Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82024
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張慕傑(Mu-Chieh Chang)
dc.contributor.authorHsin-Yu Laien
dc.contributor.author賴欣妤zh_TW
dc.date.accessioned2022-11-25T05:34:17Z-
dc.date.available2023-07-29
dc.date.copyright2021-08-18
dc.date.issued2021
dc.date.submitted2021-07-30
dc.identifier.citation1. Pareek, A.; Dom, R.; Gupta, J.; Chandran, J.; Adepu, V.; Borse, P. H., Insights into Renewable Hydrogen Energy: Recent Advances and Prospects. Mater. Sci. Energy Technol., 2020, 3, 319-327. 2. Edwards, P. P.; Kuznetsov, V. L.; David, W. I. F.; Brandon, N. P., Hydrogen and Fuel Cells: Towards a Sustainable Energy Future. Energy Policy, 2008, 36, 4356-4362. 3. Abe, J. O.; Popoola, A. P. I.; Ajenifuja, E.; Popoola, O. M., Hydrogen Energy, Economy and Storage: Review and Recommendation. Int. J. Hydrogen Energy, 2019, 44, 15072-15086. 4. McNamara, W. R.; Han, Z.; Alperin, P. J.; Brennessel, W. W.; Holland, P. L.; Eisenberg, R., A Cobalt–Dithiolene Complex for the Photocatalytic and Electrocatalytic Reduction of Protons. J. Am. Chem. Soc., 2011, 133, 15368-15371. 5. Nippe, M.; Khnayzer, R. S.; Panetier, J. A.; Zee, D. Z.; Olaiya, B. S.; Head-Gordon, M.; Chang, C. J.; Castellano, F. N.; Long, J. R., Catalytic Proton Reduction with Transition Metal Complexes of the Redox-Active Ligand BPY2PYMe. Chem. Sci., 2013, 4, 3934-3945. 6. Guan, D.; Zhou, J.; Huang, Y.-C.; Dong, C.-L.; Wang, J.-Q.; Zhou, W.; Shao, Z., Screening Highly Active Perovskites for Hydrogen-Evolving Reaction Via Unifying Ionic Electronegativity Descriptor. Nat. Commun., 2019, 10, 1-8. 7. Du, H.; Liu, Q.; Cheng, N.; Asiri, A. M.; Sun, X.; Li, C. M., Template-Assisted Synthesis of Cop Nanotubes to Efficiently Catalyze Hydrogen-Evolving Reaction. J. Mater. Chem. A, 2014, 2, 14812-14816. 8. Letko, C. S.; Panetier, J. A.; Head-Gordon, M.; Tilley, T. D., Mechanism of the Electrocatalytic Reduction of Protons with Diaryldithiolene Cobalt Complexes. J. Am. Chem. Soc., 2014, 136, 9364-9376. 9. Khusnutdinova, J. R.; Milstein, D., Metal-Ligand Cooperation. Angew. Chem. Int. Ed., 2015, 54, 12236-12273. 10. Grützmacher, H., Cooperating Ligands in Catalysis. Angew. Chem. Int. Ed., 2008, 47, 1814-1818. 11. Wodrich, M. D.; Hu, X., Natural Inspirations for Metal–Ligand Cooperative Catalysis. Nat. Rev. Chem., 2018, 2, 1-8. 12. Moulton, C. J.; Shaw, B. L., Transition Metal–Carbon Bonds. Part Xlii. Complexes of Nickel, Palladium, Platinum, Rhodium and Iridium with the Tridentate Ligand 2,6-Bis[(Di-T-Butylphosphino)Methyl]Phenyl. J. Chem. Soc., Dalton Trans., 1976, 1020-1024. 13. Koten, G. v., Tuning the Reactivity of Metals Held in a Rigid Ligand Environment. Pure Appl. Chem., 1989, 61, 1681-1694. 14. Cantat, T.; Scott, B. L.; Morris, D. E.; Kiplinger, J. L., What a Difference a 5f Element Makes: Trivalent and Tetravalent Uranium Halide Complexes Supported by One and Two Bis[2-(Diisopropylphosphino)-4-Methylphenyl]Amido (PNP) Ligands. Inorg. Chem., 2009, 48, 2114-2127. 15. Peris, E.; Crabtree, R. H., Key Factors in Pincer Ligand Design. Chem. Soc. Rev., 2018, 47, 1959-1968. 16. Junge, K.; Papa, V.; Beller, M., Cobalt–Pincer Complexes in Catalysis. Chem. Eur. J., 2019, 25, 122-143. 17. Li, H.; Zheng, B.; Huang, K.-W., A New Class of Pn3-Pincer Ligands for Metal–Ligand Cooperative Catalysis. Coord. Chem. Rev., 2015, 293-294, 116-138. 18. Gunanathan, C.; Milstein, D., Bond Activation by Metal-Ligand Cooperation: Design of “Green” Catalytic Reactions Based on Aromatization-Dearomatization of Pincer Complexes. 2011, 37, 55-84. 19. Rozenel, S. S.; Padilla, R.; Camp, C.; Arnold, J., Unusual Activation of H2 by Reduced Cobalt Complexes Supported by a PNP Pincer Ligand. Chem. Commun., 2014, 50, 2612-2614. 20. Lyaskovskyy, V.; De Bruin, B., Redox Non-Innocent Ligands: Versatile New Tools to Control Catalytic Reactions. ACS Catal., 2012, 2, 270-279. 21. Butschke, B.; Fillman, K. L.; Bendikov, T.; Shimon, L. J. W.; Diskin-Posner, Y.; Leitus, G.; Gorelsky, S. I.; Neidig, M. L.; Milstein, D., How Innocent Are Potentially Redox Non-Innocent Ligands? Electronic Structure and Metal Oxidation States in Iron-Pnn Complexes as a Representative Case Study. Inorg. Chem., 2015, 54, 4909-4926. 22. Jørgensen, C. K., Differences between the Four Halide Ligands, and Discussion Remarks on Trigonal-Bipyramidal Complexes, on Oxidation States, and on Diagonal Elements of One-Electron Energy. Coord. Chem. Rev., 1966, 1, 164-178. 23. Yu, R. P.; Darmon, J. M.; Milsmann, C.; Margulieux, G. W.; Stieber, S. C. E.; Debeer, S.; Chirik, P. J., Catalytic Hydrogenation Activity and Electronic Structure Determination of Bis(Arylimidazol-2-Ylidene)Pyridine Cobalt Alkyl and Hydride Complexes. J. Am. Chem. Soc., 2013, 135, 13168-13184. 24. Rakowski Dubois, M.; Dubois, D. L., The Roles of the First and Second Coordination Spheres in the Design of Molecular Catalysts for H2 production and Oxidation. Chem. Soc. Rev., 2009, 38, 62-72. 25. Jacobsen, G. M.; Yang, J. Y.; Twamley, B.; Wilson, A. D.; Bullock, R. M.; Rakowski Dubois, M.; Dubois, D. L., Hydrogen Production Using Cobalt-Based Molecular Catalysts Containing a Proton Relay in the Second Coordination Sphere. Energy Environ. Sci., 2008, 1, 167-174. 26. Gorgas, N.; Kirchner, K., Isoelectronic Manganese and Iron Hydrogenation/Dehydrogenation Catalysts: Similarities and Divergences. Acc. Chem. Res., 2018, 51, 1558-1569. 27. Kounalis, E.; Lutz, M.; Broere, D. L. J., Cooperative H 2 Activation on Dicopper(I) Facilitated by Reversible Dearomatization of an “Expanded Pnnp Pincer” Ligand. Chem. Eur. J., 2019, 25, 13280-13284. 28. Xiong, N.; Zhang, G.; Sun, X.; Zeng, R., Metal‐Metal Cooperation in Dinucleating Complexes Involving Late Transition Metals Directed Towards Organic Catalysis. Chin. J. Chem., 2020, 38, 185-201. 29. Yano, J.; Yachandra, V., Mn4ca Cluster in Photosynthesis: Where and How Water Is Oxidized to Dioxygen. Chem. Rev., 2014, 114, 4175-4205. 30. Mankad, N. P., Selectivity Effects in Bimetallic Catalysis. Chem. Eur. J., 2016, 22, 5822-5829. 31. Deolka, S.; Rivada-Wheelaghan, O.; Aristizábal, S. L.; Fayzullin, R. R.; Pal, S.; Nozaki, K.; Khaskin, E.; Khusnutdinova, J. R., Metal–Metal Cooperative Bond Activation by Heterobimetallic Alkyl, Aryl, and Acetylide PtII/CuI Complexes. Chem. Sci., 2020, 11, 5494-5502. 32. Moore, J. T.; Lu, C. C., Catalytic Hydrogenolysis of Aryl C–F Bonds Using a Bimetallic Rhodium–Indium Complex. J. Am. Chem. Soc., 2020, 142, 11641-11646. 33. You, D.; Gabbaï, F. P., Tunable Σ-Accepting, Z-Type Ligands for Organometallic Catalysis. Trends in Chemistry, 2019, 1, 485-496. 34. Zhou, Y.-Y.; Uyeda, C., Catalytic Reductive [4 + 1]-Cycloadditions of Vinylidenes and Dienes. Science, 2019, 363, 857-862. 35. Behlen, M. J.; Uyeda, C., C2-Symmetric Dinickel Catalysts for Enantioselective [4 + 1]-Cycloadditions. J. Am. Chem. Soc., 2020, 142, 17294-17300. 36. Maity, A. K.; Kalb, A. E.; Zeller, M.; Uyeda, C., A Dinickel Catalyzed Cyclopropanation without the Formation of a Metal Carbene Intermediate. Angew. Chem. Int. Ed., 2021, 60, 1897-1902. 37. Saha, B.; Wahidur Rahaman, S. M.; Daw, P.; Sengupta, G.; Bera, J. K., Metal-Ligand Cooperation on a Diruthenium Platform: Selective Imine Formation through Acceptorless Dehydrogenative Coupling of Alcohols with Amines. Chem. Eur. J., 2014, 20, 6542-6551. 38. Henthorn, J. T.; Agapie, T., Modulation of Proton-Coupled Electron Transfer through Molybdenum–Quinonoid Interactions. Inorg. Chem., 2016, 55, 5337-5342. 39. Glüer, A.; Schneider, S., Iron Catalyzed Hydrogenation and Electrochemical Reduction of Co 2 : The Role of Functional Ligands. J. Organomet. Chem., 2018, 861, 159-173. 40. Behlen, M. J.; Zhou, Y.-Y.; Steiman, T. J.; Pal, S.; Hartline, D. R.; Zeller, M.; Uyeda, C., Dinuclear Oxidative Addition Reactions Using an Isostructural Series of Ni2, Co2, and Fe2 Complexes. Dalton Trans., 2017, 46, 5493-5497. 41. Bonnet, S.; Siegler, M. A.; Costa, J. S.; Molnár, G.; Bousseksou, A.; Spek, A. L.; Gamez, P.; Reedijk, J., A Two-Step Spin Crossover Mononuclear Iron(II) Complex with a [Hs–Ls–Ls] Intermediate Phase. Chem. Commun., 2008, 5619. 42. Queyriaux, N.; Sun, D.; Fize, J.; Pécaut, J.; Field, M. J.; Chavarot-Kerlidou, M.; Artero, V., Electrocatalytic Hydrogen Evolution with a Cobalt Complex Bearing Pendant Proton Relays: Acid Strength and Applied Potential Govern Mechanism and Stability. J. Am. Chem. Soc., 2020, 142, 274-282. 43. Richardson, B. G.; Jain, A. D.; Potteti, H. R.; Lazzara, P. R.; David, B. P.; Tamatam, C. R.; Choma, E.; Skowron, K.; Dye, K.; Siddiqui, Z.; Wang, Y.-T.; Krunic, A.; Reddy, S. P.; Moore, T. W., Replacement of a Naphthalene Scaffold in Kelch-Like Ech-Associated Protein 1 (KEAP1)/Nuclear Factor (Erythroid-Derived 2)-Like 2 (NRF2) Inhibitors. J. Med. Chem., 2018, 61, 8029-8047. 44. Slany, M.; Caminade, A.-M.; Majoral, J. P., Specific Functionalization on the Surface of Dendrimers. Tetrahedron Lett., 1996, 37, 9053-9056. 45. Li, Q.-S.; Wan, C.-Q.; Xu, F.-B.; Song, H.-B.; Zhang, Z.-Z., Synthesis of a Novel Pyridine-Diamino Bridged Diphosphine Ligand and Its Macrocyclic Metal Complexes. Inorg. Chim. Acta, 2005, 358, 2283-2291. 46. Wen, T.; Thompson, L. K.; Lee, F. L.; Gabe, E. J., Binuclear Nickel(II) and Cobalt(II) Complexes of Sexadentrate (N6) Phthalazine Ligands. Crystal and Molecular Structures of [.mu.-1,4-Bis((6-Methylpyridine-2-Carboxaldimino)Amino)Phthalazine-4,N3,.mu.-N1,.mu.-N1A,N3A,N4A](.mu.-Chloro)Tetraaquodicobalt(II). Inorg. Chem., 1988, 27, 4190-4196. 47. Pham, J.; Jarczyk, C. E.; Reynolds, E. F.; Kelly, S. E.; Kim, T.; He, T.; Keith, J. M.; Chianese, A. R., The Key Role of the Latent N–H Group in Milstein's Catalyst for Ester Hydrogenation. Chem. Sci., 2021. 48. Zhai, D.-D.; Du, H.-Z.; Zhang, X.-Y.; Liu, Y.-F.; Guan, B.-T., Potassium Yttrium Ate Complexes: Synergistic Effect Enabled Reversible H2 Activation and Catalytic Hydrogenation. ACS Catal., 2019, 9, 8766-8771. 49. Yang, X.; Hall, M. B., Monoiron Hydrogenase Catalysis: Hydrogen Activation with the Formation of a Dihydrogen, Fe−Hδ−···Hδ+−O, Bond and Methenyl-H4MPT+ Triggered Hydride Transfer. J. Am. Chem. Soc., 2009, 131, 10901-10908. 50. Daw, P.; Chakraborty, S.; Leitus, G.; Diskin-Posner, Y.; Ben-David, Y.; Milstein, D., Selectiven-Formylation of Amines with H2 and Co2 catalyzed by Cobalt Pincer Complexes. ACS Catal., 2017, 7, 2500-2504. 51. Pavlov, A. A.; Nehrkorn, J.; Zubkevich, S. V.; Fedin, M. V.; Holldack, K.; Schnegg, A.; Novikov, V. V., A Synergy and Struggle of Epr, Magnetometry and Nmr: A Case Study of Magnetic Interaction Parameters in a Six-Coordinate Cobalt(II) Complex. Inorg. Chem., 2020, 59, 10746-10755. 52. Shaffer, D. W.; Bhowmick, I.; Rheingold, A. L.; Tsay, C.; Livesay, B. N.; Shores, M. P.; Yang, J. Y., Spin-State Diversity in a Series of Co(II) PNP Pincer Bromide Complexes. Dalton Trans., 2016, 45, 17910-17917. 53. Pavlov, A. A.; Nehrkorn, J.; Pankratova, Y. A.; Ozerov, M.; Mikhalyova, E. A.; Polezhaev, A. V.; Nelyubina, Y. V.; Novikov, V. V., Detailed Electronic Structure of a High-Spin Cobalt(II) Complex Determined from Nmr and THz-EPR Spectroscopy. Phys. Chem. Chem. Phys., 2019, 21, 8201-8204. 54. Cho, Y. I.; Ward, M. L.; Rose, M. J., Substituent Effects of N4 Schiff Base Ligands on the Formation of Fluoride-Bridged Dicobalt(II) Complexes Via B–F Abstraction: Structures and Magnetism. Dalton Trans., 2016, 45, 13466-13476. 55. Semproni, S. P.; Milsmann, C.; Chirik, P. J., Four-Coordinate Cobalt Pincer Complexes: Electronic Structure Studies and Ligand Modification by Homolytic and Heterolytic Pathways. J. Am. Chem. Soc., 2014, 136, 9211-9224. 56. Siedschlag, R. B.; Bernales, V.; Vogiatzis, K. D.; Planas, N.; Clouston, L. J.; Bill, E.; Gagliardi, L.; Lu, C. C., Catalytic Silylation of Dinitrogen with a Dicobalt Complex. J. Am. Chem. Soc., 2015, 137, 4638-4641. 57. Smith, A. D.; Saini, A.; Singer, L. M.; Phadke, N.; Findlater, M., Synthesis, Characterization and Reactivity of Iron- and Cobalt-Pincer Complexes. Polyhedron, 2016, 114, 286-291. 58. Ortego, L.; Gonzalo-Asensio, J.; Laguna, A.; Villacampa, M. D.; Gimeno, M. C., (Aminophosphane)Gold(I) and Silver(I) Complexes as Antibacterial Agents. J. Inorg. Biochem., 2015, 146, 19-27. 59. Gabor, B.; Gabor, S.; Laszol, P., Synthesis and Structure of Dinuclear Silver Complexes of N,N-bis(2-(diphenylphosphanyl)ethyl)phenylamine. Polyhedron, 2017, 127, 97-106. 60. Mecking, S., Nature or Petrochemistry?—Biologically Degradable Materials. Angew. Chem. Int. Ed., 2004, 43, 1078-1085. 61. Aubrecht, K. B.; Hillmyer, M. A.; Tolman, W. B., Polymerization of Lactide by Monomeric Sn(II) Alkoxide Complexes. Macromolecules, 2002, 35, 644-650. 62. Ma, H.; Spaniol, T. P.; Okuda, J., Rare Earth Metal Complexes Supported by 1,Ω-Dithiaalkanediyl-Bridged Bis(Phenolato) Ligands: Synthesis, Characterization and Ring-Opening Polymerization Catalysis Ofl-Lactide. Dalton Trans., 2003, 4770-4780. 63. Zhang, J.; Wang, B.; Wang, L.; Sun, J.; Zhang, Y.; Cao, Z.; Wu, Z., Versatile Cobalt Complexes for Initiating Immortal Ring‐Opening Polymerization (ROP) of Lactide (LA), Mediating Living Radical Polymerization of T ‐Butyl Acrylate (tBA) and Catalyzing Copolymerization of LA and tBA combination of ROP and organometallic-mediated radical polymerization. Appl. Organomet. Chem., 2018, 32, 1-12. 64. Daw, P.; Ben-David, Y.; Milstein, D., Direct Synthesis of Benzimidazoles by Dehydrogenative Coupling of Aromatic Diamines and Alcohols Catalyzed by Cobalt. ACS Catal., 2017, 7, 7456-7460. 65. Liu, Z.; Yang, Z.; Yu, X.; Zhang, H.; Yu, B.; Zhao, Y.; Liu, Z., Methylation of C(Sp3)–H/C(Sp2)–H Bonds with Methanol Catalyzed by Cobalt System. Org. Lett., 2017, 19, 5228-5231. 66. Fang, M.; Wiedner, E. S.; Dougherty, W. G.; Kassel, W. S.; Liu, T.; Dubois, D. L.; Bullock, R. M., Cobalt Complexes Containing Pendant Amines in the Second Coordination Sphere as Electrocatalysts for H2 Production. Organometallics, 2014, 33, 5820-5833. 67. Natarajan, M.; Kaim, V.; Kumar, N.; Kaur-Ghumaan, S., A Tetranuclear Iron Complex: Substitution with Triphenylphosphine Ligand and Investigation into Electrocatalytic Proton Reduction. J. Chem. Sci., 2018, 130, 126-135. 68. Zhou, Y.-Y.; Hartline, D. R.; Steiman, T. J.; Fanwick, P. E.; Uyeda, C., Dinuclear Nickel Complexes in Five States of Oxidation Using a Redox-Active Ligand. Inorg. Chem., 2014, 53, 11770-11777. 69. Newkome, G. R.; Garbis, S. J.; Majestic, V. K.; Fronczek, F. R.; Chiari, G., Chemistry of Heterocyclic Compounds. 61. Synthesis and Conformational Studies of Macrocycles Possessing 1,8- or 1,5-Naphthyridino Subunits Connected by Carbon-Oxygen Bridges. J. Org. Chem., 1981, 46, 833-839. 70. Tanaka, K.; Murakami, M.; Jeon, J.-H.; Chujo, Y., Enhancement of Affinity in Molecular Recognition Viahydrogen Bonds by Poss-Core Dendrimer and Its Application for Selective Complex Formation between Guanosine Triphosphate and 1,8-Naphthyridine Derivatives. Org. Biomol. Chem., 2012, 10, 90-95. 71. Zong, R.; Wang, D.; Hammitt, R.; Thummel, R. P., Synthetic Approaches to Polypyridyl Bridging Ligands with Proximal Multidentate Binding Sites. J. Org. Chem., 2006, 71, 167-175. 72. Mee, S. P. H.; Lee, V.; Baldwin, J. E., Stille Coupling Made Easier—the Synergic Effect of Copper(I) Salts and the Fluoride Ion. Angew. Chem. Int. Ed., 2004, 43, 1132-1136.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82024-
dc.description.abstract"近年來致力於減少依賴石化燃料作為主要的能源來源,科學家們積極尋找可替代的燃料。其中,氫氣是廣為人知的能量儲存系統,且由於水是反應完後唯一可能產生的副產物,相對於其他燃料而言對環境的危害較小,常見的研究為利用質子還原反應產生氫氣,若要加速反應的進行,則催化劑的設計勢必為重要的一環。 本篇欲將金屬金屬協同作用(Metal-Metal cooperation)以及金屬配基協同作用(Metal-Ligand cooperation)兩種概念結合於單一錯合物中,因此以1,4-Phthalazine為中心骨架,以diphenylphosphine作為側臂,設計出具有pendent proton relay的螯合配基。在隔絕水氧的反應條件下與所設計之配位基進行反應,合成雙金屬鈷錯合物。藉由X-光繞射、元素分析、電子順磁共振光譜以及循環伏安法等分析儀器,確認錯合物之合成以及其結構特性之鑑定。 將合成之鈷錯合物進行質子還原之電化學實驗,由結果可發現本篇之催化劑在此反應中具有活性。而其中一雙鈷錯合物進行氧化反應後得到的結果,我們初步判定此錯合物可能具有活化水分子的潛能,而得到的另一雙銀錯合物亦值得進行後續的鑑定及應用,這也將成為日後能發展的應用方向。 "zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-25T05:34:17Z (GMT). No. of bitstreams: 1
U0001-2907202113173000.pdf: 4614807 bytes, checksum: 00c61c62ccaab53f6fae453a1b2f0715 (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents"致謝 i 摘要 ii Abstract iii Contents v List of Figures viii List of Schemes xi List of Tables xiv Chapter 1 Introduction 1 1.1 Metal-Ligand Cooperation 2 1.1.1 Pincer Ligand and Redox-Active Ligand 2 1.1.2 Pendant proton relay 8 1.2 Metal-Metal Cooperation 13 1.3 Multifunctional Catalyst 19 1.4 Motivation and Molecular Design 23 Chapter 2 Results and Discussions 25 2.1 PNNP Phthalazine Ligand Synthesis and Characterization 25 2.1.1 Ligand 1 Synthesis and Structure Characterization 25 2.1.2 Ligand 1 Deprotonation Test 33 2.1.3 Electrochemical Properties of Ligand 1 36 2.2 Mono-Cobalt Complex 2 Synthesis and Characterization 39 2.2.1 Synthesis and Structure Characterization of Mono-Cobalt Complex 2 39 2.2.2 Electrochemical Properties of Mono-cobalt complex 2 46 2.3 Di-Cobalt (II) Complexes Synthesis and Characterization 51 2.3.1 Synthesis and Structure Characterization of Fluoride Bridging Di-Cobalt Complex 3 51 2.3.2 Synthesis and Structure Characterization of Di-Cobalt Complex 4 58 2.3.3 Electrochemical Properties of Di-Cobalt Complex 3 62 2.3.4 Electrochemical Properties of Di-Cobalt Complex 4 65 2.3.5 Redox reaction of complex 3 and 4 69 2.3.6 Electron Paramagnetic Resonance Spectrum of Di-Cobalt Complex 3 and 4 80 2.4 Catalytic Reaction of the Cobalt Complexes 82 2.4.1 Ring Opening Polymerization 82 2.4.2 Coupling Reaction and Methylation Catalyzed by Cobalt Complexes 83 2.4.3 Electrochemical Proton Reduction Reaction 86 2.5 Unsymmetrical Naphthyridine Ligand Synthesis and Characterization. 91 Chapter 3 Conclusion and Future Work 96 Chapter 4 Experimental Section 98 General Information 98 Physical Measurements 98 Preparation 101 1,4-Phthalazinediamine (1a) 101 (Diphenylphosphanyl)methanol (1b) 102 N1, N4-bis((diphenylphosphanyl)methyl)phthalazine-1,4-diamine (1) 103 Co(LH2)Cl2 (2) 104 Co2(LH2)2(MeCN)2F(BF4)3 (3) 105 Co2(LH2)2(MeCN)2(ClO4)4 (4) 106 Ag2(LH2)2(BF4)2 (5) 107 Co2(LH2O)2(ACN)2(BF4)2 (6) 108 2-Amino-7-hydroxy-1,8-naphthyridine (8) 109 2-Amino-7-chloro-1,8-naphthyridine (9) 110 N-(7-chloro-1,8-naphthyridin-2-yl)acetamide (10) 111 1-acetyl-7-amino-1,8-naphthyridine (11) 112 References 114 Appendix 126 "
dc.language.isoen
dc.subject多功能金屬錯合物zh_TW
dc.subject金屬-配位基協同作用zh_TW
dc.subject金屬-金屬協同作用zh_TW
dc.subject多功能配位基zh_TW
dc.subjectMetal-Ligand cooperationen
dc.subjectMetal-Metal cooperationen
dc.subjectpendent proton relayen
dc.title多功能鈷金屬錯合物之合成及應用zh_TW
dc.titleSynthesis and Applications of Multifunctional Cobalt Complexesen
dc.date.schoolyear109-2
dc.description.degree碩士
dc.contributor.oralexamcommittee王朝諺(Hsin-Tsai Liu),林雅凡(Chih-Yang Tseng)
dc.subject.keyword金屬-配位基協同作用,金屬-金屬協同作用,多功能配位基,多功能金屬錯合物,zh_TW
dc.subject.keywordMetal-Ligand cooperation,Metal-Metal cooperation,pendent proton relay,en
dc.relation.page147
dc.identifier.doi10.6342/NTU202101891
dc.rights.note同意授權(限校園內公開)
dc.date.accepted2021-08-01
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept化學研究所zh_TW
dc.date.embargo-lift2023-07-29-
顯示於系所單位:化學系

文件中的檔案:
檔案 大小格式 
U0001-2907202113173000.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
4.51 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved