Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82027
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳延平(Yan-Ping Chen)
dc.contributor.authorYu-Hsuan Hoen
dc.contributor.author賀宇旋zh_TW
dc.date.accessioned2022-11-25T05:34:20Z-
dc.date.available2026-07-28
dc.date.copyright2021-08-20
dc.date.issued2021
dc.date.submitted2021-07-28
dc.identifier.citation1. Sloan, E. D., Fundamental principles and applications of natural gas hydrates. Nature 2003, 426 (6964), 353-359. 2. Handa, Y. P.; Tse, J. S., Thermodynamic properties of empty lattices of structure I and structure II clathrate hydrates. The Journal of Physical Chemistry 1986, 90 (22), 5917-5921. 3. Sloan Jr, E. D.; Koh, C. A., Clathrate hydrates of natural gases. 3rd Edition, CRC press, Boca Raton 2007. 4. Davy, H., VIII. On a combination of oxymuriatic gas and oxygene gas. Philosophical Transactions of the Royal Society of London 1832, 1, 155-162. 5. Hammerschmidt, E. G., Formation of gas hydrates in natural gas transmission lines. Industrial Engineering Chemistry 1934, 26 (8), 851-855. 6. Kvenvolden, K. A., Gas hydrates—geological perspective and global change. Reviews of Geophysics 1993, 31 (2), 173-187. 7. Gbaruko, B. C.; Igwe, J. C.; Gbaruko, P. N.; Nwokeoma, R. C., Gas hydrates and clathrates: flow assurance, environmental and economic perspectives and the nigerian liquified natural gas project. Journal of Petroleum Science and Engineering 2007, 56 (1), 192-198. 8. Creek, J. L., Efficient hydrate plug prevention. Energy Fuels 2012, 26 (7), 4112-4116. 9. Shi, L.; Liang, D., Kinetic study of CH4 hydrate formation in the presence of tetrabutylphosphonium chloride (TBPC). Journal of Molecular Liquids 2018, 271, 730-737. 10. Matsuura, R.; Watanabe, K.; Yamauchi, Y.; Sato, H.; Chen, L. J.; Ohmura, R., Thermodynamic analysis of hydrate-based refrigeration cycle. Energy 2021, 220, 119652. 11. Koyama, R.; Chen, L. J.; Alavi, S.; Ohmura, R., Improving thermal efficiency of hydrate-based heat engine generating renewable energy from low-grade heat sources using a crystal engineering approach. Energy 2020, 198, 117403. 12. Lee, J.; Park, S.; Sung, W., An experimental study on the productivity of dissociated gas from gas hydrate by depressurization scheme. Energy Conversion and Management 2010, 51 (12), 2510-2515. 13. Horii, S.; Ohmura, R., Continuous separation of CO2 from a H2+ CO2 gas mixture using clathrate hydrate. Applied Energy 2018, 225, 78-84. 14. Eslamimanesh, A.; Mohammadi, A. H.; Richon, D.; Naidoo, P.; Ramjugernath, D., Application of gas hydrate formation in separation processes: a review of experimental studies. The Journal of Chemical Thermodynamics 2012, 46, 62-71. 15. Babu, P.; Linga, P.; Kumar, R.; Englezos, P., A review of the hydrate based gas separation (HBGS) process for carbon dioxide pre-combustion capture. Energy 2015, 85, 261-279. 16. Wang, X.; Dennis, M.; Hou, L., Clathrate hydrate technology for cold storage in air conditioning systems. Renewable and Sustainable Energy Reviews 2014, 36, 34-51. 17. Ogawa, T.; Ito, T.; Watanabe, K.; Tahara, K. I.; Hiraoka, R.; Ochiai, J. I.; Ohmura, R.; Mori, Y. H., Development of a novel hydrate-based refrigeration system: a preliminary overview. Applied Thermal Engineering 2006, 26 (17-18), 2157-2167. 18. Chang, K. Y.; Chu, C. K.; Chu, L. S.; Chen, Y. A.; Lin, S. T.; Chen, Y. P.; Chen, L. J., Effect of small cage guests on dissociation properties of tetrahydrofuran hydrates. The Journal of Physical Chemistry B 2020, 124 (33), 7217-7228. 19. Choi, W.; Lee, Y.; Mok, J.; Lee, S.; Lee, J. D.; Seo, Y., Thermodynamic and kinetic influences of NaCl on HFC-125a hydrates and their significance in gas hydrate-based desalination. Chemical Engineering Journal 2019, 358, 598-605. 20. Babu, P.; Nambiar, A.; He, T.; Karimi, I. A.; Lee, J. D.; Englezos, P.; Linga, P., A review of clathrate hydrate based desalination to strengthen energy–water nexus. ACS Sustainable Chemistry Engineering 2018, 6 (7), 8093-8107. 21. Karamoddin, M.; Varaminian, F., Water purification by freezing and gas hydrate processes, and removal of dissolved minerals (Na+, K+, Mg2+, Ca2+). Journal of Molecular Liquids 2016, 223, 1021-1031. 22. Lafond, P. G.; Olcott, K. A.; Sloan, E. D.; Koh, C. A.; Sum, A. K., Measurements of methane hydrate equilibrium in systems inhibited with NaCl and methanol. The Journal of Chemical Thermodynamics 2012, 48, 1-6. 23. Mohammadi, A. H.; Afzal, W.; Richon, D., Experimental data and predictions of dissociation conditions for ethane and propane simple hydrates in the presence of methanol, ethylene glycol, and triethylene glycol aqueous solutions. Journal of Chemical Engineering Data 2008, 53 (3), 683-686. 24. Bozorgian, A., Investigating the unknown abilities of natural gas hydrates. International Journal of Advanced Studies in Humanities and Social Science, 2020, 9 (4), 241-251. 25. Falenty, A.; Kuhs, W. F.; Glockzin, M.; Rehder, G., “Self-Preservation” of CH4 hydrates for gas transport technology: pressure–temperature dependence and ice microstructures. Energy Fuels 2014, 28 (10), 6275-6283. 26. Warrier, P.; Khan, M. N.; Srivastava, V.; Maupin, C. M.; Koh, C. A., Overview: nucleation of clathrate hydrates. The Journal of Chemical Physics 2016, 145 (21), 211705. 27. Lederhos, J. P.; Long, J. P.; Sum, A.; Christiansen, R. L.; Sloan, E. D., Effective kinetic inhibitors for natural gas hydrates. Chemical Engineering Science 1996, 51 (8), 1221-1229. 28. Radhakrishnan, R.; Trout, B. L., A new approach for studying nucleation phenomena using molecular simulations: application to CO2 hydrate clathrates. The Journal of Chemical Physics 2002, 117 (4), 1786-1796. 29. Long, J. Gas hydrate formation mechanism and kinetic inhibition. Ph.D. thesis. Colorado School of Mines, 1994. 30. Kvamme, B. In A new theory for the kinetics of hydrate formation, NGH 96: 2nd international conference on natural gaz hydrates, Toulouse, 1996, 139-146. 31. Jacobson, L. C.; Hujo, W.; Molinero, V., Amorphous precursors in the nucleation of clathrate hydrates. Journal of the American Chemical Society 2010, 132 (33), 11806-11811. 32. Kashchiev, D.; Verdoes, D.; Van Rosmalen, G., Induction time and metastability limit in new phase formation. Journal of Crystal Growth 1991, 110 (3), 373-380. 33. Kashchiev, D.; Firoozabadi, A., Induction time in crystallization of gas hydrates. Journal of Crystal Growth 2003, 250 (3-4), 499-515. 34. Volmer, M., Kinetics of Phase Formation (Kinetik der Phasenbildung). Volume IV in series “Die Chemische Reaktion”, Edited by K.F. Bonhoeffer, Leipsig, 1939. 35. Sloan, E. D. Natural gas hydrates in flow assurance. Gulf professional publishing, Burlington, MA, 2010. 36. Fan, S. S.; Guo, T. M., Hydrate formation of CO2-rich binary and quaternary gas mixtures in aqueous sodium chloride solutions. Journal of Chemical Engineering Data 1999, 44 (4), 829-832. 37. Mohammadi, A. H.; Afzal, W.; Richon, D., Gas hydrates of methane, ethane, propane, and carbon dioxide in the presence of single NaCl, KCl, and CaCl2 aqueous solutions: experimental measurements and predictions of dissociation conditions. The Journal of Chemical Thermodynamics 2008, 40 (12), 1693-1697. 38. Ng, H. J.; Robinson, D. B., Hydrate formation in systems containing methane, ethane, propane, carbon dioxide or hydrogen sulfide in the presence of methanol. Fluid Phase Equilibria 1985, 21 (1-2), 145-155. 39. Maekawa, T., Equilibrium conditions for carbon dioxide hydrates in the presence of aqueous solutions of alcohols, glycols, and glycerol. Journal of Chemical Engineering Data 2010, 55 (3), 1280-1284. 40. Khan, M. S.; Partoon, B.; Bavoh, C. B.; Lal, B.; Mellon, N. B., Influence of tetramethylammonium hydroxide on methane and carbon dioxide gas hydrate phase equilibrium conditions. Fluid Phase Equilibria 2017, 440, 1-8. 41. Khan, M. S.; Lal, B.; Shariff, A. M.; Mukhtar, H., Ammonium hydroxide ILs as dual-functional gas hydrate inhibitors for binary mixed gas (carbon dioxide and methane) hydrates. Journal of Molecular Liquids 2019, 274, 33-44. 42. Sabil, K. M.; Nashed, O.; Lal, B.; Ismail, L.; Japper-Jaafar, A., Experimental investigation on the dissociation conditions of methane hydrate in the presence of imidazolium-based ionic liquids. The Journal of Chemical Thermodynamics 2015, 84, 7-13. 43. Chun, M. K.; Lee, H., Phase equilibria of carbon dioxide hydrate system in the presence of sucrose, glucose, and fructose. Journal of Chemical Engineering Data 1999, 44 (5), 1081-1084. 44. Sa, J. H.; Lee, B. R.; Park, D. H.; Han, K.; Chun, H. D.; Lee, K. H., Amino acids as natural inhibitors for hydrate formation in CO2 sequestration. Environmental Science Technology 2011, 45 (13), 5885-5891. 45. Bavoh, C. B.; Nashed, O.; Khan, M. S.; Partoon, B.; Lal, B.; Sharif, A. M., The impact of amino acids on methane hydrate phase boundary and formation kinetics. The Journal of Chemical Thermodynamics 2018, 117, 48-53. 46. Lee, D.; Go, W.; Oh, J.; Lee, J.; Jo, I.; Kim, K. S.; Seo, Y., Thermodynamic inhibition effects of an ionic liquid (choline chloride), a naturally derived substance (urea), and their mixture (deep eutectic solvent) on CH4 hydrates. Chemical Engineering Journal 2020, 399, 125830. 47. Sivabalan, V.; Hasnor, N.; Lal, B.; Kassim, Z.; Shah Maulud, A., Tetraethylammonium acetate and tetraethylammonium bromide-based deep eutectic solvents as thermodynamic CO2 gas hydrate inhibitors. Applied Sciences 2020, 10 (19), 6794. 48. Mooijer-Van Den Heuvel, M. M.; Witteman, R.; Peters, C., Phase behaviour of gas hydrates of carbon dioxide in the presence of tetrahydropyran, cyclobutanone, cyclohexane and methylcyclohexane. Fluid Phase Equilibria 2001, 182 (1-2), 97-110. 49. Seo, Y.; Kang, S. P.; Lee, S.; Lee, H., Experimental measurements of hydrate phase equilibria for carbon dioxide in the presence of THF, propylene oxide, and 1, 4-dioxane. Journal of Chemical Engineering Data 2008, 53 (12), 2833-2837. 50. Arora, A.; Cameotra, S. S.; Kumar, R.; Balomajumder, C.; Singh, A. K.; Santhakumari, B.; Kumar, P.; Laik, S., Biosurfactant as a promoter of methane hydrate formation: thermodynamic and kinetic studies. Scientific Reports 2016, 6 (1), 1-13. 51. Maekawa, T., Equilibrium conditions for clathrate hydrates formed from carbon dioxide or ethane in the presence of aqueous solutions of 1, 4-dioxane and 1, 3-dioxolane. Fluid Phase Equilibria 2014, 384, 95-99. 52. Huo, Z.; Freer, E.; Lamar, M.; Sannigrahi, B.; Knauss, D.; Sloan Jr, E., Hydrate plug prevention by anti-agglomeration. Chemical Engineering Science 2001, 56 (17), 4979-4991. 53. Yan, K.L.; Sun, C.Y.; Chen, J.; Chen, L.T.; Shen, D.J.; Liu, B.; Jia, M.L.; Niu, M.; Lv, Y.N.; Li, N., Flow characteristics and rheological properties of natural gas hydrate slurry in the presence of anti-agglomerant in a flow loop apparatus. Chemical Engineering Science 2014, 106, 99-108. 54. Kelland, M. A., Tetrahydrofuran hydrate crystal growth inhibition by bis-and tris-amine oxides. Chemical Engineering Science 2013, 98, 1-6. 55. Feldgitscher, C.; Peterlik, H.; Puchberger, M.; Kickelbick, G., Structural investigations on hybrid polymers suitable as a nanoparticle precipitation environment. Chemistry of Materials 2009, 21 (4), 695-705. 56. Kim, J.; Shin, K.; Seo, Y.; Cho, S. J.; Lee, J. D., Synergistic hydrate inhibition of monoethylene glycol with poly (vinylcaprolactam) in thermodynamically underinhibited system. The Journal of Physical Chemistry B 2014, 118 (30), 9065-9075. 57. Veluswamy, H. P.; Lee, P. Y.; Premasinghe, K.; Linga, P., Effect of biofriendly amino acids on the kinetics of methane hydrate formation and dissociation. Industrial Engineering Chemistry Research 2017, 56 (21), 6145-6154. 58. Roosta, H.; Dashti, A.; Mazloumi, S. H.; Varaminian, F., The dual effect of amino acids on the nucleation and growth rate of gas hydrate in ethane+ water, methane+ propane+ water and methane+ THF+ water systems. Fuel 2018, 212, 151-161. 59. Walker, V. K.; Zeng, H.; Ohno, H.; Daraboina, N.; Sharifi, H.; Bagherzadeh, S. A.; Alavi, S.; Englezos, P., Antifreeze proteins as gas hydrate inhibitors. Canadian Journal of Chemistry 2015, 93 (8), 839-849. 60. Perfeldt, C. M.; Chua, P. C.; Daraboina, N.; Friis, D.; Kristiansen, E.; Ramløv, H.; Woodley, J. M.; Kelland, M. A.; Solms, N.V., Inhibition of gas hydrate nucleation and growth: efficacy of an antifreeze protein from the longhorn beetle rhagium mordax. Energy Fuels 2014, 28 (6), 3666-3672. 61. Lee, W.; Shin, J. Y.; Cha, J. H.; Kim, K. S.; Kang, S. P., Inhibition effect of ionic liquids and their mixtures with poly (N-vinylcaprolactam) on methane hydrate formation. Journal of Industrial and Engineering Chemistry 2016, 38, 211-216. 62. Nashed, O.; Sabil, K. M.; Ismail, L.; Japper-Jaafar, A.; Lal, B., Mean induction time and isothermal kinetic analysis of methane hydrate formation in water and imidazolium based ionic liquid solutions. The Journal of Chemical Thermodynamics 2018, 117, 147-154. 63. Monazam, E. R., Breault, R. W., Fauth, D. J., Shadle, L. J., Bayham, S., Insights into the adsorption of carbon dioxide in the presence of water vapor utilizing a low molecular weight polyethylenimine-impregnated CARiACT silica sorbent. Industrial Engineering Chemistry Research 2017, 56(32), 9054-9064. 64. Xu, X., Song, C., Andresen, J. M., Miller, B. G., Scaroni, A. W., Novel polyethylenimine-modified mesoporous molecular sieve of MCM-41 type as high-capacity adsorbent for CO2 capture. Energy Fuels 2002, 16(6), 1463-1469. 65. Ke, W.; Chen, D., A short review on natural gas hydrate, kinetic hydrate inhibitors and inhibitor synergists. Chinese Journal of Chemical Engineering 2019, 27(9), 2049-2061. 66. Xu, Y., Yang, M., Yang, X., Chitosan as green kinetic inhibitors for gas hydrate formation. Journal of natural gas chemistry 2010, 19(4), 431-435. 67. Mohammadi, A., Babakhanpour, N., Javidani, A. M., Ahmadi, G., Corn’s dextrin, a novel environmentally friendly promoter of methane hydrate formation. Journal of Molecular Liquids 2021, 116855. 68. Yaqub, S., bin Mohd Shariff, A., Mellon, N. B., Unraveling the effect of sub-cooling temperatures on the kinetic performance of biopolymers for methane hydrate. Journal of Natural Gas Science and Engineering 2019, 65, 68-81. 69. Yaqub, S., Keong, L. K., Thermodynamic and kinetic effect of biodegradable polymers on carbondioxide hydrates. Journal of Industrial and Engineering Chemistry 2019, 79, 131-145. 70. Gupta, P., Sangwai, J. S., Formation and dissociation kinetics of methane hydrate in aqueous oilfield polymer solutions (polyacrylamide, xanthan gum, and guar gum) and their performance evaluation as low-dosage kinetic hydrate inhibitors (LDHI). Energy Fuels 2019, 33(7), 6335-6349. 71. Mohammad-Taheri, M., Moghaddam, A. Z., Nazari, K., Zanjani, N. G., Methane hydrate stability in the presence of water-soluble hydroxyalkyl cellulose. Journal of natural gas chemistry 2012, 21(2), 119-125. 72. Sina, M., Nazari, K., Mohammad‐Taheri, M., Moradi, M. R., Dual effect of low‐dosage poly (ethylene oxides) on methane hydrate formation. Chemical Engineering Technology 2013, 36(7), 1117-1124. 73. Jokandan, E. F., Naeiji, P., Varaminian, F., The synergism of the binary and ternary solutions of polyethylene glycol, polyacrylamide and hydroxyethyl cellulose to methane hydrate kinetic inhibitor. Journal of natural gas science and engineering 2016, 29, 15-20. 74. Bavoh, C. B., Partoon, B., Keong, L. K., Lal, B., Wilfred, C. D., Eeffect of 1-ethyl-3-methylimidazolium chloride and polyvinylpyrrolidone on kineticss of carbon dioxide hydrates. Int. J. Appl. Chem 2016, 12(1), 6-11. 75. Seo, S. D., Paik, H. J., Lim, D. H., Lee, J. D., Effects of poly (n-vinylcaprolactam) molecular weight and molecular weight distribution on methane hydrate formation. Energy Fuels 2017, 31(6), 6358-6363. 76. Fakharian, H., Ganji, H., Far, A. N., Kameli, M., Potato starch as methane hydrate promoter. Fuel 2012, 94, 356-360. 77. Birkedal, K. A. Hydrate formation and CH4 production from natural gas hydrates-emphasis on boundary conditions and production methods. M.S. thesis. The University of Bergen, 2009. 78. Jacobson, L. C.; Hujo, W.; Molinero, V., Nucleation pathways of clathrate hydrates: effect of guest size and solubility. The Journal of Physical Chemistry B 2010, 114 (43), 13796-13807. 79. Juan, Y. W.; Tang, M.; Chen, L. J.; Lin, S. T.; Chen, P. C.; Chen, Y. P., Measurements for the equilibrium conditions of methane hydrate in the presence of cyclopentanone or 4-hydroxy-4-methyl-2-pentanone additives. Fluid Phase Equilibria 2015, 386, 162-167. 80. Ko, W. Y.; Chen, L. J.; Lin, S. T.; Chen, Y. P., Measurements for the dissociation conditions of methane hydrate in the presence of 1,3,5-trioxane and oxolan-2-ylmethanol. Journal of Chemical Engineering Data 2011, 56 (8), 3406-3410. 81. Kuo, P. C.; Chen, L. J.; Lin, S. T.; Chen, Y. P., Measurements for the dissociation conditions of methane hydrate in the presence of 2-methyl-2-propanol. Journal of Chemical Engineering Data 2010, 55 (11), 5036-5039. 82. Li, L. T.; Chen, Y. P.; Tang, M., Experimental measurements for the dissociation conditions of methane hydrate mixture with each additive of acetamide, cyclopentanol, or 1,3-dioxane. Journal of Chemical Engineering Data 2020, 65 (1), 177-184. 83. Myerson, A., Handbook of industrial crystallization. Butterworth-Heinemann: 2002. 84. Lim, J. Kim, E., Seo, Y., Dual inhibition effects of diamines on the formation of methane gas hydrate and their significance for natural gas production and transportaion. Energy Conversion and Management 2016, 124, 578-586. 85. Wendland, M.; Hasse, H.; Maurer, G., Experimental pressure− temperature data on three-and four-phase equilibria of fluid, hydrate, and ice phases in the system carbon dioxide− water. Journal of Chemical Engineering Data 1999, 44 (5), 901-906. 86. Khan, M. S.; Bavoh, C. B.; Partoon, B.; Lal, B.; Bustam, M. A.; Shariff, A. M., Thermodynamic effect of ammonium based ionic liquids on CO2 hydrates phase boundary. Journal of Molecular Liquids 2017, 238, 533-539. 87. Chin, H. Y.; Hsieh, M. K.; Chen, Y. P.; Chen, P. C.; Lin, S. T.; Chen, L. J., Prediction of phase equilibrium for gas hydrate in the presence of organic inhibitors and electrolytes by using an explicit pressure-dependent Langmuir adsorption constant in the van der Waals–Platteeuw model. The Journal of Chemical Thermodynamics 2013, 66, 34-43. 88. Hsieh, M. K.; Ting, W. Y.; Chen, Y. P.; Chen, P. C.; Lin, S. T.; Chen, L. J., Explicit pressure dependence of the Langmuir adsorption constant in the van der Waals–Platteeuw model for the equilibrium conditions of clathrate hydrates. Fluid Phase Equilibria 2012, 325, 80-89. 89. Hsieh, M. K.; Yeh, Y. T.; Chen, Y. P.; Chen, P. C.; Lin, S. T.; Chen, L. J., Predictive method for the change in equilibrium conditions of gas hydrates with addition of inhibitors and electrolytes. Industrial Engineering Chemistry Research 2012, 51 (5), 2456-2469. 90. Mohammadi, A. H.; Anderson, R.; Tohidi, B., Carbon monoxide clathrate hydrates: equilibrium data and thermodynamic modeling. AIChE Journal 2005, 51 (10), 2825-2833. 91. Nakamura, T.; Makino, T.; Sugahara, T.; Ohgaki, K., Stability boundaries of gas hydrates helped by methane—structure-H hydrates of methylcyclohexane and cis-1,2-dimethylcyclohexane. Chemical Engineering Science 2003, 58 (2), 269-273. 92. Nixdorf, J.; Oellrich, L. R., Experimental determination of hydrate equilibrium conditions for pure gases, binary and ternary mixtures and natural gases. Fluid Phase Equilibria 1997, 139 (1), 325-333. 93. Wu, T. T.; Shao, W. C.; Chen, Y. P.; Tang, M., Measurements of the dissociation conditions for methane hydrates with various additives of 1,2-epoxybutane, 2,3-dihydrofuran, N-methylformamide, 4-methylmorpholine, or 1-(2-furyl)methylamine. Fluid Phase Equilibria 2020, 509, 112456. 94. Chu, C. K.; Chen, P. C.; Chen, Y. P.; Lin, S. T.; Chen, L. J., Inhibition effect of 1-ethyl-3-methylimidazolium chloride on methane hydrate equilibrium. The Journal of Chemical Thermodynamics 2015, 91, 141-145. 95. Chin, H. Y.; Lee, B. S.; Chen, Y. P.; Chen, P. C.; Lin, S. T.; Chen, L. J., Prediction of phase equilibrium of methane hydrates in the presence of ionic liquids. Industrial Engineering Chemistry Research 2013, 52 (47), 16985-16992. 96. Ishmuratov, F. G.; Rakhimova, N. T.; Ishmiyarov, E. R.; Voloshin, A. I.; Gusakov, V. N.; Tomilov, Y. V.; Nifant’yev, N. E.; Dokichev, V. A., New “green” polysaccharidal inhibitor of gas hydrate formation on the basis of carboxymethylcellulose sodium salt. Russian Journal of Applied Chemistry 2018, 91 (4), 653-656.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82027-
dc.description.abstract" 本研究以高壓相平衡設備採用等容溫度循環法以及高壓差式掃描熱卡計進行二氧化碳與甲烷水合物之熱力學實驗量測,亦使用高壓設備進行二氧化碳與甲烷水合物生成之誘導時間量測,以起始壓力為變因,固定系統之操作溫度,並探討添加聚乙烯亞胺、羧甲基纖維素鈉造成之影響。本研究熱力學實驗探討之壓力範圍為:二氧化碳系統由1.516至3.683 MPa,甲烷系統由4.910至12.656 MPa。誘導時間量測之恆溫溫度為:二氧化碳系統274.65 K,甲烷系統280.07 K。 研究結果顯示,聚乙烯亞胺為二氧化碳水合物熱力學抑制劑,其最大抑制效果為0.5 wt.% 聚乙烯亞胺在1.978 MPa下抑制0.9 K。在較低壓力條件下,0.5 wt.% 聚乙烯亞胺抑制效果優於 5.0 wt.%,在較高壓力條件下趨勢則相反,另外添加不同分子量的聚乙烯亞胺,抑制效果幾乎相同,分子量25,000之聚乙烯亞胺平均抑制效果為0.62 K,分子量750,000之聚乙烯亞胺平均抑制效果為0.58 K。在誘導時間實驗中,聚乙烯亞胺為二氧化碳水合物生成促進劑,其中以0.5 wt.% 聚乙烯亞胺促進效果最佳,在起始壓力為3.125 MPa的情況下,誘導時間從40.03分鐘縮短為21.25分鐘,且初始壓力愈高,誘導時間也愈短。在甲烷水合物系統中,添加聚乙烯亞胺對相平衡條件幾乎沒有影響。使用高壓差式掃描熱卡計進行解離溫度量測,其起始解離溫度與等容溫度循環法之結果較接近。聚乙烯亞胺為甲烷水合物生成抑制劑,其抑制效果以0.5 wt.% 聚乙烯亞胺最佳,在10 MPa的情況下,誘導時間從0.75分鐘延長至6.95分鐘。 羧甲基纖維素鈉為二氧化碳水合物熱力學抑制劑,其抑制效果隨著添加濃度提高而增加。最大抑制效果為2.0 wt.% 羧甲基纖維素鈉在1.952 MPa下抑制0.67 K。在誘導時間實驗中,羧甲基纖維素鈉為二氧化碳水合物生成抑制劑,此外反應器的幾何形狀對誘導時間之結果有很大的影響。在起始壓力為3.125 MPa的情況下,兩個不同的反應釜誘導時間分別從40.03分鐘延長至84.10分鐘 (P100),0.60分鐘延長至16.99分鐘 (PP100)。在甲烷水合物系統中,添加羧甲基纖維素鈉對相平衡條件幾乎沒有影響,且使用高壓差式掃描熱卡計量測解離溫度,可以發現加入不同濃度(1.0、2.0 wt.%)和不同分子量 (90,000、250,000)其結果都相同,起始解離溫度與純水系統幾乎一致。"zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-25T05:34:20Z (GMT). No. of bitstreams: 1
U0001-2707202122085800.pdf: 4634848 bytes, checksum: 43b8ec36ab03ee766a91d2afde6fbaef (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents誌謝 I 摘要 III Abstract V Table of Contents VIII Tables XI Figure caption XV Chapter 1 Introduction 1 Chapter 2 Apparatus and Experiment 19 2.1 Materials 19 2.2 Apparatus 19 2.3 Experimental Procedures 21 2.3.1 Experimental Procedures for Phase Boundary of CO2/CH4 hydrates .21 2.3.2 Kinetic Experimental Procedures 26 2.4 Experimental Data Analysis 27 2.4.1 Thermodynamic Experimental Data Analysis 27 2.4.2 Kinetic Experimental Data Analysis 29 Chapter 3 Effect of Polyethylenimine on Carbon Dioxide and Methane Hydrate Dissociation Conditions and Induction Time for Hydrate Formation 40 3.1 Dissociation Conditions of Carbon Dioxide Hydrates 40 3.2 Dissociation Conditions of Carbon Dioxide Hydrates in the Presence of Polyethylenimine 40 3.3 Induction Time for Carbon Dioxide Hydrate Formation in the Presence of Polyethylenimine 42 3.4 Dissociation Conditions of Pure Methane Hydrates 44 3.5 Dissociation Conditions of Methane Hydrates in the Presence of Polyethylenimine 44 3.6 Induction Time for Methane Hydrate Formation in the Presence of Polyethylenimine 46 Chapter 4 Effect of Sodium Carboxymethyl Cellulose on Carbon Dioxide and Methane Hydrate Dissociation Conditions and Induction Time for Hydrate Formation 70 4.1 Dissociation Conditions of Carbon Dioxide hydrates in the presence of Sodium Carboxymethyl Cellulose 70 4.2 Induction Time for Carbon Dioxide Hydrate Formation in the Presence of Sodium Carboxymethyl Cellulose 71 4.3 Dissociation Conditions of Methane Hydrates in the Presence of Sodium Carboxymethyl Cellulose 73 Chapter 5 Conclusions 93 REFERENCES 96 附錄 114
dc.language.isoen
dc.subject羧甲基纖維素鈉zh_TW
dc.subject氣體水合物zh_TW
dc.subject相平衡zh_TW
dc.subject誘導時間zh_TW
dc.subject聚乙烯亞胺zh_TW
dc.subjectInduction timeen
dc.subjectGas hydrateen
dc.subjectPolyethylenimineen
dc.subjectSodium carboxymethyl celluloseen
dc.subjectPhase equilibriumen
dc.title添加聚乙烯亞胺、羧甲基纖維素鈉對於二氧化碳及甲烷水合物熱力學與動力學之實驗量測zh_TW
dc.titleMeasurement of Thermodynamic and Kinetic Data of Carbon Dioxide and Methane Hydrate in the Presence of Polyethylenimine and Sodium Carboxymethyl Celluloseen
dc.date.schoolyear109-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳立仁(Hsin-Tsai Liu),蘇至善(Chih-Yang Tseng),蔡榮進
dc.subject.keyword氣體水合物,聚乙烯亞胺,羧甲基纖維素鈉,相平衡,誘導時間,zh_TW
dc.subject.keywordGas hydrate,Polyethylenimine,Sodium carboxymethyl cellulose,Phase equilibrium,Induction time,en
dc.relation.page142
dc.identifier.doi10.6342/NTU202101822
dc.rights.note同意授權(限校園內公開)
dc.date.accepted2021-07-28
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept化學工程學研究所zh_TW
dc.date.embargo-lift2026-07-28-
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
U0001-2707202122085800.pdf
  未授權公開取用
4.53 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved