請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82010完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳玟伶(Wen-Ling Chen) | |
| dc.contributor.author | Wen-Hsin Chang | en |
| dc.contributor.author | 張文馨 | zh_TW |
| dc.date.accessioned | 2022-11-25T05:34:01Z | - |
| dc.date.available | 2024-07-31 | |
| dc.date.copyright | 2021-08-31 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-08-11 | |
| dc.identifier.citation | Aas TS, Ytrestøyl T, Åsgård T. Utilization of feed resources in the production of Atlantic salmon (Salmo salar) in Norway: an update for 2016. Aquaculture Reports 2019; 15: 100216. Ali A, Thiem Ø, Berntsen J. Numerical modelling of organic waste dispersion from fjord located fish farms. Ocean Dynamics 2011; 61: 977-989. Alonso A, Marsal S, Julià A. Analytical methods in untargeted metabolomics: state of the art in 2015. Frontiers in Bioengineering and Biotechnology 2015; 3: 23. Avendano-Herrera R. Proper antibiotics use in the Chilean salmon industry: policy and technology bottlenecks. Aquaculture 2018; 495: 803-805. Bannister RJ, Johnsen IA, Hansen PK, Kutti T, Asplin L. Near- and far-field dispersal modelling of organic waste from Atlantic salmon aquaculture in fjord systems. ICES Journal of Marine Science 2016; 73: 2408-2419. Barrett AM, Dehghani F, Foster NR. Increasing the dissolution rate of itraconazole processed by gas antisolvent techniques using polyethylene glycol as a carrier. Pharmaceutical Research 2008; 25: 1274-1289. Berntssen MHG, Julshamn K, Lundebye A-K. Chemical contaminants in aquafeeds and Atlantic salmon (Salmo salar) following the use of traditional- versus alternative feed ingredients. Chemosphere 2010; 78: 637-646. Bondia-Pons I, Savolainen O, Törrönen R, Martinez JA, Poutanen K, Hanhineva K. Metabolic profiling of Goji berry extracts for discrimination of geographical origin by non-targeted liquid chromatography coupled to quadrupole time-of-flight mass spectrometry. Food Research International 2014; 63: 132-138. Broadhurst DI, Kell DB. Statistical strategies for avoiding false discoveries in metabolomics and related experiments. Metabolomics 2006; 2: 171-196. Burridge L, Weis JS, Cabello F, Pizarro J, Bostick K. Chemical use in salmon aquaculture: a review of current practices and possible environmental effects. Aquaculture 2010; 306: 7-23. Cabello FC, Godfrey HP. Salmon aquaculture, Piscirickettsia salmonis virulence, and one health: dealing with harmful synergies between heavy antimicrobial use and piscine and human health. Aquaculture 2019; 507: 451-456. Carvajalino-Fernandez MA, Saevik PN, Johnsen IA, Albretsen J, Keeley NB. Simulating particle organic matter dispersal beneath Atlantic salmon fish farms using different resuspension approaches. Marine Pollution Bulletin 2020; 161: 111685. Cevallos-Cevallos JM, Reyes-De-Corcuera JI, Etxeberria E, Danyluk MD, Rodrick GE. Metabolomic analysis in food science: a review. Trends in Food Science and Technology 2009; 20: 557-566. Chong J, Wishart DS, Xia J. Using MetaboAnalyst 4.0 for comprehensive and integrative metabolomics data analysis. Current Protocols in Bioinformatics 2019; 68: 86. Commission E. Commission Decision 2002/657/EC of 12 August 2002 implementing Council Directive 96/23/EC concerning the performance of analytical methods and the interpretation of results. Official journal of the European Communities 2002; 50: 8-36. Delaporte G, Cladière M, Jouan-Rimbaud Bouveresse D, Camel V. Untargeted food contaminant detection using UHPLC-HRMS combined with multivariate analysis: feasibility study on tea. Food Chemistry 2019; 277: 54-62. Dewailly É, Ayotte P, Lucas M, Blanchet C. Risk and benefits from consuming salmon and trout: a Canadian perspective. Food and Chemical Toxicology 2007; 45: 1343-1348. Du G, Liu L, Chen J. Chapter 11 - White biotechnology for organic acids. In: Pandey A, Höfer R, Taherzadeh M, Nampoothiri KM, Larroche C, editors. Industrial Biorefineries and White Biotechnology. Elsevier, Amsterdam, 2015, pp. 409-444. EUMOFA. European market observatory for fisheries and aquaculture products. The EU fish market. 2018. https://www.eumofa.eu/documents/20178/132648/EN_The+EU+fish+market+2018.pdf (accessed April 2020). Gago-Ferrero P, Bletsou AA, Damalas DE, Aalizadeh R, Alygizakis NA, Singer HP, et al. Wide-scope target screening of >2000 emerging contaminants in wastewater samples with UPLC-Q-ToF-HRMS/MS and smart evaluation of its performance through the validation of 195 selected representative analytes. Journal of Hazardous Materials 2020; 387: 121712. Gaspar AF, Santos L, Rosa J, Leston S, Barbosa J, Vila Pouca AS, et al. Development and validation of a multi-residue and multi-class screening method of 44 antibiotics in salmon (Salmo salar) using ultra-high-performance liquid chromatography/time-of-flight mass spectrometry: application to farmed salmon. Journal of Chromatography B 2019; 1118-1119: 78-84. FAO GLOBEFISH—Information and analysis on world fish trade. 2020. http://www.fao.org/in-action/globefish/market-reports/resource detail/en/c/1268636/ (accessed January 2021). Gorrochategui E, Jaumot J, Lacorte S, Tauler R. Data analysis strategies for targeted and untargeted LC-MS metabolomic studies: overview and workflow. Trends in Analytical Chemistry 2016; 82: 425-442. Gu J, Jing L, Ma X, Zhang Z, Guo Q, Li Y. GC–TOF-MS-based serum metabolomic investigations of naked oat bran supplementation in high-fat-diet-induced dyslipidemic rats. The Journal of Nutritional Biochemistry 2015; 26: 1509-1519. Haq M, Park S-K, Kim M-J, Cho Y-J, Chun B-S. Modifications of Atlantic salmon by-product oil for obtaining different ω-3 polyunsaturated fatty acids concentrates: an approach to comparative analysis. Journal of Food and Drug Analysis 2018; 26: 545-556. Helland SJ, Hatlen B, Grisdale-Helland B. Energy, protein and amino acid requirements for maintenance and efficiency of utilization for growth of Atlantic salmon post-smolts determined using increasing ration levels. Aquaculture 2010; 305: 150-158. Helmus R, ter Laak TL, van Wezel AP, de Voogt P, Schymanski EL. Patroon: open source software platform for environmental mass spectrometry based non-target screening. Journal of Cheminformatics 2021; 13. Ibáñez C, Simó C, García-Cañas V, Acunha T, Cifuentes A. The role of direct high-resolution mass spectrometry in foodomics. Analytical and Bioanalytical Chemistry 2015; 407: 6275-6287. Jandric Z, Tchaikovsky A, Zitek A, Causon T, Stursa V, Prohaska T, et al. Multivariate modelling techniques applied to metabolomic, elemental and isotopic fingerprints for the verification of regional geographical origin of Austrian carrots. Food Chemistry 2021; 338: 127924. Jensen I-J, Eilertsen K-E, Otnæs CHA, Mæhre HK, Elvevoll EO. An update on the content of fatty acids, dioxins, PCBs and heavy metals in farmed, escaped and wild Atlantic salmon (Salmo salar L.) in Norway. Foods (Basel, Switzerland) 2020; 9: 1901. Kim S, Chen J, Cheng T, Gindulyte A, He J, He S, et al. PubChem in 2021: new data content and improved web interfaces. Nucleic Acids Research 2021; 49: 1388-1395. Knolhoff AM, Croley TR. Non-targeted screening approaches for contaminants and adulterants in food using liquid chromatography hyphenated to high resolution mass spectrometry. Journal of Chromatography A 2016; 1428: 86-96. Kousoulaki K, Krasnov A, Ytteborg E, Sweetman J, Pedersen ME, Høst V, et al. A full factorial design to investigate interactions of variable essential amino acids, trace minerals and vitamins on Atlantic salmon smoltification and post transfer performance. Aquaculture Reports 2021; 20: 100704. Kousoulaki K, Rønnestad I, Rathore R, Sixten HJ, Campbell P, Nordrum S, et al. Physiological responses of Atlantic salmon (Salmo salar L.) fed very low (3%) fishmeal diets supplemented with feeding-modulating crystalline amino acid mixes as identified in krill hydrolysate. Aquaculture 2018; 486: 184-196. Lillehaug A, Bornes C, Grave K. A pharmaco-epidemiological study of antibacterial treatments and bacterial diseases in Norwegian aquaculture from 2011 to 2016. Diseases of Aquatic Organisms 2018; 128: 117-125. Liu L-L, Lin Y, Chen W, Tong M-L, Luo X, Lin L-R, et al. Metabolite profiles of the cerebrospinal fluid in neurosyphilis patients determined by untargeted metabolomics analysis. Frontiers in Neuroscience 2019; 13: 150. Lozano-Muñoz I, Wacyk J, Kretschmer C, Vásquez-Martínez Y, Martin MC-S. Antimicrobial resistance in Chilean marine-farmed salmon: improving food safety through one health. One Health 2021; 12: 100219. Luthman O, Jonell M, Troell M. Governing the salmon farming industry: comparison between national regulations and the ASC salmon standard. Marine Policy 2019; 106: 103534. Miranda CD, Godoy FA, Lee MR. Current status of the use of antibiotics and the antimicrobial resistance in the Chilean salmon farms. Frontiers in Microbiology 2018; 9: 1284. Mowi ASA. Mowi Salmon farming industry handbook. 2020. https://mowi.com/it/wp-content/uploads/sites/16/2020/06/Mowi-Salmon-Farming-Industry-Handbook-2020.pdf (accessed March 2021). Munaretto JS, May MM, Saibt N, Zanella R. Liquid chromatography with high resolution mass spectrometry for identification of organic contaminants in fish fillet: screening and quantification assessment using two scan modes for data acquisition. Journal of Chromatography A 2016; 1456: 205-216. Nations FAOU. FAO Yearbook. Fishery and aquaculture statistics 2018/FAO annuaire. Statistiques des pêches et de l'aquaculture 2018/FAO anuario. Estadísticas de pesca y acuicultura 2018. Food and Agriculture Organization, 2020. National Center for Biotechnology Information. 2021. PubChem compound summary for CID 17472, hexaethylene glycol. https://pubchem.ncbi.nlm.nih.gov/compound/Hexaethylene-glycol (accessed May 2021). National Center for Biotechnology Information. 2021. PubChem compound summary for CID 78798, 3,6,9,12,15,18,21-heptaoxatricosane-1,23-diol. https://pubchem.ncbi.nlm.nih.gov/compound/Octaethylene-glycol (accessed May 2021). Noel S, Sharma S, Rath SK. Simultaneous application of t-test and fold change criteria to identify acetaminophen and carbon tetrachloride affected genes in mice liver. Environmental Toxicology and Pharmacology 2008; 26: 150-161. Nordgarden U, Oppedal F, Taranger GL, Hemre G-I, Hansen T. Seasonally changing metabolism in Atlantic salmon (Salmo salar L.) I – Growth and feed conversion ratio. Aquaculture Nutrition 2003; 9: 287-293. Pang Z, Chong J, Zhou G, de Lima Morais DA, Chang L, Barrette M, et al. MetaboAnalyst 5.0: narrowing the gap between raw spectra and functional insights. Nucleic Acids Research 2021; 49: 388-396. Pereira SA, Oliveira HM, Jesus GFA, Addam KGS, Silva BC, Yamashita MM, et al. Can the minerals calcium and sodium, chelated to propionic acid, influence the health and zootechnical parameters of native silver catfish Rhamdia quelen? Aquaculture 2018; 496: 88-95. Pinto RC. Chemometrics methods and strategies in metabolomics. In: Sussulini A, editor. Metabolomics: from fundamentals to clinical applications. Springer International Publishing, Cham, 2017; 965: 163-190. Psychogios N. Paired analysis of time-series studies using concentration data. MetaboAnalyst tutorial 4, 2009. https://www.metaboanalyst.ca/resources/data/tutorial4.pdf (accessed March 2021). Rønnestad I, Murashita K, Kottra G, Jordal A-E, Narawane S, Jolly C, et al. Molecular cloning and functional expression of Atlantic salmon peptide transporter 1 in Xenopus oocytes reveals efficient intestinal uptake of lysine-containing and other bioactive di- and tripeptides in teleost fish. The Journal of Nutrition 2010; 140: 893-900. Rajan RS, Li T, Aras M, Sloey C, Sutherland W, Arai H, et al. Modulation of protein aggregation by polyethylene glycol conjugation: GCSF as a case study. Protein Science 2006; 15: 1063-1075. Søfteland L, Berntssen MHG, Kirwan JA, Størseth TR, Viant MR, Torstensen BE, et al. Omega-3 and alpha-tocopherol provide more protection against contaminants in novel feeds for Atlantic salmon (Salmo salar L.) than omega-6 and gamma tocopherol. Toxicology Reports 2016; 3: 211-224. Søfteland L, Kirwan JA, Hori TSF, Størseth TR, Sommer U, Berntssen MHG, et al. Toxicological effect of single contaminants and contaminant mixtures associated with plant ingredients in novel salmon feeds. Food and Chemical Toxicology 2014; 73: 157-174. Schymanski EL, Jeon J, Gulde R, Fenner K, Ruff M, Singer HP, et al. Identifying small molecules via high resolution mass spectrometry: communicating confidence. Environmental Science and Technology 2014; 48: 2097-2098. Siddaiah C, Kumar Bm A, Deepak SA, Lateef SS, Nagpal S, Rangappa KS, et al. Metabolite profiling of Alangium salviifolium bark using advanced LC/MS and GC/Q-TOF technology. Cells 2021; 10: 1. Sissener NH, Julshamn K, Espe M, Lunestad BT, Hemre GI, Waagbo R, et al. Surveillance of selected nutrients, additives and undesirables in commercial Norwegian fish feeds in the years 2000-2010. Aquaculture Nutrition 2013; 19: 555-572. Smith CA, Maille GO, Want EJ, Qin C, Trauger SA, Brandon TR, et al. METLIN: a metabolite mass spectral database. Therapeutic Drug Monitoring 2005; 27: 747-751. Soon JM, Baines RN. Aquaculture farm food safety and diseases risk assessment (AquaFRAM): development of a spreadsheet tool for salmon farms. Aquacultural Engineering 2012; 49: 35-45. Sprague M, Dick JR, Tocher DR. Impact of sustainable feeds on omega-3 long-chain fatty acid levels in farmed Atlantic salmon, 2006–2015. Scientific Reports 2016; 6: 21892. Sprague M, Fawcett S, Betancor MB, Struthers W, Tocher DR. Variation in the nutritional composition of farmed Atlantic salmon (Salmo salar L.) fillets with emphasis on EPA and DHA contents. Journal of Food Composition and Analysis 2020; 94: 103618. Sud M, Fahy E, Cotter D, Brown A, Dennis EA, Glass CK, et al. Lmsd: lipid maps structure database. Nucleic Acids Research 2007; 35: 527-532. Tautenhahn R, Böttcher C, Neumann S. Highly sensitive feature detection for high resolution LC/MS. BMC Bioinformatics 2008; 9: 504. Turnipseed SB, Lohne JJ, Boison JO. Review: application of high resolution mass spectrometry to monitor veterinary drug residues in aquacultured products. Journal of AOAC International 2015; 98: 550-558. Turnipseed SB, Storey JM, Lohne JJ, Andersen WC, Burger R, Johnson AS, et al. Wide-scope screening method for multiclass veterinary drug residues in fish, shrimp, and eel using liquid chromatography-quadrupole high-resolution mass spectrometry. Journal of Agricultural and Food Chemistry 2017; 65: 7252-7267. Urbina MA, Cumillaf JP, Paschke K, Gebauer P. Effects of pharmaceuticals used to treat salmon lice on non-target species: evidence from a systematic review. Science of The Total Environment 2019; 649: 1124-1136. Van den Berg RA, Hoefsloot HCJ, Westerhuis JA, Smilde AK, van der Werf MJ. Centering, scaling, and transformations: improving the biological information content of metabolomics data. BMC Genomics 2006; 7: 142. Wang H, Song W, Tao W, Zhang J, Zhang X, Zhao J, et al. Identification wild and cultivated licorice by multidimensional analysis. Food Chemistry 2021a; 339: 128111. Wang S, Lai G, Lin J, Xia F, Ding Z, Feng J, et al. Rapid detection of adulteration in extra virgin olive oil by low-field nuclear magnetic resonance combined with pattern recognition. Food Analytical Methods 2021b; 14: 1322-1335. Wang T, Duedahl-Olesen L, Lauritz Frandsen H. Targeted and non-targeted unexpected food contaminants analysis by LC/HRMS: feasibility study on rice. Food Chemistry 2021c; 338: 127957. Watts JEM, Schreier HJ, Lanska L, Hale MS. The rising tide of antimicrobial resistance in aquaculture: sources, sinks and solutions. Marine Drugs 2017; 15: 158. Wiklund S, Johansson E, Sjostrom L, Mellerowicz EJ, Edlund U, Shockcor JP, et al. Visualization of GC/TOF-MS-based metabolomics data for identification of biochemically interesting compounds using OPLS class models. Analytical Chemistry 2008; 80: 115-122. Wishart DS, Feunang YD, Guo AC, Lo EJ, Marcu A, Grant JR, et al. DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Research 2018a; 46: 1074-1082. Wishart DS, Feunang YD, Marcu A, Guo AC, Liang K, Vázquez-Fresno R, et al. HMDB 4.0: the human metabolome database for 2018. Nucleic Acids Research 2018b; 46: 608-617. Xiao R, Ma Y, Zhang D, Qian L. Discrimination of conventional and organic rice using untargeted LC-MS-based metabolomics. Journal of Cereal Science 2018; 82: 73-81. Yang M, Li X, Li Z, Ou Z, Liu M, Liu S, et al. Gene features selection for three-class disease classification via multiple orthogonal partial least square discriminant analysis and S-plot using microarray data. PloS one 2013; 8: 84253-84253. Ytrestøyl T, Aas TS, Åsgård T. Utilisation of feed resources in production of Atlantic salmon (Salmo salar) in Norway. Aquaculture 2015; 448: 365-374. 行政院農業委員會漁業署。民國108年漁業統計年報。2020年12月。檢索自:https://www.fa.gov.tw/cht/PublicationsFishYear/content.aspx?id=34 chk=45c1a506-e4ff-4f0f-9fad-c898cc1eae42。 凃盈如。夏天吃鮭魚生魚片有秘辛認明這個標章有保障。2018/04/15。檢索自:https://ent.ltn.com.tw/news/breakingnews/2396296。 姜唯編譯;蔡麗伶審校。智利鮭魚疑含抗生素Costco將減少進口。2015/07/28。檢索自:https://e-info.org.tw/node/109122。 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82010 | - |
| dc.description.abstract | 挪威與智利是養殖大西洋鮭魚的主要生產國,然而來自這兩個產地的鮭魚產品因養殖環境和用藥情形不同而背負不同聲譽。本研究目的是以高解析質譜法分析與比較挪威與智利養殖鮭魚的小分子指紋 (small-molecule fingerprints),探討有機化合物分布是否因產地來源而有所差異。 本研究從一般消費者較容易購得鮭魚的超市與賣場,收集來自挪威與智利之鮭魚樣本(分別是30個與33個)。樣本經溶劑萃取與淨化後,使用液相層析-四極桿/飛行時間質譜系統獲取所有潛在小分子化合物 (m/z 70-1100) 的分子離子與碎片離子資訊。我們提取正、負離子分子波峰後,以同位素標記化學品對波峰面積進行標準化;再以分子波峰為變項,利用多變量分析法建立產地鑑別模型。確定小分子整體分布隨產地不同之後,以單變量分析法篩選出於兩產地相對含量差異明顯的特徵化合物。最後透過查找資料庫、比對分子離子與碎片離子準確質量,完成特徵化合物鑑定。 本研究成功應用非目標分析法解析養殖大西洋鮭魚產品的小分子化學指紋。以870個正離子分子與702個負離子分子所建構的偏最小平方判別分析模型(R2>0.8、Q2>0.6)、與正交偏最小平方判別分析模型(R2Y>0.9、Q2>0.7),均穩健區別來自兩產地之樣本(permutation test p<0.05),顯示挪威與智利養殖鮭魚之化學組成截然不同。透過單變量分析,本研究篩選出有60個與35個化合物分別在智利與挪威鮭魚產品中相對含量較高(log2 fold change 絕對值>1.5倍、p<0.05),並完成其中37個特徵化合物的鑑定。特徵化合物以內生性物質為主,其中二肽及n-3與n-6脂肪酸在智利鮭魚產品中相對含量較高(2.89倍至16.9倍)。反之,外源性化合物聚乙二醇在挪威鮭魚產品中相對含量為智利產品的4.4倍以上。 本研究證實挪威與智利所生產的大西洋鮭魚產品小分子指紋有所差異,此單一品系水產之產地差異可能主要來自飼料成分等養殖條件。本研究未發現挪威與智利鮭魚在藥物與污染物殘留上有明顯不同,證實養殖業之動物用藥與環境管理具有一致性。後續研究可針對本研究所提出之特徵化合物進行定量分析,以做為產地鑑別之依據。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-25T05:34:01Z (GMT). No. of bitstreams: 1 U0001-0908202113050800.pdf: 3607941 bytes, checksum: b61da1c146ad1c2d984290c413164d2f (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | 口試委員審定書 1 誌謝 2 中文摘要 3 Abstract 4 目錄 6 圖目錄 8 表目錄 9 第一章、前言 10 1 鮭魚產品概況 10 1.1 鮭魚消費生產概況 10 1.2 鮭魚食品安全疑慮 11 2 食品非目標分析 13 2.1 應用高解析質譜於非目標分析的優勢 13 2.2 高解析質譜資料處理 14 2.3 將多變量分析方法應用於食品非目標分析 16 2.4 化合物鑑定 17 第二章、研究目的、假說與架構 18 1 研究假說 18 2 研究目的 18 第三章、材料與方法 20 1 鮭魚樣本採集 20 2 樣本前處理 21 2.1 真實鮭魚樣本前處理 21 2.2 前處理方法調整 22 3 儀器分析 23 4 小分子化合物之變項提取 25 5 以多變量分析觀察挪威和智利鮭魚樣本分群趨勢 28 6 以單變量分析挑選特徵化合物 29 7 小分子化合物鑑定 31 第四章、結果與討論 34 1 挪威與智利鮭魚樣本採集 34 2 同位素標記化學品與萃取溶劑選擇 38 3 分析方法再現性 40 4 分子波峰提取結果 41 5 資料縮放方法選擇 43 6 挪威與智利鮭魚小分子化合物整體分布 44 6.1 正離子分子多變量分析結果 44 6.2 負離子分子多變量分析結果 48 7 特徵化合物篩選結果 53 8 特徵化合物鑑定結果 56 9 養殖條件與環境對特徵化合物的影響 63 第五章、結論 66 第六章、參考文獻 67 | |
| dc.language.iso | zh-TW | |
| dc.subject | 產地鑑別 | zh_TW |
| dc.subject | 小分子指紋 | zh_TW |
| dc.subject | 養殖鮭魚 | zh_TW |
| dc.subject | 非目標分析 | zh_TW |
| dc.subject | 高解析質譜法 | zh_TW |
| dc.subject | origin discrimination | en |
| dc.subject | small-molecule fingerprints | en |
| dc.subject | farmed salmon | en |
| dc.subject | high-resolution mass spectrometry | en |
| dc.subject | untargeted analysis | en |
| dc.title | 應用高解析質譜法探討挪威與智利養殖鮭魚之小分子指紋分布差異 | zh_TW |
| dc.title | Using high-resolution mass spectrometry to differentiate small-molecule fingerprints in farmed salmon from Norway and Chile | en |
| dc.date.schoolyear | 109-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 冉繁華(Hsin-Tsai Liu),林靖愉(Chih-Yang Tseng),王科植 | |
| dc.subject.keyword | 養殖鮭魚,小分子指紋,產地鑑別,非目標分析,高解析質譜法, | zh_TW |
| dc.subject.keyword | farmed salmon,small-molecule fingerprints,origin discrimination,untargeted analysis,high-resolution mass spectrometry, | en |
| dc.relation.page | 72 | |
| dc.identifier.doi | 10.6342/NTU202102206 | |
| dc.rights.note | 同意授權(限校園內公開) | |
| dc.date.accepted | 2021-08-11 | |
| dc.contributor.author-college | 公共衛生學院 | zh_TW |
| dc.contributor.author-dept | 食品安全與健康研究所 | zh_TW |
| dc.date.embargo-lift | 2024-07-31 | - |
| 顯示於系所單位: | 食品安全與健康研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-0908202113050800.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 3.52 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
