請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82011完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃奎隆(KWEI-LONG HUANG) | |
| dc.contributor.author | Hung-Ping Cheng | en |
| dc.contributor.author | 鄭宏平 | zh_TW |
| dc.date.accessioned | 2022-11-25T05:34:02Z | - |
| dc.date.available | 2025-08-01 | |
| dc.date.copyright | 2021-11-09 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-08-17 | |
| dc.identifier.citation | (1)Alidaee, B. and Womer, N. K. (1999). Scheduling with time dependent processing times: Review and extensions. Journal of the Operational Research Society, 50(7), 711-720. (2)Allahverdi, A., Gupta, J.N.D. and Aldowaisan, T. (1999). A review of scheduling research involving setup considerations. Omega-International Journal of Management Science, 27(4), 219-239. (3)Allahverd,i A., Ng, C.T. and Cheng, T.C.E. (2008). A survey of scheduling problems with setup times or costs. European Journal of Operational Research, 187(6), 985-1032. (4)Allaoui, H. and Artiba, A. (2004). Integrating simulation and optimization to schedule a hybrid flow shop with maintenance constraints. Computers Industrial Engineering, 47(4), 431-450. (5)Bachman, A. and Janiak, A. (2004). Scheduling jobs with position-dependent processing times. Journal of the Operational Research Society, 55(3), 257-264. (6)Chang, P.C., Hsieh, J.C. and Lin, S.G. (2002). The development of gradual-priority weighting approach for the multi-objective flowshop scheduling problem. International Journal of Production Economics, 79(3), 171-183. (7)Chang, J., Ma, G. and Ma, X., (2006). A New Heuristic for Minimal Makespan in No-Wait Hybrid Flowshops. Proceedings of the 25th Chinese Control Conference, Harbin, Heilongjiang. (8)Chen, C.L., Vempati, V. S. and Aljaber, N. (1995). An application of genetic algorithms for flow shop problems. European Journal of Operational Research, 80(2), 389-396. (9)Chien, C.F., and Chen, C.C., (2020). Data-Driven Framework for Tool Health Monitoring and Maintenance Strategy for Smart Manufacturing. IEEE Transactions on Semiconductor Manufacturing, 33(4), 644-652. (10)Doleschal, D., Weigert, G. and Klemmt, A. (2015). Yield integrated scheduling using machine condition parameter. 2015 Winter Simulation Conference (WSC), 18(2). (11)Huang, K. L., Blue, J., Weng, H. C., and Liu, S. H., (2018). Single machine scheduling with consideration of preventive maintenance and machine health, The 4th International Conference on Engineering, Applied Sciences and Technology (ICEAST 2018), 192. (12)Rahmani, D. and Ramezanian, R. (2016). A stable reactive approach in dynamic flexible flow shop scheduling with unexpected disruptions: A case study. Computers Industrial Engineering, 98, 360-372. (13)Gao, J., Gen, M., Sun, L. and Zhao, X. (2007). A hybrid of genetic algorithm and bottleneck shifting for multiobjective flexible job shop scheduling problems. Computers Industrial Engineering, 53(1), 149-162. (14)Grabowski, J. and Pempera, J. (2000). Sequencing of jobs in some production system. European Journal of Operational Research, 125(3), 535-550. (15)Ignall, E. and Schrage, L. (1965). Application of the branch and bound technique to some flow-shop scheduling problems. Operations Research, 13(3), 400-412. (16)Jin, Z. (2002). Scheduling hybrid flowshops in printed circuit board assembly lines. Production and Operations Management, 11(2), 216-230. (17)Johnson, S.M. (1954). Optimal two- and three-stage production schedules with setup times included. Naval Research Logistics Quarterly, 1(1), 61-68. (18)Jungwattanakit, J., Reodecha, M., Chaovalitwongse, P. and Werner, F. (2008). Algorithms for flexible flow shop problems with unrelated parallel machines, setup times, and dual criteria. The International Journal of Advanced Manufacturing Technology, 37, 354-370. (19)Karimi N., Zandieh M., Karamooz H.R., (2010). Bi-objective group scheduling in hybrid flexible flowshop: A multi-phase approach. Expert Systems with Applications, 37, 4024–4032. (20)Lee, C. Y., and Leon, V. J. (2001). Machine scheduling with a rate-modifying activity. European Journal of Operational Research, 128(1), 119-128. (21)Linn, R. and Zhang, W. (1999). Hybrid flow shop scheduling: a survey. Computers industrial engineering, 37(1), 57-61. (22)Liu, L.L, Hu, R.S., Hu, X.P., Zhao, G.P. and Wang, S. (2015). A hybrid PSO-GA algorithm for job shop scheduling in machine tool production. International Journal of Production Research, 53(19), 5755-5781. (23)Liu, C.-Y. and Chang, S.C. (2000). Scheduling flexible flow shops with sequence-dependent setup effects. IEEE Transactions on Robotics and Automation, 16(4), 408-419. (24)Low, C. (2005). Simulated annealing heuristic for flow shop scheduling problems with unrelated parallel machines. Computers Operations Research, 32, 2013-2025. (25)Lu, Z., Cui, W. and Han, X. (2015). Integrated production and preventive maintenance scheduling for a single machine with failure uncertainty. Computers Industrial Engineering, 80(2), 236-244. (26)Ghaleb, M. A. and Alharkan, M. I. (2019). Particle swarm optimization algorithms for two-stage hybrid flowshop scheduling problem with no-wait. Universal Journal of Electrical and Electronic Engineering, 6(2), 46-60. (27)Mageed A. and Ibrahim M., (2019). Particle Swarm Optimization Algorithms for Two-stage Hybrid Flowshop Scheduling Problem with No-wait. Universal Journal of Electrical and Electronic Engineering, 6(2), 46-60. (28)Nip, K., Wang, Z. and Wang, Z. (2016). Scheduling under linear constraints. European Journal of Operational Research, 253(2), 290-297. (29)Öztop, H., Tasgetiren M. F., Eliiyi, D. T. and Pan, Q.K. (2018). Iterated greedy algorithms for the hybrid flowshop scheduling with total flow time minimization. Proceedings of ACM GECCO conference, Kyoto, Japan. (30)Pan, E. and Liao, W. (2012). A joint model of production scheduling and predictive maintenance for minimizing job tardiness. Int J Adv Manuf Technol, 60, 1049-1061. (31)Pang, K.W. (2013). A genetic algorithm based heuristic for two machine no-wait flowshop scheduling problems with class setup times that minimizes maximum lateness. International Journal of Production Economics, 141(1), 127-136. (32)Rahmani D. and Ramezania R., (2016). A stable reactive approach in dynamic flexible flow shop scheduling with unexpected disruptions: A case study. Computers Industrial Engineering, 98, 360-372. (33)Rudek, R. (2017). Scheduling on parallel processors with varying processing times. Computers Operations Research, 81, 90-101. (34)Umbarkar, A. J. and Sheth, P. D. (2015). Crossover operations in genetic algorithms: a review. ICTACT Journal on Soft Computing, 6(1), 1083-1092. (35)Willem, J. S. and David, D. H. (1986). A mixed-integer goal-programming formulation of the standard flow-shop scheduling problem. Journal of the Operational Research Society, 37(12), 1121-1128. (36)Wittrock, R. J. (1985). Scheduling algorithms for flexible flow lines. IBM Journal of Research and Development, 29(4), 401-412. (37)Wittrock, R. J. (1988). An adaptable scheduling algorithm for flexible flow lines. Operations Research, 36(3), 445-453. (38)Yang, S.J. and Yang, D.L. (2010). Minimizing the total completion time in single-machine scheduling with aging deteriorating effects and deteriorating maintenance activities. Computers Mathematics with Applications, 60(7), 2161-2169. (39)Zhou J., Li G. and Guo Y., (2015). On Complex Hybrid Flexible Flowshop Scheduling Problems Based on Constraint Programming. 2015 12th International Conference on Fuzzy Systems and Knowledge Discovery. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82011 | - |
| dc.description.abstract | " 近年來全球製造業的蓬勃發展,在大多數產業類別中,皆存在彈性流線型生產排程(Flexible Flow Shop)相關的問題,擁有一套高效率且有品質的排程規劃方法便顯得格外重要。而在整個製造系統裡,機台健康度,在本研究中特指機台效能,是影響整體排程結果的關鍵,但在排程的過程中卻時常被忽略,或是僅以給予寬放值的方式來衡量機台的產能表現後,再由各機台的產能來規劃後續的排程,如此所制訂出來的排程計畫便不是最符合實際生產情境的結果,因此有必要將機台健康度參數同時納入考慮,且在工廠的生產線上,由於機台年齡不同、製造環境改變或人為操作因素等,都容易使得機台健康度在一定時間內發生改變,如果能適時將機台健康度參數更新後重新進行排程,保持讓健康度相對較好的機台進行較高難度且複雜的作業,必定能規劃出更有效率的排程結果,如此便能夠節省更多的生產時間與成本,並且讓產能保持在最佳的狀態。 本研究針對前述內容,以考慮機台健康度之兩階段彈性生產排程為基礎,首先建立一混合整數線性規劃模型(Mixed Integer Linear Programming, MILP)求解此排程問題,以最小化總完工時間為目標,不過發現模型所需使用的決策變數非常多,導致必須花費許多時間才能獲得排程結果,但在實際生產線上,必須在短時間內更新機台健康度參數後,迅速重新獲得一組最佳的排程計畫,以利後續作業持續進行,而不會出現為了等待新的排程計畫而導致產線停擺的情況發生,因此本研究以MILP為基礎,設法減少數學模型決策變數的總數,建立了分階求解法(Two Phase Scheduling Heuristic, TPSH),另外也結合基因演算法的概念,創立了貪婪式基因演算法(Greedy Genetic Algorithm, GGA),兩者皆能在更短的時間內求得兼具品質與效率的排程結果,如此一來生管人員便能快速重新調整排程,以應付實際產線上機台健康度的改變。 " | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-25T05:34:02Z (GMT). No. of bitstreams: 1 U0001-0808202110575000.pdf: 4357340 bytes, checksum: cd6344d03661376f6d86d5e6143648c8 (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | 口試委員會審定書 I 致謝 II 摘要 III ABSTRACT IV 目錄 V 圖目錄 VII 表目錄 IX 第一章 緒論 1 1.1研究背景 1 1.2研究動機與目的 2 1.3研究架構與方法 4 第二章 文獻探討 6 2.1流線型生產排程問題 6 2.2彈性流線型生產排程問題 7 2.3機台健康度 9 2.4混合整數線性規劃模型 11 2.5基因演算法 13 第三章 問題描述與數學模型建構 15 3.1 問題描述 15 3.2 問題假設與限制 25 3.3 混合整數線性規劃模型之建構 26 3.4 混合整數線性規劃模型求解範例 29 第四章 啟發式演算法 31 4.1 分階求解法概念說明 31 4.2 分階求解法執行架構 34 4.3 分階求解法與求解範例 36 4.4 貪婪式基因演算法 47 第五章 數值分析與實例驗證 57 5.1 情境設計與說明 57 5.2 實驗結果與策略建議 62 5.3 實務排程案例驗證 86 第六章 結論 93 6.1 研究總結 93 6.2 未來展望與研究建議 94 參考文獻 96 | |
| dc.language.iso | zh-TW | |
| dc.subject | 混合整數線性規劃模型 | zh_TW |
| dc.subject | 彈性流線型生產排程 | zh_TW |
| dc.subject | 機台健康度 | zh_TW |
| dc.subject | 貪婪式基因演算法 | zh_TW |
| dc.subject | 啟發式演算法 | zh_TW |
| dc.subject | Heuristic Algorithm | en |
| dc.subject | Flexible flow shop | en |
| dc.subject | Machine health | en |
| dc.subject | Genetic Algorithm | en |
| dc.subject | Mixed integer programming | en |
| dc.title | 考慮機台健康度之兩階段彈性流線型生產排程研究 | zh_TW |
| dc.title | Two-Stage Flexible Flow-Shop Scheduling with Consideration of Machine Health | en |
| dc.date.schoolyear | 109-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 鄭辰仰(Hsin-Tsai Liu),楊朝龍(Chih-Yang Tseng) | |
| dc.subject.keyword | 彈性流線型生產排程,機台健康度,混合整數線性規劃模型,啟發式演算法,貪婪式基因演算法, | zh_TW |
| dc.subject.keyword | Flexible flow shop,Machine health,Mixed integer programming,Heuristic Algorithm,Genetic Algorithm, | en |
| dc.relation.page | 102 | |
| dc.identifier.doi | 10.6342/NTU202102183 | |
| dc.rights.note | 同意授權(限校園內公開) | |
| dc.date.accepted | 2021-08-17 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 工業工程學研究所 | zh_TW |
| dc.date.embargo-lift | 2025-08-01 | - |
| 顯示於系所單位: | 工業工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-0808202110575000.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 4.26 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
