach for generating renewable energy with simultaneous sequestration of carbon. Geothermics, 2006. 35(4): p. 351-367. 38. Snoeckx, R. and A. Bogaerts, Plasma technology - a novel solution for CO2 conversion? Chemical Society Reviews, 2017. 46(19): p. 5805-5863. 39. Ashford, B. and X. Tu, Non-thermal plasma technology for the conversion of CO2. Current Opinion in Green and Sustainable Chemistry, 2017. 3: p. 45-49. 40. Balat, M. and R. Berjoan, Oxidation of sintered silicon carbide under microwave-induced CO2 plasma at high temperature: active–passive transition. Applied surface science, 2000. 161(3-4): p. 434-442. 41. Yao, S., et al., Oxidative coupling and reforming of methane with carbon dioxide using a high-frequency pulsed plasma. Energy fuels, 2000. 14(4): p. 910-914. 42. Zhang, X., et al., Oxidative dehydrogenation of ethane with CO2 over catalyst under pulse corona plasma. Catalysis today, 2004. 89(1-2): p. 97-102. 43. Zhou, Q., et al., Low temperature plasma-mediated synthesis of graphene nanosheets for supercapacitor electrodes. Journal of Materials Chemistry, 2012. 22(13): p. 6061-6066. 44. Xu, C.-H. and J.-Z. Chen, Atmospheric-pressure plasma jet processed SnO2/CNT nanocomposite for supercapacitor application. Ceramics International, 2016. 42(12): p. 14287-14291. 45. Liao, C.-Y., et al., Flexible quasi-solid-state SnO2/CNT supercapacitor processed by a dc-pulse nitrogen atmospheric-pressure plasma jet. Journal of Energy Storage, 2017. 11: p. 237-241. 46. Chang, J.-H., et al., Flexible rGO-SnO2 supercapacitors converted from pastes containing SnCl2 liquid precursor using atmospheric-pressure plasma jet. Ceramics International, 2021. 47(2): p. 1651-1659. 47. Chang, J.-H., et al., Carbon Dioxide Tornado-Type Atmospheric-Pressure-Plasma-Jet-Processed rGO-SnO2 Nanocomposites for Symmetric Supercapacitors. Materials, 2021. 14(11): p. 2777. 48. An, S.J., et al., The state of understanding of the lithium-ion-battery graphite solid electrolyte interphase (SEI) and its relationship to formation cycling. Carbon, 2016. 105: p. 52-76. 49. González, A., et al., Review on supercapacitors: Technologies and materials. Renewable and Sustainable Energy Reviews, 2016. 58: p. 1189-1206. 50. Zhang, S.-W., et al., A high energy density aqueous hybrid supercapacitor with widened potential window through multi approaches. Nano Energy, 2019. 59: p. 41-49. 51. Meng, C., O.Z. Gall, and P.P. Irazoqui, A flexible super-capacitive solid-state power supply for miniature implantable medical devices. Biomedical microdevices, 2013. 15(6): p. 973-983. 52. Pandolfo, A.G. and A.F. Hollenkamp, Carbon properties and their role in supercapacitors. Journal of Power Sources, 2006. 157(1): p. 11-27. 53. Chen, X., R. Paul, and L. Dai, Carbon-based supercapacitors for efficient energy storage. National Science Review, 2017. 4(3): p. 453-489. 54. Gibrat, R., C. Romieu, and C. Grignon, A procedure for estimating the surface potential of charged or neutral membranes with 8-anilino-1-naphthalenesulphonate probe. Adequacy of the Gouy-Chapman model. Biochimica et Biophysica Acta (BBA) - Biomembranes, 1983. 736(2): p. 196-202. 55. Raza, W., et al., Recent advancements in supercapacitor technology. Nano Energy, 2018. 52: p. 441-473. 56. Zhang, L.L. and X. Zhao, Carbon-based materials as supercapacitor electrodes. Chemical Society Reviews, 2009. 38(9): p. 2520-2531. 57. Qu, D. and H. Shi, Studies of activated carbons used in double-layer capacitors. Journal of Power Sources, 1998. 74(1): p. 99-107. 58. Endo, M., et al., Capacitance and pore-size distribution in aqueous and nonaqueous electrolytes using various activated carbon electrodes. Journal of the Electrochemical Society, 2001. 148(8): p. A910. 59. Peng, L., et al., Super-hierarchical porous carbons derived from mixed biomass wastes by a stepwise removal strategy for high-performance supercapacitors. Journal of power sources, 2018. 377: p. 151-160. 60. Huang, J., B.G. Sumpter, and V. Meunier, Theoretical Model for Nanoporous Carbon Supercapacitors. Angewandte Chemie International Edition, 2008. 47(3): p. 520-524. 61. Huang, J., B.G. Sumpter, and V. Meunier, A Universal Model for Nanoporous Carbon Supercapacitors Applicable to Diverse Pore Regimes, Carbon Materials, and Electrolytes. Chemistry – A European Journal, 2008. 14(22): p. 6614-6626. 62. Augustyn, V., P. Simon, and B. Dunn, Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environmental Science, 2014. 7(5): p. 1597-1614. 63. Conway, B.E., Transition from “supercapacitor” to “battery” behavior in electrochemical energy storage. Journal of the Electrochemical Society, 1991. 138(6): p. 1539. 64. Yoshida, N., et al., Unveiling the Origin of Unusual Pseudocapacitance of RuO2·nH2O from Its Hierarchical Nanostructure by Small-Angle X-ray Scattering. The Journal of Physical Chemistry C, 2013. 117(23): p. 12003-12009. 65. Kim, J.W., V. Augustyn, and B. Dunn, The Effect of Crystallinity on the Rapid Pseudocapacitive Response of Nb2O5. Advanced Energy Materials, 2012. 2(1): p. 141-148. 66. Wang, Y., et al., Recent progress in carbon-based materials for supercapacitor electrodes: a review. Journal of Materials Science, 2021. 56(1): p. 173-200. 67. Wang, J., et al., Pseudocapacitive materials for electrochemical capacitors: from rational synthesis to capacitance optimization. National Science Review, 2017. 4(1): p. 71-90. 68. Vinodh, R., et al., A review on porous carbon electrode material derived from hypercross-linked polymers for supercapacitor applications. Journal of Energy Storage, 2020. 32: p. 101831. 69. Yang, W., et al., Graphene in Supercapacitor Applications. Current Opinion in Colloid Interface Science, 2015. 20(5): p. 416-428. 70. Frackowiak, E. and F. Beguin, Carbon materials for the electrochemical storage of energy in capacitors. Carbon, 2001. 39(6): p. 937-950. 71. Shi, H., Activated carbons and double layer capacitance. Electrochimica Acta, 1996. 41(10): p. 1633-1639. 72. Biener, J., et al., Advanced carbon aerogels for energy applications. Energy Environmental Science, 2011. 4(3): p. 656-667. 73. Dresselhaus, M., G. Dresselhaus, and A. Jorio, Unusual properties and structure of carbon nanotubes. Annu. Rev. Mater. Res., 2004. 34: p. 247-278. 74. Frackowiak, E., et al., Nanotubular materials as electrodes for supercapacitors. Fuel Processing Technology, 2002. 77-78: p. 213-219. 75. Frackowiak, E., et al., Enhanced capacitance of carbon nanotubes through chemical activation. Chemical Physics Letters, 2002. 361(1): p. 35-41. 76. Dai, J.-F., et al., Surface properties of graphene: relationship to graphene-polymer composites. Rev. Adv. Mater. Sci, 2015. 40(1): p. 60-71. 77. Wu, Z.-S., et al., Graphene/metal oxide composite electrode materials for energy storage. Nano Energy, 2012. 1(1): p. 107-131. 78. Iro, Z.S., C. Subramani, and S. Dash, A brief review on electrode materials for supercapacitor. Int. J. Electrochem. Sci, 2016. 11(12): p. 10628-10643. 79. Miller, J.R. and P. Simon, Electrochemical capacitors for energy management. Science Magazine, 2008. 321(5889): p. 651-652. 80. Hu, C.-C., C.-H. Lee, and T.-C. Wen, Oxygen evolution and hypochlorite production on Ru-Pt binary oxides. Journal of applied electrochemistry, 1996. 26(1): p. 72-82. 81. Ramani, M., et al., Synthesis and characterization of hydrous ruthenium oxide-carbon supercapacitors. Journal of the Electrochemical Society, 2001. 148(4): p. A374. 82. Zheng, J., P. Cygan, and T. Jow, Hydrous ruthenium oxide as an electrode material for electrochemical capacitors. Journal of the Electrochemical Society, 1995. 142(8): p. 2699. 83. Yu, G.-Y., et al., Synthesis of Ru/carbon nanocomposites by polyol process for electrochemical supercapacitor electrodes. Materials Letters, 2006. 60(20): p. 2453-2456. 84. Seo, M.-K., A. Saouab, and S.-J. Park, Effect of annealing temperature on electrochemical characteristics of ruthenium oxide/multi-walled carbon nanotube composites. Materials Science and Engineering: B, 2010. 167(1): p. 65-69. 85. Kim, Y.-T., K. Tadai, and T. Mitani, Highly dispersed ruthenium oxide nanoparticles on carboxylated carbon nanotubes for supercapacitor electrode materials. Journal of Materials Chemistry, 2005. 15(46): p. 4914-4921. 86. Lee, J.-K., et al., Electrochemical capacitance of nanocomposite films formed by loading carbon nanotubes with ruthenium oxide. Journal of power sources, 2006. 159(2): p. 1527-1531. 87. Sugimoto, W., et al., Proton and electron conductivity in hydrous ruthenium oxides evaluated by electrochemical impedance spectroscopy: the origin of large capacitance. The Journal of Physical Chemistry B, 2005. 109(15): p. 7330-7338. 88. Rakhi, R., et al., Enhanced rate performance of mesoporous Co3O4 nanosheet supercapacitor electrodes by hydrous RuO2 nanoparticle decoration. ACS applied materials interfaces, 2014. 6(6): p. 4196-4206. 89. Wu, N.-L., S.-L. Kuo, and M.-H. Lee, Preparation and optimization of RuO2-impregnated SnO2 xerogel supercapacitor. Journal of power sources, 2002. 104(1): p. 62-65. 90. Takasu, Y., et al., Dip‐Coated Ru‐V Oxide Electrodes for Electrochemical Capacitors. Journal of the Electrochemical Society, 1997. 144(8): p. 2601. 91. Yong-gang, W. and Z. Xiao-gang, Preparation and electrochemical capacitance of RuO2/TiO2 nanotubes composites. Electrochimica Acta, 2004. 49(12): p. 1957-1962. 92. Acznik, I., et al., Carbon-supported manganese dioxide as electrode material for asymmetric electrochemical capacitors. Int. J. Electrochem. Sci, 2014. 9: p. 2518-2534. 93. Chen, S., et al., Graphene oxide− MnO2 nanocomposites for supercapacitors. ACS nano, 2010. 4(5): p. 2822-2830. 94. Hu, C.-C. and T.-W. Tsou, Ideal capacitive behavior of hydrous manganese oxide prepared by anodic deposition. Electrochemistry Communications, 2002. 4(2): p. 105-109. 95. Messaoudi, B., et al., Anodic behaviour of manganese in alkaline medium. Electrochimica Acta, 2001. 46(16): p. 2487-2498. 96. Li, J., Advanced materials and methods for the fabrication of electrochemical supercapacitors. 2009. 97. Xie, X. and L. Gao, Characterization of a manganese dioxide/carbon nanotube composite fabricated using an in situ coating method. Carbon, 2007. 45(12): p. 2365-2373. 98. Naderi, H.R., P. Norouzi, and M.R. Ganjali, Electrochemical study of a novel high performance supercapacitor based on MnO2/nitrogen-doped graphene nanocomposite. Applied Surface Science, 2016. 366: p. 552-560. 99. Liu, L., et al., Controllable synthesis of Mn3O4 nanodots@ nitrogen-doped graphene and its application for high energy density supercapacitors. Journal of Materials Chemistry A, 2017. 5(11): p. 5523-5531. 100. Li, Z.J., et al., Controllable growth of SnO2 nanoparticles by citric acid assisted hydrothermal process. Colloids and Surfaces a-Physicochemical and Engineering Aspects, 2008. 327(1-3): p. 17-20. 101. Park, J.-H. and J.-H. Lee, Gas sensing characteristics of polycrystalline SnO2 nanowires prepared by polyol method. Sensors and Actuators B: Chemical, 2009. 136(1): p. 151-157. 102. Lee, W.-Y., et al., Effect of Mg doping on the electrical performance of a sol-gel-processed SnO2 thin-film transistor. Electronics, 2020. 9(3): p. 523. 103. Tennakone, K., et al., Enhanced efficiency of a dye-sensitized solar cell made from MgO-coated nanocrystalline SnO2. Japanese Journal of Applied Physics, 2001. 40(7B): p. L732. 104. Abouali, S., M.A. Garakani, and J.-K. Kim, Ultrafine SnO2 nanoparticles encapsulated in ordered mesoporous carbon framework for Li-ion battery anodes. Electrochimica Acta, 2018. 284: p. 436-443. 105. Hong, X., et al., Hierarchical SnO2 nanoclusters wrapped functionalized carbonized cotton cloth for symmetrical supercapacitor. Journal of Alloys and Compounds, 2019. 775: p. 15-21. 106. Meng, Q., et al., Research progress on conducting polymer based supercapacitor electrode materials. Nano Energy, 2017. 36: p. 268-285. 107. Liu, D., et al., Flexible and Robust Sandwich-Structured S-Doped Reduced Graphene Oxide/Carbon Nanotubes/Polyaniline (S-rGO/CNTs/PANI) Composite Membranes: Excellent Candidate as Free-Standing Electrodes for High-Performance Supercapacitors. Electrochimica Acta, 2017. 233: p. 201-209. 108. Eftekhari, A., L. Li, and Y. Yang, Polyaniline supercapacitors. Journal of Power Sources, 2017. 347: p. 86-107. 109. Huang, J. and R.B. Kaner, A General Chemical Route to Polyaniline Nanofibers. Journal of the American Chemical Society, 2004. 126(3): p. 851-855. 110. Fan, L.-Z. and J. Maier, High-performance polypyrrole electrode materials for redox supercapacitors. Electrochemistry Communications, 2006. 8(6): p. 937-940. 111. Asen, P. and S. Shahrokhian, A High Performance Supercapacitor Based on Graphene/Polypyrrole/Cu2O-Cu(OH)2 Ternary Nanocomposite Coated on Nickel Foam. The Journal of Physical Chemistry C, 2017. 121(12): p. 6508-6519. 112. Biswas, S. and L.T. Drzal, Multilayered Nanoarchitecture of Graphene Nanosheets and Polypyrrole Nanowires for High Performance Supercapacitor Electrodes. Chemistry of Materials, 2010. 22(20): p. 5667-5671. 113. Zhong, C., et al., A review of electrolyte materials and compositions for electrochemical supercapacitors. Chemical Society Reviews, 2015. 44(21): p. 7484-7539. 114. Galiński, M., A. Lewandowski, and I. Stępniak, Ionic liquids as electrolytes. Electrochimica Acta, 2006. 51(26): p. 5567-5580. 115. Verma, M.L., M. Minakshi, and N.K. Singh, Synthesis and Characterization of Solid Polymer Electrolyte based on Activated Carbon for Solid State Capacitor. Electrochimica Acta, 2014. 137: p. 497-503. 116. Bonaccorso, F., et al., Production and processing of graphene and 2d crystals. Materials Today, 2012. 15(12): p. 564-589. 117. Geetha Bai, R., et al., Graphene-based 3D scaffolds in tissue engineering: fabrication, applications, and future scope in liver tissue engineering. International journal of nanomedicine, 2019. 14: p. 5753-5783. 118. González, G.B., Investigating the Defect Structures in Transparent Conducting Oxides Using X-ray and Neutron Scattering Techniques. Materials, 2012. 5(5): p. 818-850. 119. Mehraj, S., M.S. Ansari, and Alimuddin, Annealed SnO2 thin films: Structural, electrical and their magnetic properties. Thin Solid Films, 2015. 589: p. 57-65. 120. Guo, J., et al., Three-dimensional SnO2 microstructures assembled by porous nanosheets and their superior performance for gas sensing. Powder technology, 2013. 250: p. 40-45. 121. Liu, Y., et al., Hierarchical SnO2 Nanostructures Made of Intermingled Ultrathin Nanosheets for Environmental Remediation, Smart Gas Sensor, and Supercapacitor Applications. ACS Applied Materials Interfaces, 2014. 6(3): p. 2174-2184. 122. Du, F., Z. Guo, and G. Li, Hydrothermal synthesis of SnO2 hollow microspheres. Materials Letters, 2005. 59(19-20): p. 2563-2565. 123. Hu, J.Q., et al., Large-Scale Rapid Oxidation Synthesis of SnO2 Nanoribbons. The Journal of Physical Chemistry B, 2002. 106(15): p. 3823-3826. 124. Yang, R. and Z.L. Wang, Springs, Rings, and Spirals of Rutile-Structured Tin Oxide Nanobelts. Journal of the American Chemical Society, 2006. 128(5): p. 1466-1467. 125. Chao, T., Introduction to semiconductor manufacturing technology. 2001: SPIE PRESS. 126. Selwyn, G., et al., Materials Processing Using an Atmospheric Pressure, RF‐Generated Plasma Source. Contributions to Plasma Physics, 2001. 41(6): p. 610-619. 127. Han, Z.J., et al., MnOx/carbon nanotube/reduced graphene oxide nanohybrids as high-performance supercapacitor electrodes. NPG Asia Materials, 2014. 6(10): p. e140-e140. 128. Liu, L., et al., Carbon-based flexible micro-supercapacitor fabrication via mask-free ambient micro-plasma-jet etching. Carbon, 2017. 111: p. 121-127. 129. Xu, C.-H., et al., SnO2/CNT nanocomposite supercapacitors fabricated using scanning atmospheric-pressure plasma jets. Materials Research Express, 2016. 3(8): p. 085002. 130. Kuok, F.-H., et al., Screen-printed SnO2/CNT quasi-solid-state gel-electrolyte supercapacitor. Materials Research Express, 2017. 4(11): p. 115501. 131. 羅聖全, 科學基礎研究之重要利器─掃描式電子顯微鏡(SEM). 科學研習, 2013. 52(5): p. 2-4. 132. Tare, M., et al., Drosophila adult eye model to teach Scanning Electron Microscopy in an undergraduate cell biology laboratory. Drosophila Information Service, 2009. 92. 133. Shih, W.-C., K. Bechtel, and M.S. Feld, Noninvasive glucose sensing with Raman spectroscopy. Analytical chemistry of in vivo glucose measurements. Hoboken, NJ: John Wiley Sons, 2009: p. 391-419. 134. Embong, Z., XPS, AES and laser raman spectroscopy: A fingerprint for a materials surface characterisation. Jurnal Sains Nuklear Malaysia, 2011. 23(2): p. 26-45. 135. Watts, J.F. and J. Wolstenholme, An introduction to surface analysis by XPS and AES. 2003. 136. Hübschen, G., et al., Materials characterization using nondestructive evaluation (NDE) methods. 2016: Woodhead publishing. 137. Yu, A., V. Chabot, and J. Zhang, Electrochemical supercapacitors for energy storage and delivery: fundamentals and applications. 2013: Taylor Francis. 138. Dincer, C., Electrochemical microfluidic multiplexed biosensor platform for point-of-care testing. 2016. 139. Huang, X., et al., Cyclic Voltammetry in Lithium–Sulfur Batteries—Challenges and Opportunities. Energy Technology, 2019. 7(8): p. 1801001. 140. Kim, B.K., et al., Electrochemical Supercapacitors for Energy Storage and Conversion, in Handbook of Clean Energy Systems. p. 1-25. 141. Chien, H.-H., et al., Nitrogen DC-pulse atmospheric-pressure-plasma jet (APPJ)-processed reduced graphene oxide (rGO)‑carbon black (CB) nanocomposite electrodes for supercapacitor applications. Diamond and Related Materials, 2018. 88: p. 23-31. 142. Onda, T., et al., Super-Water-Repellent Fractal Surfaces. Langmuir, 1996. 12(9): p. 2125-2127. 143. Rupp, F., et al., Roughness induced dynamic changes of wettability of acid etched titanium implant modifications. Biomaterials, 2004. 25(7-8): p. 1429-1438. 144. Yang, X.Y., et al., Reduced-graphene-oxide supported tantalum-based electrocatalysts: Controlled nitrogen doping and oxygen reduction reaction. Applied Surface Science, 2018. 434: p. 243-250. 145. Yang, J., et al., Rapid and controllable synthesis of nitrogen doped reduced graphene oxide using microwave-assisted hydrothermal reaction for high power-density supercapacitors. Carbon, 2014. 73: p. 106-113. 146. Huynh, N.M.N., et al., Reduced graphene oxide as a water, carbon dioxide and oxygen barrier in plasticized poly (vinyl chloride) films. RSC advances, 2018. 8(32): p. 17645-17655. 147. Song, X., et al., Supercapacitive performances of few-layer MoS2 on reduced graphene oxides. Journal of Solid State Electrochemistry, 2019. 23(3): p. 911-923. 148. Yu, T., et al., Zn2GeO4 nanorods grown on carbon cloth as high performance flexible lithium-ion battery anodes. RSC advances, 2017. 7(82): p. 51807-51813. 149. Long, H., et al., Growth of hierarchal mesoporous NiO nanosheets on carbon cloth as binder-free anodes for high-performance flexible lithium-ion batteries. Scientific reports, 2014. 4(1): p. 1-9. 150. Chien, H.H., et al., Nitrogen DC-pulse atmospheric-pressure-plasma jet (APPJ)-processed reduced graphene oxide (rGO)-carbon black (CB) nanocomposite electrodes for supercapacitor applications. Diamond and Related Materials, 2018. 88: p. 23-31. 151. Sun, L., et al., Nitrogen-doped graphene with high nitrogen level via a one-step hydrothermal reaction of graphene oxide with urea for superior capacitive energy storage. Rsc Advances, 2012. 2(10): p. 4498-4506. 152. Sharma, A. and J. Jang, Flexible electrical aptasensor using dielectrophoretic assembly of graphene oxide and its subsequent reduction for cardiac biomarker detection. Scientific Reports, 2019. 9. 153. Wang, M.Y., et al., Co3O4 nanorods decorated reduced graphene oxide composite for oxygen reduction reaction in alkaline electrolyte. Electrochemistry Communications, 2013. 34: p. 299-303. 154. Hortiguela, M.J., et al., Chemical Changes of Graphene Oxide Thin Films Induced by Thermal Treatment under Vacuum Conditions. Coatings, 2020. 10(2): p. 9. 155. Kwoka, M. and M. Krzywiecki, Impact of air exposure and annealing on the chemical and electronic properties of the surface of SnO2 nanolayers deposited by rheotaxial growth and vacuum oxidation. Beilstein Journal of Nanotechnology, 2017. 8: p. 514-521. 156. Yin, L., et al., Normal-pressure microwave rapid synthesis of hierarchical SnO2@rGO nanostructures with superhigh surface areas as high-quality gas-sensing and electrochemical active materials. Nanoscale, 2014. 6(22): p. 13690-13700. 157. Mi, Q., et al., Multifunctional devices based on SnO2@rGO-coated fibers for human motion monitoring, ethanol detection, and photo response. Nanotechnology, 2018. 29(19): p. 12. 158. Willemen, H., D.F. Van De Vondel, and G.P. Van Der Kelen, An ESCA study of tin compounds. Inorganica Chimica Acta, 1979. 34(C): p. 175-180. 159. Li, S.Y., et al., Facile synthesis of rGO/SnO2 composite anodes for lithium ion batteries. Journal of Materials Chemistry A, 2014. 2(40): p. 17139-17145. 160. Gorzalski, A.S., C. Donley, and O. Coronell, Elemental composition of membrane foulant layers using EDS, XPS, and RBS. Journal of Membrane Science, 2017. 522: p. 31-44. 161. Luo, Y., et al., High performance of Mn3O4 cubes for supercapacitor applications. Materials Letters, 2016. 178: p. 171-174. 162. Ardizzone, S., G. Fregonara, and S. Trasatti, “Inner” and “outer” active surface of RuO2 electrodes. Electrochimica Acta, 1990. 35(1): p. 263-267. 163. Liu, H., et al., Design and theoretical study of carbon-based supercapacitors especially exhibiting superior rate capability by the synergistic effect of nitrogen and phosphor dopants. Carbon, 2019. 155: p. 223-232. 164. Zhang, Z.J., et al., Surface modification of carbon materials by nitrogen/phosphorus co-doping as well as redox additive of ferrous ion for cooperatively boosting the performance of supercapacitors. Ionics, 2020. 26(6): p. 3027-3039. 165. Jyothibasu, J.P. and R.H. Lee, Facile, Scalable, Eco-Friendly Fabrication of High-Performance Flexible All-Solid-State Supercapacitors. Polymers, 2018. 10(11). 166. Wang, N., et al., All-in-one flexible asymmetric supercapacitor based on composite of polypyrrole-graphene oxide and poly (3, 4-ethylenedioxythiophene). Journal of Alloys and Compounds, 2020. 835: p. 155299. 167. Ma, Y., et al., A flexible supercapacitor based on vertically oriented ‘Graphene Forest’electrodes. Journal of Materials Chemistry A, 2015. 3(43): p. 21875-21881. 168. Khan, M., et al., Spectroscopic study of CO2 and CO2–N2 mixture plasma using dielectric barrier discharge. AIP Advances, 2019. 9(8): p. 085015. 169. Ray, D. and R. Saha, DBD plasma assisted CO2 decomposition: influence of diluent gases. Catalysts, 2017. 7(9): p. 244. 170. Pearse, R.W.B. and A.G. Gaydon, Identification of molecular spectra. 1976: Chapman and Hall. 171. Fendrych, F., et al., Growth and characterization of nanodiamond layers prepared using the plasma-enhanced linear antennas microwave CVD system. Journal of Physics D-Applied Physics, 2010. 43(37). 172. Lien, S.Y., et al., Characterization of HF-PECVD a-Si:H thin film solar cells by using OES studies. Journal of Non-Crystalline Solids, 2011. 357(1): p. 161-164. 173. Chaffin, J.H., et al., Hydrogen production by plasma electrolysis. Journal of energy engineering, 2006. 132(3): p. 104-108. 174. Gaens, W.V. and A. Bogaerts, Kinetic modelling for an atmospheric pressure argon plasma jet in humid air. Journal of Physics D: Applied Physics, 2013. 46(27): p. 275201. 175. Wan, Y.Z., et al., Effect of Graphene Oxide Incorporation into Electrospun Cellulose Acetate Scaffolds on Breast Cancer Cell Culture. Fibers and Polymers, 2019. 20(8): p. 1577-1585. 176. Han, B., et al., Hydrothermal carbon superstructures enriched with carboxyl groups for highly efficient uranium removal. Chemical Engineering Journal, 2018. 338: p. 734-744. 177. Periyasamy, M. and A. Kar, Modulating the properties of SnO2 nanocrystals: morphological effects on structural, photoluminescence, photocatalytic, electrochemical and gas sensing properties. Journal of Materials Chemistry C, 2020. 8(14): p. 4604-4635. 178. Grutsch, P.A., M.V. Zeller, and T.P. Fehlner, Photoelectron spectroscopy of tin compounds. Inorganic Chemistry, 1973. 12(6): p. 1431-1433. 179. Zhang, T.C., et al., Making a commercial carbon fiber cloth having comparable capacitances to carbon nanotubes and graphene in supercapacitors through a 'top-down' approach. Nanoscale, 2015. 7(7): p. 3285-3291. 180. Okhay, O. and A. Tkach, Graphene/Reduced Graphene Oxide-Carbon Nanotubes Composite Electrodes: From Capacitive to Battery-Type Behaviour. Nanomaterials, 2021. 11(5): p. 1240. 181. Hsu, A.R., et al., Scan-Mode Atmospheric-Pressure Plasma Jet Processed Reduced Graphene Oxides for Quasi-Solid-State Gel-Electrolyte Supercapacitors. Coatings, 2018. 8(2): p. 15. 182. Bonu, V., et al., Electrochemical supercapacitor performance of SnO2 quantum dots. Electrochimica Acta, 2016. 203: p. 230-237. 183. Song, Z., et al., Hydrothermal synthesis and electrochemical performance of Co3O4/reduced graphene oxide nanosheet composites for supercapacitors. Electrochimica Acta, 2013. 112: p. 120-126. 184. Zhang, Y.X., et al., Boosting the electrochemical properties of carbon materials as bipolar electrodes by introducing oxygen functional groups. Rsc Advances, 2020. 10(58): p. 35295-35301."……… | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82031 | - |
| dc.description.abstract | " 本研究利用常壓電漿(Atmospheric Pressure Plasma Jet, APPJ)合成碳材-金屬氧化物複材並用於儲能元件。首先在碳布電極上網印石墨烯-氯化亞錫(rGO-SnCl2)前驅體,並透過大氣電漿製備石墨烯-二氧化錫(rGO-SnO2)電極,最後組裝成對稱型超級電容。實驗比較了氮氣及二氧化碳電漿製程的差異性。 第一部分先使用穩定且成熟的氮氣常壓噴射電漿來進行,並證實複合材料用於儲能的可行性。透過各項分析得以證實最佳製程時間僅需300秒。在材料分析上,由掃描式電子顯微鏡發現石墨烯表面有大量奈米顆粒形成,因此更進一步透過X射線光電子能譜儀鑑定材料化學結構,證實奈米顆粒是來自於二氧化錫的形成,X射線繞射儀也可見二氧化錫的晶相。亦進行了能量色散X光譜儀、拉曼光譜儀等完整材料分析。在實際應用於軟性超級電容時,以定電流充放電,電流0.25 mA的條件量測,其面積電容值達47.52 mF/cm2。在Trasatti plots分析中,電雙層電容(EDLC)及擬電容(PC)貢獻各佔約50%。 證實了氮氣常壓電漿於材料製備的可行性後,接著使用二氧化碳龍捲風式常壓噴射電漿來製備rGO-SnO2電極。在顯微分析及化學鑑定有類似於氮氣電漿實驗的結果。而在電化學分析中,本部分聚焦於電漿系統對碳布及石墨烯-二氧化錫石墨烯-二氧化錫超級電容個別的影響。以指數率分析可見碳布表現出電雙層電容行為;石墨烯-二氧化錫表現出擬電容行為。碳布的儲能效果較不明顯,主要仍來自石墨烯-二氧化錫複合材料,製備的軟性超級電容之面積電容值達37.17 mF/cm2,且保持理想的穩定性,也成功證實驅動外部發光二極體的可行性。" | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-25T05:34:24Z (GMT). No. of bitstreams: 1 U0001-2007202123222500.pdf: 11227898 bytes, checksum: 41c43b97c60ed69bca4196607926cc63 (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | 誌謝 i 摘要 ii Abstract iii 第一章 緒論 1 1.1 前言 1 1.2 研究動機 2 1.3 論文大綱 4 第二章 理論與文獻回顧 5 2.1 超級電容介紹 5 2.1.1 超級電容與其他能源元件之特性比較 5 2.1.2 超級電容架構與儲能機制 6 2.1.3 超級電容活性材料 10 2.1.4 超級電容電解液 15 2.2 石墨烯與二氧化錫 17 2.2.1 石墨烯 17 2.2.2 二氧化錫 19 2.2.3 石墨烯-二氧化錫合成法回顧 20 2.3 常壓電漿 23 2.3.1 電漿介紹 23 2.3.2 常壓電漿介紹以及超級電容的製程應用 24 第三章 實驗流程及儀器介紹 27 3.1 實驗材料及儀器 27 3.2 實驗步驟 29 3.2.1 還原氧化石墨烯-氯化亞錫前驅漿料製備 29 3.2.2 還原氧化石墨烯-二氧化錫電極之製備 29 3.2.3 調配凝膠態電解液 32 3.2.4 軟性超級電容全元件製備 32 3.3 分析儀器介紹 33 3.3.1 光放射光譜儀 33 3.3.2 掃描式電子顯微鏡及能量色散X射線譜 34 3.3.3 拉曼光譜儀 35 3.3.4 X射線光電子能譜儀 36 3.3.5 X射線繞射儀 38 3.3.6 電化學分析 39 第四章 結果與討論 43 4.1 實驗一 氮氣常壓噴射電漿於石墨烯-二氧化錫超級電容 43 4.1.1 氮氣常壓電漿基礎物理性質 43 4.1.2 氮氣常壓電漿製程時間對電極表面形貌之影響 46 4.1.3 氮氣常壓電漿製程時間對電極親疏水性之影響 50 4.1.4 氮氣常壓電漿製程時間對電極之拉曼光譜分析 50 4.1.5 氮氣常壓電漿製程對電極材料之結晶性影響 52 4.1.6 氮氣常壓電漿製程時間對電極化學表徵之影響 53 4.1.7 以循環伏安分析氮氣常壓電漿對石墨烯-二氧化錫超級電容之影響 61 4.1.8 以恆電流充放電評估氮氣常壓電漿製程對石墨烯-二氧化錫超級電容之性能 63 4.1.9 以Trasatti plot分析氮氣常壓電漿製備之石墨烯-二氧化錫超級電容 64 4.1.10 氮氣常壓電漿製備之石墨烯-二氧化錫超級電容穩定度量測 66 4.1.11 氮氣常壓電漿製備之石墨烯-二氧化錫超級電容點亮LED 67 4.2 實驗二 二氧化碳龍捲風式常壓噴射電漿於石墨烯-二氧化錫超級電容 68 4.2.1 二氧化碳龍捲風式常壓噴射電漿基礎物理性質 68 4.2.2 二氧化碳常壓電漿處理次數對材料表面形貌之影響 70 4.2.3 二氧化碳常壓電漿處理次數對電極親疏水性之影響 73 4.2.4 二氧化碳常壓電漿製程時間對電極化學表徵之影響 74 4.2.5 以循環伏安分析二氧化碳常壓電漿對碳布及石墨烯-二氧化錫超級電容之性能影響 82 4.2.6 以恆電流充放電評估二氧化碳常壓電漿製程對碳布及石墨烯-二氧化錫超級電容之性能 85 4.2.7 以Trasatti plot分析二氧化碳常壓電漿製備之石墨烯-二氧化錫超級電容 88 4.2.8 二氧化碳常壓電漿製備之石墨烯-二氧化錫超級電容穩定性分析 91 4.2.9 二氧化碳常壓電漿製備之石墨烯-二氧化錫超級電容點亮LED 93 4.2.10 以Ragone plot比較氮氣及二氧化碳電漿製程製備之石墨烯-二氧化錫超級電容 93 第五章 結論 95 附錄A: 利用常壓電漿改質石墨氈 96 A.1 摘要 96 A.2 實驗流程 96 A.3 以X射線光電子能譜分析改質之石墨氈 97 參考文獻 99 | |
| dc.language.iso | zh-TW | |
| dc.subject | 石墨烯 | zh_TW |
| dc.subject | 二氧化碳 | zh_TW |
| dc.subject | 超級電容 | zh_TW |
| dc.subject | 常壓電漿 | zh_TW |
| dc.subject | 二氧化錫 | zh_TW |
| dc.subject | 氮氣 | zh_TW |
| dc.subject | Reduced graphene oxide | en |
| dc.subject | Supercapacitor | en |
| dc.subject | Tin oxide | en |
| dc.subject | Carbon dioxide | en |
| dc.subject | Nitrogen | en |
| dc.subject | Atmospheric pressure plasma process | en |
| dc.title | 二氧化碳龍捲風式常壓噴射電漿於石墨烯-氧化錫超級電容之應用 | zh_TW |
| dc.title | Applications of CO2 tornado-type atmospheric pressure plasma jet in reduced graphene oxide-tin oxide supercapacitor | en |
| dc.date.schoolyear | 109-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳奕君(Hsin-Tsai Liu),徐振哲(Chih-Yang Tseng),趙宇強 | |
| dc.subject.keyword | 常壓電漿,氮氣,二氧化碳,石墨烯,二氧化錫,超級電容, | zh_TW |
| dc.subject.keyword | Atmospheric pressure plasma process,Nitrogen,Carbon dioxide,Reduced graphene oxide,Tin oxide,Supercapacitor, | en |
| dc.relation.page | 112 | |
| dc.identifier.doi | 10.6342/NTU202101614 | |
| dc.rights.note | 同意授權(限校園內公開) | |
| dc.date.accepted | 2021-07-22 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 應用力學研究所 | zh_TW |
| dc.date.embargo-lift | 2024-07-31 | - |
| 顯示於系所單位: | 應用力學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2007202123222500.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 10.96 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
