Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 生物化學暨分子生物學科研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82013
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor周綠蘋(Lu-Ping Chow)
dc.contributor.authorShuo-Chun Zhangen
dc.contributor.author張碩純zh_TW
dc.date.accessioned2022-11-25T05:34:05Z-
dc.date.available2026-08-12
dc.date.copyright2021-08-31
dc.date.issued2021
dc.date.submitted2021-08-13
dc.identifier.citation1. “Cancer Today - IARC.” International Agency for Research on Cancer, Dec. 2020, gco.iarc.fr/today/fact-sheets-cancers. 2. Klein, Alison P. “Pancreatic Cancer Epidemiology: Understanding the Role of Lifestyle and Inherited Risk Factors.” Nat Rev Gastroenterol Hepatol, vol. 18, 7, May 2021, pp. 493–502. 3. “An Aging World 2015, International Population Reports – United States Census Bureau – March 2016.” FIAP - International Federation of Pension Funds Administrators., 26 Oct. 2016, www.fiapinternacional.org/en/an-aging-world-2015-international-population-reports-united-states-census-bureau-march-2016/. 4. He, Jin. “2564 Resected Periampullary Adenocarcinomas at a Single Institution: Trends over Three Decades.” HPB (Oxford), vol. 16, 1, Mar. 2013, pp. 83–90. 5. Wood, Laura D., and Ralph H. Hruban. “Pathology and Molecular Genetics of Pancreatic Neoplasms.” Cancer J, vol. 18, 6, Dec. 2012, pp. 492–501. 6. “Signs and Symptoms of Pancreatic Cancer.” American Cancer Society, 11 Feb. 2019, www.cancer.org/cancer/pancreatic-cancer/detection-diagnosis-staging/signs-and-symptoms.html. 7. Maisonneuve, Patrick, and Albert B. Lowenfels. “Epidemiology of Pancreatic Cancer: An Update.” Dig Dis, vol. 28, 4–5, Nov. 2010, pp. 645–56. 8. Everhart, J., and D. Wright. “Diabetes Mellitus as a Risk Factor for Pancreatic Cancer. A Meta-Analysis.” JAMA, vol. 273, 20, May 1995, pp. 1605–9. 9. Maitra, Anirban. “A Prospective Study to Establish a New-Onset Diabetes Cohort: From the Consortium for the Study of Chronic Pancreatitis, Diabetes, and Pancreatic Cancer.” Pancreas, vol. 47, 10, Nov. 2018, pp. 1244–1248, doi:10.1097. 10. NCD Risk Factor Collaboration. “Worldwide Trends in Diabetes since 1980: A Pooled Analysis of 751 Population-Based Studies with 4.4 Million Participants.” Lancet, vol. 387, 10027, Apr. 2016, pp. 1513–1530. 11. Arslan, Alan A. “Anthropometric Measures, Body Mass Index, and Pancreatic Cancer: A Pooled Analysis from the Pancreatic Cancer Cohort Consortium (PanScan).” Arch Intern Med, vol. 170, 9, May 2010, pp. 791–802.  12. “Obesity and Overweight.” World Health Organization, 9 June 2021, www.who.int/news-room/fact-sheets/detail/obesity-and-overweight. 13. Lucenteforte, E. “Alcohol Consumption and Pancreatic Cancer: A Pooled Analysis in the International Pancreatic Cancer Case-Control Consortium (PanC4).” Ann Oncol, vol. 23, 2, Feb. 2012, pp. 374–82. 14. Naudin, Sabine, et al. “Lifetime and Baseline Alcohol Intakes and Risk of Pancreatic Cancer in the European Prospective Investigation into Cancer and Nutrition Study.” Int J Cancer, vol. 143, 4, Aug. 2018, pp. 801–812. 15. Yadav, Dhiraj. “The Epidemiology of Pancreatitis and Pancreatic Cancer.” Gastroenterology, vol. 144, 6, June 2013, pp. 1252–1261. 16. Duell, E. J. “Pancreatitis and Pancreatic Cancer Risk: A Pooled Analysis in the International Pancreatic Cancer Case-Control Consortium (PanC4).” Ann Oncol, vol. 23, 11, Nov. 2012, pp. 2964–2970. 17. Gandini, Sara. “Allergies and the Risk of Pancreatic Cancer: A Meta-Analysis with Review of Epidemiology and Biological Mechanisms.” Cancer Epidemiol Biomarkers Prev, vol. 14, 8, Aug. 2005, pp. 1908–16. 18. Olson, Sara H. “Allergies and Risk of Pancreatic Cancer: A Pooled Analysis from the Pancreatic Cancer Case-Control Consortium.” Am J Epidemiol, vol. 178, 5, Sept. 2013, pp. 691–700. 19. Maisonneuve, P. “Periodontal Disease, Edentulism, and Pancreatic Cancer: A Meta-Analysis.” Ann Oncol, vol. 28, 5, May 2017, pp. 985–995. 20. Schulte, Annaka. “Association between Helicobacter Pylori and Pancreatic Cancer Risk: A Meta-Analysis.” Cancer Causes Control, vol. 26, 7, July 2015, pp. 1027–35. 21. The American Cancer Society medical and editorial content team. “Tests for Pancreatic Cancer.” American Cancer Society, 2 Jan. 2020, www.cancer.org/cancer/pancreatic-cancer/detection-diagnosis-staging/how-diagnosed.html. 22. Brunner, Maximilian, and Zhiyuan Wu. “Current Clinical Strategies of Pancreatic Cancer Treatment and Open Molecular Questions.” Int J Mol Sci., vol. 20, 18, Sept. 2019, p. 4543. 23. Blackford, Amanda L. “Recent Trends in the Incidence and Survival of Stage 1A Pancreatic Cancer: A Surveillance, Epidemiology, and End Results Analysis.” J Natl Cancer Inst, vol. 112, 11, Nov. 2020, pp. 1162–1169. 24. Pannala, Rahul. “New-Onset Diabetes: A Potential Clue to the Early Diagnosis of Pancreatic Cancer.” Lancet Oncol, vol. 10, 1, Jan. 2009, pp. 88–95. 25. Gallo, M. “Early Prediction of Pancreatic Cancer from New-Onset Diabetes: An Associazione Italiana Oncologia Medica (AIOM)/Associazione Medici Diabetologi (AMD)/Società Italiana Endocrinologia (SIE)/Società Italiana Farmacologia (SIF) Multidisciplinary Consensus Position Paper.” ESMO Open, vol. 6, 3, June 2021, p. 100155. 26. Aggarwal, Gaurav, and Suresh T. Chari. “Prevalence of Diabetes Mellitus in Pancreatic Cancer Compared to Common Cancers.” Pancreas, vol. 42, 2, Mar. 2013, pp. 198 – 201. 27. Basso, D., et al. “Altered Glucose Metabolism and Proteolysis in Pancreatic Cancer Cell Conditioned Myoblasts: Searching for a Gene Expression Pattern with a Microarray Analysis of 5000 Skeletal Muscle Genes.” Gut., vol. 53, 8, Aug. 2004, pp. 1159–1166. 28. Basso, D. “The Pancreatic Cancer Cell Line MIA PaCa2 Produces One or More Factors Able to Induce Hyperglycemia in SCID Mice.” Anticancer Res, vol. 15, 6B, Nov. 1995, pp. 2585–8. 29. Wang, F. “In Vitro Influences between Pancreatic Adenocarcinoma Cells and Pancreatic Islets.” J Surg Res, vol. 79, 1, Sept. 1998, pp. 13–9. 30. Basso, D. “Putative Pancreatic Cancer-Associated Diabetogenic Factor: 2030 MW Peptide.” Pancreas, vol. 24, 1, Jan. 2002, pp. 8–14. 31. “TLR4: Contributing to Metabolic Syndrome in Multiple Tissues.” R D Systems, www.rndsystems.com/resources/articles/tlr4-contributing-metabolic-syndrome-multiple-tissues. 32. Cnop, Miriam, and Decio L. Eizirik. “Mechanisms of Pancreatic β-Cell Death in Type 1 and Type 2 Diabetes.” Diabetes, vol. 54, suppl 2, Dec. 2005, pp. S97–S107. 33. Böni-Schnetzler, Marianne, and Daniel T. Meier. “Islet Inflammation in Type 2 Diabetes.” Seminars in Immunopathology, vol. 41, Apr. 2019, pp. 501–513. 34. Yao, Longbiao, et al. “Roles of the Chemokine System in Development of Obesity, Insulin Resistance, and Cardiovascular Disease.” Journal of Immunology Research, vol. 2014, Mar. 2014. 35. Gao, Wenchao. “Analysis of Global Gene Expression Profiles Suggests a Role of Acute Inflammation in Type 3C Diabetes Mellitus Caused by Pancreatic Ductal Adenocarcinoma.” Diabetologia, vol. 58, 4, June 2015, pp. 835–44. 36. Liao, Wei-Chih. “Galectin-3 and S100A9: Novel Diabetogenic Factors Mediating Pancreatic Cancer-Associated Diabetes.” Diabetes Care, vol. 42, 9, Sept. 2019, pp. 1752–1759. 37. Zavoral, Miroslav. “Molecular Biology of Pancreatic Cancer.” World J Gastroenterol, vol. 17, 24, June 2011, pp. 2897–908. 38. Clementy, Nicolas, et al. “Galectin-3 in Atrial Fibrillation: Mechanisms and Therapeutic Implications.” Int J Mol Sci., vol. 19, 4, Apr. 2018, p. 976. 39. Massa, S. M. “L-29, an Endogenous Lectin, Binds to Glycoconjugate Ligands with Positive Cooperativity.” Biochemistry, vol. 32, 1, Jan. 1993, pp. 260–7. 40. Hara, Akira, et al. “Galectin-3 as a Next-Generation Biomarker for Detecting Early Stage of Various Diseases.” Biomolecules, vol. 10, 3, Mar. 2020, p. 389. 41. Dumic, Jerka. “Galectin-3: An Open-Ended Story.” Biochim Biophys Acta, vol. 1760, 4, Apr. 2006, pp. 616–35. 42. Pugliese, Giuseppe, et al. “Galectin-3 in Diabetic Patients.” Clin Chem Lab Med, vol. 52, 10, Oct. 2014, pp. 1413–23. 43. Menini, Stefano, et al. “Role of Galectin-3 in Obesity and Impaired Glucose Homeostasis.” Oxid Med Cell Longev., vol. 2016, Dec. 2015, p. 9618092. 44. Kingwell, Katie. “Turning down Galectin 3 to Combat Insulin Resistance.” Nature Reviews Drug Discovery, vol. 16, 18, Dec. 2016. 45. Li, Pingping. “Hematopoietic-Derived Galectin-3 Causes Cellular and Systemic Insulin Resistance.” Cell, vol. 167, 4, Nov. 2016, pp. 973–984. 46. Olivares-Reyes, J. Alberto. “Angiotensin II and the Development of Insulin Resistance: Implications for Diabetes.” Mol Cell Endocrinol, vol. 302, 2, Apr. 2009, pp. 128–39. 47. Norton, Laura. “The Insulin Signaling Pathway.” Antibodies.Com, www.antibodies.com/insulin-signaling-pathway. 48. Draznin, Boris. “Molecular Mechanisms of Insulin Resistance: Serine Phosphorylation of Insulin Receptor Substrate-1 and Increased Expression of P85α.” Diabetes, vol. 55, 8, Aug. 2006, pp. 2392–2397. 49. Hartogh, Danja J. Den. “Attenuation of Free Fatty Acid (FFA)-Induced Skeletal Muscle Cell Insulin Resistance by Resveratrol Is Linked to Activation of AMPK and Inhibition of MTOR and P70 S6K.” Int. J. Mol. Sci., vol. 21, no. 14, July 2020, p. 4900. 50. Meo, Sergio Di. “Skeletal Muscle Insulin Resistance: Role of Mitochondria and Other ROS Sources.” Journal of Endocrinology, vol. 233, no. 1, Apr. 2017, pp. R15–R42. 51. Nieto-Vazquez, Iria. “Insulin Resistance Associated to Obesity: The Link TNF-Alpha.” Arch Physiol Biochem, vol. 144, no. 3, July 2008, pp. 183–94. 52. Hu, Shuxian, et al. “Low Methyl-Esterified Pectin Protects Pancreatic β-Cells against Diabetes-Induced Oxidative and Inflammatory Stress via Galectin-3.” Carbohydrate Polymers, vol. 249, Dec. 2020, p. 116863. 53. He, Wei, et al. “TLR4 Triggered Complex Inflammation in Human Pancreatic Islets.” Biochimica et Biophysica Acta (BBA), vol. 1865, no. 1, Jan. 2019, pp. 86–97. 54. Wang, Z. “Toll-Like Receptor 4 and Inflammatory Micro-Environment of Pancreatic Islets in Type-2 Diabetes Mellitus: A Therapeutic Perspective.” Dove Press, vol. 13, Nov. 2020, pp. 4261–4272. 55. Hasnain, Sumaira Z. “Oxidative and Endoplasmic Reticulum Stress in β-Cell Dysfunction in Diabetes.” Journal of Molecular Endocrinology, vol. 56, no. 2, Feb. 2016, pp. R33–R54. 56. Zhou, Wu, et al. “Galectin-3 Activates TLR4/NF-ΚB Signaling to Promote Lung Adenocarcinoma Cell Proliferation through Activating LncRNA-NEAT1 Expression.” BMC Cancer, vol. 18, 580, May 2018. 57. Liu, Peng, et al. “Differential Secretome of Pancreatic Cancer Cells in Serum-Containing Conditioned Medium Reveals CCT8 as a New Biomarker of Pancreatic Cancer Invasion and Metastasis.” Cancer Cell International, vol. 19, 262, Oct. 2019. 58. Xue, Huiting, et al. “The N-Terminal Tail Coordinates with Carbohydrate Recognition Domain to Mediate Galectin-3 Induced Apoptosis in T Cells.” Oncotarget, May 2017. 59. Kuriakose, Teneema, and Balázs Rada. “Tumor Progression Locus 2-Dependent Oxidative Burst Drives Phosphorylation of Extracellular Signal-Regulated Kinase during TLR3 and 9 Signaling.” J Biol Chem, vol. 289, 52, Nov. 2014, pp. 36089–100. 60. Szymczak-Pajor, Izabela. “Analysis of Association between Vitamin D Deficiency and Insulin Resistance.” Nutrients, vol. 11, 4, Apr. 2019, p. 794. 61. Kim, Jane J. “TLR4 and Insulin Resistance.” Gastroenterol Res Pract, vol. 2010, Aug. 2010, p. 212563. 62. Benomar, Yacir, et al. “Central Resistin/TLR4 Impairs Adiponectin Signaling, Contributing to Insulin and FGF21 Resistance.” Diabetes, vol. 65, 4, Apr. 2016, pp. 913–926. 63. Shi, Hang, et al. “TLR4 Links Innate Immunity and Fatty Acid–Induced Insulin Resistance.” J Clin Invest., vol. 116, 11, Nov. 2006, pp. 3015–3025. 64. Javeed, Naureen, et al. “Pancreatic Cancer-Derived Exosomes Cause Paraneoplastic β-Cell Dysfunction.” Clin Cancer Res, vol. 21, 7, Apr. 2015, pp. 1722–33. 65. Mensah-Brown, E. P. K., et al. “Targeted Disruption of the Galectin-3 Gene Results in Decreased Susceptibility to Multiple Low Dose Streptozotocin-Induced Diabetes in Mice.” Clinical Immunology, vol. 130, no. 1, Jan. 2009, pp. 83–88. 66. Yao, Yanli, et al. “HH1-1, a Novel Galectin-3 Inhibitor, Exerts Anti-Pancreatic Cancer Activity by Blocking Galectin-3/EGFR/AKT/FOXO3 Signaling Pathway.” Carbohydrate Polymers, vol. 204, Jan. 2019, pp. 111–123. 67. Petrovic, Ivica, et al. “Overexpression of Galectin 3 in Pancreatic β Cells Amplifies β-Cell Apoptosis and Islet Inflammation in Type-2 Diabetes in Mice.” Carbohydrate Polymers, vol. 11, Feb. 2020. 68. Liu, Jiming, et al. “Harmine Induces Cell Cycle Arrest and Mitochondrial Pathway-Mediated Cellular Apoptosis in SW620 Cells via Inhibition of the Akt and ERK Signaling Pathways.” Oncology Report, Mar. 2016, pp. 3363–3370. 69. Pan, Tai-Long, and Pei-Wen Wang. “Explore the Molecular Mechanism of Apoptosis Induced by Tanshinone IIA on Activated Rat Hepatic Stellate Cells.” Evid Based Complement Alternat Med., vol. 2012, Dec. 2012. 70. Lu, Zhimin, and Shuichan Xu. “ERK1/2 MAP Kinases in Cell Survival and Apoptosis.” IUBMB Life, vol. 58, 11, Nov. 2006, pp. 621–31. 71. Cheng, Yan, et al. “Oridonin Induces G2/M Arrest and Apoptosis via Activating ERK–P53 Apoptotic Pathway and Inhibiting PTK–Ras–Raf–JNK Survival Pathway in Murine Fibrosarcoma L929 Cells.” Archives of Biochemistry and Biophysics, vol. 490, no. 1, Oct. 2009, pp. 70–75. 72. Sun, Chao-Yue, et al. “Scutellarin Increases Cisplatin-Induced Apoptosis and Autophagy to Overcome Cisplatin Resistance in Non-Small Cell Lung Cancer via ERK/P53 and c-Met/AKT Signaling Pathways.” Front. Pharmacol., Feb. 2018. 73. Li, DW, et al. “Calcium-Activated RAF/MEK/ERK Signaling Pathway Mediates P53-Dependent Apoptosis and Is Abrogated by Alpha B-Crystallin through Inhibition of RAS Activation.” Molecular Biology of the Cell, vol. 16, 9, July 2005, pp. 4437–4453. 74. Kale, Justin, et al. “Phosphorylation Switches Bax from Promoting to Inhibiting Apoptosis Thereby Increasing Drug Resistance.” EMBO Rep, vol. 19, July 2018, p. e45235 75. Raisova, Monika, et al. “The Bax/Bcl-2 Ratio Determines the Susceptibility of Human Melanoma Cells to CD95/Fas-Mediated Apoptosis.” Journal of Investigative Dermatology, vol. 117, no. 2, Aug. 2001, pp. 333–340. 76. Amaral, Joana D., et al. “The Role of P53 in Apoptosis.” Discovery Medicine, Feb. 2010. 77. Cao, Zhe, et al. “AKT and ERK Dual Inhibitors: The Way Forward?” Cancer Letters, vol. 459, Sept. 2019, pp. 30–40. 78. Gantke, Thorsten, et al. “Regulation and Function of TPL-2, an IκB Kinase-Regulated MAP Kinase Kinase Kinase.” Cell Research, vol. 21, Apr. 2011, pp. 131–145. 79. Webb, Louise V., et al. “ABIN-2, of the TPL-2 Signaling Complex, Modulates Mammalian Inflammation.” Trends Immunol, vol. 40, no. 9, Sept. 2019, pp. 799–808. 80. Cucak, Helena, et al. “Macrophage Contact Dependent and Independent TLR4 Mechanisms Induce β-Cell Dysfunction and Apoptosis in a Mouse Model of Type 2 Diabetes.” PLoS ONE, vol. 9, 3, Mar. 2014, p. e90685. 81. Kolb, Armin, et al. “Glucagon/Insulin Ratio as a Potential Biomarker for Pancreatic Cancer in Patients with New-Onset Diabetes Mellitus.” Cancer Biology Therapy, vol. 8, no. 16, Aug. 2009. 82. Mao, Yonghuan, et al. “Regulation of Cell Apoptosis and Proliferation in Pancreatic Cancer through PI3K/Akt Pathway via Polo-like Kinase 1.” Oncology Reports, vol. 36, no. 1, May 2016, pp. 49–56. 83. Zhang, L., et al. “RN1, a Novel Galectin-3 Inhibitor, Inhibits Pancreatic Cancer Cell Growth in Vitro and in Vivo via Blocking Galectin-3 Associated Signaling Pathways.” Oncogene, vol. 36, Sept. 2016, pp. 1297–1308. 84. Ghasemi, Asghar. “Uric Acid-Induced Pancreatic β-Cell Dysfunction.” BMC Endocr Disord, vol. 21, no. 1, Feb. 2021, p. 24. 85. Yan, Jieping. “Activating Glucocorticoid Receptor-ERK Signaling Pathway Contributes to Ginsenoside Rg1 Protection against β-Amyloid Peptide-Induced Human Endothelial Cells Apoptosis.” Journal of Ethnopharmacology, vol. 147, no. 2, May 2013, pp. 456–466. 86. Chen, Xiumei. “Galectin-3 Exacerbates Ox-LDL-Mediated Endothelial Injury by Inducing Inflammation via Integrin Β1-RhoA-JNK Signaling Activation.” J Cell Physiol, vol. 234, no. 7, July 2019, pp. 10990–11000. 87. Tan, Yinyin, et al. “Galectin-3: A Key Player in Microglia-Mediated Neuroinflammation and Alzheimer’s Disease.” Cell Bioscience, vol. 11, 78, Apr. 2021. 88. Kim, Tae Ho, et al. “IL-6 Induction of TLR-4 Gene Expression via STAT3 Has an Effect on Insulin Resistance in Human Skeletal Muscle.” Acta Diabetologica, vol. 50, Feb. 2011, pp. 189–200. 89. Stanley, William J., et al. “Inactivation of Protein Tyrosine Phosphatases Enhances Interferon Signaling in Pancreatic Islets.” Diabetes, vol. 64, 7, July 2015, pp. 2489–2496.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82013-
dc.description.abstract胰臟癌 (PC) 高居目前全球癌症死亡統計中第七位、而其五年存活率則位居末位。由於胰臟癌本身缺乏顯著病徵,故導致難以診斷,超過八成以上的患者在確診時皆已進展到手術無法切除的晚期階段。根據研究指出,超過四成以上的患者在確診前,會因胰臟癌所釋放出的致糖尿病因子產生新生糖尿病的症狀,而若能將胰臟癌所導致的新生糖尿病 (PCDM) 與第二型糖尿病進行區分,便有利於作為胰臟癌的早期診斷。而本實驗室透過質譜分析、生物資訊學分析、及細胞功能測試,發現 galectin-3 可作為 PCDM 有力的生物標記物。 為了進一步了解 galectin-3 在 PCDM 所調控的機轉,我們首先利用自行純化的重組蛋白 galectin-3 針對肌肉細胞進行實驗,發現 galectin-3 藉由增加 IRS-1 的抑制性絲氨酸磷酸化和降低 Akt 的活性來抑制胰島素訊息傳導路徑。從免疫共沉澱實驗也可見 galectin-3 與肌肉細胞的 TLR4 受體具有交互作用,由此可知,galectin-3 透過與 TLR4 結合進而活化 IKK-β/NF-κB 路徑,並且活化 IRS-1 Ser307 、降低 AKT 的磷酸化,因而導致肌肉細胞的胰島素訊息傳導路徑受阻、進一步發生胰島素阻抗。 另一方面探討 galectin-3 對於胰島 β 細胞功能障礙的調控。實驗結果顯示,galectin-3可使胰島 β 細胞存活率下降。深入探討其機制發現,galectin-3 會透過提升 IKK 與 ERK 的磷酸化,進而使促進細胞凋亡的相關分子,如:Bax/Bcl-2 比值與 cleaved caspase 3 表現量有所上升;而在 TLR4 或 IKK 抑制劑的處理之下,促進細胞凋亡的訊號則有所下降。除此之外,透過組織染色方式,我們也觀察到相較於 PC 患者,PCDM 患者的胰島中 cleaved caspase 3 表現量上升、胰島素分泌量下降,顯示 galectin-3 可藉由活化 TLR4/IKK 路徑,進一步誘使 ERK 引發胰島 β 細胞凋亡。 根據上述之結果,本篇論文釐清 galectin-3 作為 PCDM 的生物標記物在誘發糖尿病的機制上所扮演的角色,在肌肉細胞上,其可透過活化 TLR4/IKK 進而抑制胰島素訊息傳遞路徑來造成胰島素抗性;而在胰島 β 細胞上,則可透過活化 TLR4/IKK/ERK 路徑來誘導細胞凋亡,且在臨床上也顯示相同現象。zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-25T05:34:05Z (GMT). No. of bitstreams: 1
U0001-0508202116084800.pdf: 3770566 bytes, checksum: 53e825e35ca1738acec105cff8cfa44c (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents口試委員審定書------------------------------------------------------------------------------------------- I 謝誌--------------------------------------------------------------------------------------------------------- II 中文摘要-------------------------------------------------------------------------------------------------- III ABSTRACT---------------------------------------------------------------------------------------------- IV 縮寫-------------------------------------------------------------------------------------------------------- VI 目錄--------------------------------------------------------------------------------------------------------- 2 圖 目錄----------------------------------------------------------------------------------------------------- 3 附錄 目錄-------------------------------------------------------------------------------------------------- 4 第 一 章 導 論------------------------------------------------------------------------------------- 5 第 一 節 胰 臟 癌---------------------------------------------------------------------------------- 5 第 二 節 胰 臟 癌 誘 發 的 新 生 糖 尿 病 ( P C D M )------------------------------------ 10 第 三 節 生 物 標 記 物-------------------------------------------------------------------------- 12 第 四 節 G A L E C T I N – 3------------------------------------------------------------------- 13 第 五 節 胰 島 素 訊 息 傳 導 路 徑 與 胰 島 素 阻 抗------------------------------------ 15 第 六 節 研 究 動 機------------------------------------------------------------------------------ 18 第 二 章 實 驗 材 料---------------------------------------------------------------------------- 19 第 一 節 細 胞 株--------------------------------------------------------------------------------- 19 第 二 節 組 織 切 片 樣 本---------------------------------------------------------------------- 19 第 三 節 抗 體------------------------------------------------------------------------------------- 19 第 四 節 藥 品------------------------------------------------------------------------------------- 20 第 五 節 試 劑 組--------------------------------------------------------------------------------- 22 第 六 節 儀 器------------------------------------------------------------------------------------- 22 第 三 章 實 驗 方 法---------------------------------------------------------------------------- 24 第 一 節 細 胞 培 養------------------------------------------------------------------------------ 24 第 二 節 候 選 蛋 白 製 備---------------------------------------------------------------------- 25 第 三 節 蛋 白 質 分 析-------------------------------------------------------------------------- 26 第 四 節 細 胞 功 能 分 析---------------------------------------------------------------------- 31 第 五 節 細 胞 訊 息 傳 導 路 徑 分 析------------------------------------------------------- 33 第 六 節 臨 床 檢 體 分 析---------------------------------------------------------------------- 34 第 四 章 研 究 結 果---------------------------------------------------------------------------- 35 第 一 節 G A L E C T I N - 3 在 C 2 C 1 2 肌 肉 細 胞 中 調 控 的 機 制------------ 35 第 二 節 G A L E C T I N - 3 在 I N S - 1 胰 島 β 細 胞 中 調 控 的 機 制------------ 36 第 三 節 P C D M 胰 島 組 織 中 細 胞 凋 亡 現 象--------------------------------------- 38 第 五 章 討 論----------------------------------------------------------------------------------- 39 第 一 節 探 討 G A L E C T I N - 3 調 控 肌 肉 細 胞 中 胰 島 素 阻 抗 的 機 制--- 39 第 二 節 探 討 G A L E C T I N - 3 調 控 胰 島 β 細 胞 中 細 胞 凋 亡 的 機 制----- 41 第 三 節 探 討 P C D M 胰 島 組 織 中 細 胞 凋 亡 現 象-------------------------------- 43 第 四 節 未 來 展 望------------------------------------------------------------------------------ 44 參 考 文 獻------------------------------------------------------------------------------------------------ 45 圖----------------------------------------------------------------------------------------------------------- 53 附錄-------------------------------------------------------------------------------------------------------- 63
dc.language.isozh-TW
dc.subject半乳糖凝集素-3zh_TW
dc.subject生物標記物zh_TW
dc.subject胰島素抗性zh_TW
dc.subject胰島 β 細胞凋亡zh_TW
dc.subject胰臟癌誘發之新生糖尿病zh_TW
dc.subjectβ cell apoptosisen
dc.subjectbiomarkeren
dc.subjectgalectin-3en
dc.subjectinsulin resistanceen
dc.subjectPCDMen
dc.title探討生物標記物 Galectin-3 於胰臟癌誘發新生糖尿病之調控機轉zh_TW
dc.titleUnderstanding the mechanism of biomarker galectin-3 in pancreatic cancer-associated new-onset diabetes (PCDM).en
dc.date.schoolyear109-2
dc.description.degree碩士
dc.contributor.oralexamcommittee廖偉智(Hsin-Tsai Liu),周祖述(Chih-Yang Tseng),龔秀妮
dc.subject.keyword胰臟癌誘發之新生糖尿病,胰島素抗性,胰島 β 細胞凋亡,半乳糖凝集素-3,生物標記物,zh_TW
dc.subject.keywordPCDM,insulin resistance,β cell apoptosis,galectin-3,biomarker,en
dc.relation.page67
dc.identifier.doi10.6342/NTU202102114
dc.rights.note同意授權(限校園內公開)
dc.date.accepted2021-08-13
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept生物化學暨分子生物學研究所zh_TW
dc.date.embargo-lift2026-08-12-
顯示於系所單位:生物化學暨分子生物學科研究所

文件中的檔案:
檔案 大小格式 
U0001-0508202116084800.pdf
  未授權公開取用
3.68 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved