請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82017完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳永芳(Yang-Fang Chen) | |
| dc.contributor.author | Siang-Yao Tan | en |
| dc.contributor.author | 譚向堯 | zh_TW |
| dc.date.accessioned | 2022-11-25T05:34:09Z | - |
| dc.date.available | 2024-12-31 | |
| dc.date.copyright | 2021-08-20 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-08-06 | |
| dc.identifier.citation | Chapter 1 introduction: Dian, F. J.; Vahidnia, R.; Rahmati, A. Wearables and the Internet of Things (Iot), Applications, Opportunities, and Challenges: A Survey. IEEE Access 2020, 8, 69200-69211. Qaim, W. B.; Ometov, A.; Molinaro, A.; Lener, I.; Campolo, C.; Lohan, E. S.; Nurmi, J. Towards Energy Efficiency in the Internet of Wearable Things: A Systematic Review. IEEE Access 2020, 8, 175412-175435. Lai, Y.-C.; Hsiao, Y.-C.; Wu, H.-M.; Wang, Z. L. Waterproof Fabric-Based Multifunctional Triboelectric Nanogenerator for Universally Harvesting Energy from Raindrops, Wind, and Human Motions and as Self-Powered Sensors. Advanced Science 2019, 6, (5), 1801883. Hua, Q.; Sun, J.; Liu, H.; Bao, R.; Yu, R.; Zhai, J.; Pan, C.; Wang, Z. L. Skin-Inspired Highly Stretchable and Conformable Matrix Networks for Multifunctional Sensing. Nat. Commun. 2018, 9, (1), 244. Wang, C.; Hwang, D.; Yu, Z.; Takei, K.; Park, J.; Chen, T.; Ma, B.; Javey, A. User-Interactive Electronic Skin for Instantaneous Pressure Visualization. Nat. Mater. 2013, 12, (10), 899-904. Liu, Y.; Pharr, M.; Salvatore, G. A. Lab-on-Skin: A Review of Flexible and Stretchable Electronics for Wearable Health Monitoring. ACS Nano 2017, 11, (10), 9614-9635. Yang, Y.-F.; Hu, H.-W.; Wu, M.-J.; Lin, T.-Y.; Shen, J.-L.; Chen, Y.-F. Stretchable and Broadband Cavity-Free Lasers Based on All 2d Metamaterials. Adv. Opt. Mater. 2020, 8, (7), 1901326. Lin, H.-I.; Wang, C.-C.; Shen, K.-C.; Shalaginov, M. Y.; Roy, P. K.; Bera, K. P.; Kataria, M.; Paul Inbaraj, C. R.; Chen, Y.-F. Enhanced Laser Action from Smart Fabrics Made with Rollable Hyperbolic Metamaterials. npj Flexible Electronics 2020, 4, (1), 22 Loke, G.; Yan, W.; Khudiyev, T.; Noel, G.; Fink, Y. Recent Progress and Perspectives of Thermally Drawn Multimaterial Fiber Electronics. Adv. Mater. 2020, 32, (1), 1904911. Yan, W.; Dong, C.; Xiang, Y.; Jiang, S.; Leber, A.; Loke, G.; Xu, W.; Hou, C.; Zhou, S.; Chen, M.; Hu, R.; Shum, P. P.; Wei, L.; Jia, X.; Sorin, F.; Tao, X.; Tao, G. Thermally Drawn Advanced Functional Fibers: New Frontier of Flexible Electronics. Mater. Today 2020, 35, 168-194. Yan, W.; Page, A.; Nguyen-Dang, T.; Qu, Y.; Sordo, F.; Wei, L.; Sorin, F. Advanced Multimaterial Electronic and Optoelectronic Fibers and Textiles. Adv. Mater. 2019, 31, (1), 1802348. Zeng, W.; Shu, L.; Li, Q.; Chen, S.; Wang, F.; Tao, X.-M. Fiber-Based Wearable Electronics: A Review of Materials, Fabrication, Devices, and Applications. Adv. Mater. 2014, 26, (31), 5310-5336. Poddubny, A.; Iorsh, I.; Belov, P.; Kivshar, Y. Hyperbolic Metamaterials. Nat. Photon. 2013, 7, (12), 948-957. Cortes, C. L.; Newman, W.; Molesky, S.; Jacob, Z. Quantum Nanophotonics Using Hyperbolic Metamaterials. J. Opt. 2012, 14, (6), 063001. Krishnamoorthy, H. N. S.; Jacob, Z.; Narimanov, E.; Kretzschmar, I.; Menon, V. M. Topological Transitions in Metamaterials. Science 2012, 336, (6078), 205-209. Chandrasekar, R.; Wang, Z.; Meng, X.; Azzam, S. I.; Shalaginov, M. Y.; Lagutchev, A.; Kim, Y. L.; Wei, A.; Kildishev, A. V.; Boltasseva, A.; Shalaev, V. M. Lasing Action with Gold Nanorod Hyperbolic Metamaterials. ACS Photonics 2017, 4, (3), 674-680. Lin, H.-I.; Yadav, K.; Shen, K.-C.; Haider, G.; Roy, P. K.; Kataria, M.; Chang, T.-J.; Li, Y.-H.; Lin, T.-Y.; Chen, Y.-T.; Chen, Y.-F. Nanoscale Core–Shell Hyperbolic Structures for Ultralow Threshold Laser Action: An Efficient Platform for the Enhancement of Optical Manipulation. ACS Appl. Mater. Interfaces 2019, 11, (1), 1163-1173. Wang, P.; Krasavin, A. V.; Viscomi, F. N.; Adawi, A. M.; Bouillard, J.-S. G.; Zhang, L.; Roth, D. J.; Tong, L.; Zayats, A. V. Metaparticles: Dressing Nano-Objects with a Hyperbolic Coating. Laser Photonics Rev. 2018, 1800179. Lu, D.; Kan, J. J.; Fullerton, E. E.; Liu, Z. Enhancing Spontaneous Emission Rates of Molecules Using Nanopatterned Multilayer Hyperbolic Metamaterials. Nat. Nanotechnol. 2014, 9, (1), 48-53. Shen, K.-C.; Ku, C.-T.; Hsieh, C.; Kuo, H.-C.; Cheng, Y.-J.; Tsai, D. P. Deep-Ultraviolet Hyperbolic Metacavity Laser. Adv. Mater. 2018, 30, (21), 1706918. Haider, G.; Lin, H.-I.; Yadav, K.; Shen, K.-C.; Liao, Y.-M.; Hu, H.-W.; Roy, P. K.; Bera, K. P.; Lin, K.-H.; Lee, H.-M.; Chen, Y.-T.; Chen, F.-R.; Chen, Y.-F. A Highly-Efficient Single Segment White Random Laser. ACS Nano 2018, 12, (12), 11847-11859. Lee, K. J.; Xiao, Y.; Woo, J. H.; Kim, E.; Kreher, D.; Attias, A.-J.; Mathevet, F.; Ribierre, J.-C.; Wu, J. W.; André, P. Charge-Transfer Dynamics and Nonlocal Dielectric Permittivity Tuned with Metamaterial Structures as Solvent Analogues. Nat. Mater. 2017, 16, 722-729. Sreekanth, K. V.; Alapan, Y.; ElKabbash, M.; Ilker, E.; Hinczewski, M.; Gurkan, U. A.; De Luca, A.; Strangi, G. Extreme Sensitivity Biosensing Platform Based on Hyperbolic Metamaterials. Nat. Mater. 2016, 15, (6), 621-7. Yang, X.; Yao, J.; Rho, J.; Yin, X.; Zhang, X. Experimental Realization of Three-Dimensional Indefinite Cavities at the Nanoscale with Anomalous Scaling Laws. Nat. Photon. 2012, 6, (7), 450-454. Galfsky, T.; Krishnamoorthy, H. N. S.; Newman, W.; Narimanov, E. E.; Jacob, Z.; Menon, V. M. Active Hyperbolic Metamaterials: Enhanced Spontaneous Emission and Light Extraction. Optica 2015, 2, (1), 62. Lin, H.-I.; Shen, K.-C.; Liao, Y.-M.; Li, Y.-H.; Perumal, P.; Haider, G.; Cheng, B. H.; Liao, W.-C.; Lin, S.-Y.; Lin, W.-J.; Lin, T.-Y.; Chen, Y.-F. Integration of Nanoscale Light Emitters and Hyperbolic Metamaterials: An Efficient Platform for the Enhancement of Random Laser Action. ACS Photonics 2018, 5, (3), 718-727. Cao, H.; Zhao, Y. G.; Ho, S. T.; Seelig, E. W.; Wang, Q. H.; Chang, R. P. H. Random Laser Action in Semiconductor Powder. Phys. Rev. Lett. 1999, 82, (11), 2278-2281. Wiersma, D. S. The Physics and Applications of Random Lasers. Nat. Phys. 2008, 4, (5), 359-367. Redding, B.; Choma, M. A.; Cao, H. Speckle-Free Laser Imaging Using Random Laser Illumination. Nat. Photon. 2012, 6, 355. Wiersma, D. S.; Lagendijk, A. Light Diffusion with Gain and Random Lasers. Phys. Rev. E 1996, 54, (4), 4256-4265. Chang, S.-W.; Liao, W.-C.; Liao, Y.-M.; Lin, H.-I.; Lin, H.-Y.; Lin, W.-J.; Lin, S.-Y.; Perumal, P.; Haider, G.; Tai, C.-T.; Shen, K.-C.; Chang, C.-H.; Huang, Y.-F.; Lin, T.-Y.; Chen, Y.-F. A White Random Laser. Sci. Rep. 2018, 8, (1), 2720. Roy, P. K.; Haider, G.; Lin, H.-I.; Liao, Y.-M.; Lu, C.-H.; Chen, K.-H.; Chen, L.-C.; Shih, W.-H.; Liang, C.-T.; Chen, Y.-F. Multicolor Ultralow-Threshold Random Laser Assisted by Vertical-Graphene Network. Adv. Opt. Mater. 2018, 6, 1800382. Liao, Y.-M.; Lai, Y.-C.; Perumal, P.; Liao, W.-C.; Chang, C.-Y.; Liao, C.-S.; Lin, S.-Y.; Chen, Y.-F. Highly Stretchable Label-Like Random Laser on Universal Substrates. Adv. Mater. Technol. 2016, 1, (6), 1600068. Hsu, Y.-T.; Tai, C.-T.; Wu, H.-M.; Hou, C.-F.; Liao, Y.-M.; Liao, W.-C.; Haider, G.; Hsiao, Y.-C.; Lee, C.-W.; Chang, S.-W.; Chen, Y.-H.; Wu, M.-H.; Chou, R.-J.; Bera, K.P.; Lin, Y.-Y.; Chen, Y.-Z.; Kataria, M.; Lin, S.-Y.; Paul Inbaraj, C. R.; Lin, W.-J.; Lee, W.-Y.; Lin, T.-Y.; Lai, Y.-C.; Chen, Y.-F. Self-Healing Nanophotonics: Robust and Soft Random Lasers. ACS Nano 2019, 13, (8), 8977-8985. Hu, H.-W.; Haider, G.; Liao, Y.-M.; Roy, P. K.; Ravindranath, R.; Chang, H.-T.; Lu, C.-H.; Tseng, C.-Y.; Lin, T.-Y.; Shih, W.-H.; Chen, Y.-F. Wrinkled 2d Materials: A Versatile Platform for Low-Threshold Stretchable Random Lasers. Adv. Mater. 2017, 29, (43), 1703549-n/a. Shi, X.; Liao, Y.-M.; Lin, H.-Y.; Tsao, P.-W.; Wu, M.-J.; Lin, S.-Y.; Hu, H.-H.; Wang, Z.; Lin, T.-Y.; Lai, Y.-C.; Chen, Y.-F. Dissolvable and Recyclable Random Lasers. ACS Nano 2017, 11, (8), 7600-7607. Walpole, J. N.; Kintzer, E. S.; Chinn, S. R.; Wang, C. A.; Missaggia, L. J. High‐Power Strained‐Layer Ingaas/Algaas Tapered Traveling Wave Amplifier. Appl. Phys. Lett. 1992, 61, (7), 740-742. Chapter 2 Theoretical Background: D. Wiersma, Nature, Vol. 406, 2000, 133. F. Luan, B. Gu, A. S. L. Gomes, K.-T. Yong, S. Wen, P. N. Prasad, Nano Today 2015, 10, 168. A. Poddubny, I. Iorsh, P. Belov, Y. Kivshar, Nat. Photon. 2013, 7, 948. L. Ferrari, C. Wu, D. Lepage, X. Zhang, Z. Liu, Prog. Quant. Electron. 2015, 40, 1. Chapter 4 Results and Discussion: Hsu, Y.-T.; Tai, C.-T.; Wu, H.-M.; Hou, C.-F.; Liao, Y.-M.; Liao, W.-C.; Haider, G.; Hsiao, Y.-C.; Lee, C.-W.; Chang, S.-W.; Chen, Y.-H.; Wu, M.-H.; Chou, R.-J.; Bera, K. P.; Lin, Y.-Y.; Chen, Y.-Z.; Kataria, M.; Lin, S.-Y.; Paul Inbaraj, C. R.; Lin, W.-J.; Lee, W.-Y.; Lin, T.-Y.; Lai, Y.-C.; Chen, Y.-F. Self-Healing Nanophotonics: Robust and Soft Random Lasers. ACS Nano 2019, 13, (8), 8977-8985. Hu, H.-W.; Haider, G.; Liao, Y.-M.; Roy, P. K.; Ravindranath, R.; Chang, H.-T.; Lu, C.-H.; Tseng, C.-Y.; Lin, T.-Y.; Shih, W.-H.; Chen, Y.-F. Wrinkled 2d Materials: A Versatile Platform for Low-Threshold Stretchable Random Lasers. Adv. Mater. 2017, 29, (43), 1703549-n/a. Akcay, C.; Parrein, P.; Rolland, J. P. Estimation of Longitudinal Resolution in Optical Coherence Imaging. Appl. Opt. 2002, 41, (25), 5256-5262. Bohren, C. F.; Huffman, D. R., Absorption and Scattering by an Arbitrary Particle. In Absorption and Scattering of Light by Small Particles, 2 ed.; Wiley-VCH Verlag GmbH: 2007; pp 57-81. Novotny, L.; Hecht, B., Principles of Nano-Optics. Cambridge Univ. Press, Cambridge: 2006. Lin, H.-I.; Wang, C.-C.; Shen, K.-C.; Shalaginov, M. Y.; Roy, P. K.; Bera, K. P.; Kataria, M.; Paul Inbaraj, C. R.; Chen, Y.-F. Enhanced Laser Action from Smart Fabrics Made with Rollable Hyperbolic Metamaterials. npj Flexible Electronics 2020, 4, (1), 20. Ferrari, L.; Smalley, J. S. T.; Fainman, Y.; Liu, Z. Hyperbolic Metamaterials for Dispersion-Assisted Directional Light Emission. Nanoscale 2017, 9, (26), 9034-9048. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82017 | - |
| dc.description.abstract | 雙曲超穎材料受到廣泛的注意,主要是其能操縱光子能態密度,並利用此特性去增強光與物質之間的交互作用,進而應用於光電元件。 雙曲超穎材料,傳統上只能製作於不易彎曲的基板上,但這樣的元件缺乏適應性與可撓性。故此,我們提出了具光柵可拼貼式雙曲超穎材料,其結構是由八層的金與聚甲基丙烯酸甲酯互相交疊而成,而其中最上層的聚甲基丙烯酸甲酯光柵結構中摻雜了量子點。量子點,同時具有增益介質與散射粒子的特性去產生隨機雷射,另外奈米光柵不僅能萃取出來自量子點的光,還增強其發光強度。相較於平面可拼貼式雙曲超穎材料,具光柵可拼貼式雙曲超穎材料增強了光強度十三倍、降低雷射閥值百分之四十六並且也提升差額量子效率一點八倍。另外,具光柵可拼貼式雙曲超穎材料能多次轉印到不同基板上且具防水功能,同時又不失去其良好的發光效果,特別是轉印到牙籤線上能展現出此裝置穩定的功能性。因此,具光柵可拼貼式雙曲超穎材料可視為一種折疊性、強適應性、獨立性和防水性光電元件應用。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-25T05:34:09Z (GMT). No. of bitstreams: 1 U0001-0308202115230400.pdf: 12285378 bytes, checksum: 3702e9eeb250dc9cef18e5d8adce864d (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | 致謝 i 中文摘要 ii Abstract iii Chapter 1 Introduction 1 Reference 4 Chapter 2 Theoretical Background 9 2.1 Photoluminescence (PL) 9 2.2 Random Laser 10 2.2.1 Mechanism 10 2.2.2 Emission property 11 2.3 Quantum dot 12 2.4 Hyperbolic metamaterial (HMM) 13 2.4.1 Definition and properties 13 2.4.2 Layered metal-dielectric structures 16 Reference 19 Chapter 3 Experimental details 20 3.1 Nanophotonic Finite-difference Time Domain Simulator 20 3.2 Thermal Evaporation System 21 3.3 374-nm Pulsed Diode laser 22 3.4 Atomic Force Microscopy (AFM) 23 3.5 PVA Grating Substrate Synthesis 24 3.6 Device Fabrication 25 Chapter 4 Results and Discussion 28 4.1 Characteristics of Grating Collageable and Planar Collageable Hyperbolic Metamaterials 28 4.2 Characteristics of Emission Spectra 32 4.3 Theoretical Analysis 37 4.4 Multi-Functional of GCHMM 40 Reference 44 Chapter 5 Conclusion 45 | |
| dc.language.iso | en | |
| dc.subject | 隨機雷射 | zh_TW |
| dc.subject | 可撓性 | zh_TW |
| dc.subject | 光電元件 | zh_TW |
| dc.subject | 雙曲超穎材料 | zh_TW |
| dc.subject | 量子點 | zh_TW |
| dc.subject | grating nanostructure | en |
| dc.subject | hyperbolic metamaterials | en |
| dc.subject | quantum dots | en |
| dc.subject | laser action | en |
| dc.subject | flexible | en |
| dc.subject | optoelectronics | en |
| dc.title | 具可轉印性、適應性、防水性之雙曲超穎材料 | zh_TW |
| dc.title | "Transferable, Adaptable and Water-Resistant Hyperbolic Metamaterials" | en |
| dc.date.schoolyear | 109-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 謝馬利歐(Hsin-Tsai Liu),沈志霖(Chih-Yang Tseng) | |
| dc.subject.keyword | 雙曲超穎材料,量子點,隨機雷射,可撓性,光電元件, | zh_TW |
| dc.subject.keyword | hyperbolic metamaterials,quantum dots,laser action,flexible,optoelectronics,grating nanostructure, | en |
| dc.relation.page | 45 | |
| dc.identifier.doi | 10.6342/NTU202102046 | |
| dc.rights.note | 同意授權(限校園內公開) | |
| dc.date.accepted | 2021-08-09 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 物理學研究所 | zh_TW |
| dc.date.embargo-lift | 2024-12-31 | - |
| 顯示於系所單位: | 物理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-0308202115230400.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 12 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
